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Definition of number systems

A canonical number system is given by

• an algebraic integer α, the base, and

• a complete residue system D of Z[α] modulo α, usually taken

as {0, . . . , |Norm(α)| − 1}, the digit set,

with the property that every a ∈ Z[α] has a finite expansion

ℓ
∑

i=0

diα
i (di ∈ D).

This definition represents a step in an ongoing chain of generali-

sations, and is the last one that has a recognisable “number” as

a base.



Definition of number systems (2)

The following generalisation is quite natural. We take:

• a monic nonconstant polynomial f with integral coefficients;

• a finite subset D of Z[X] that contains a complete residue

system of Z[X]/(f) modulo X.

By the isomorphism theorem, we have

(Z[X]/(f)) /(X) ∼= Z/(f(0)).

We write V = Z[X]/(f).

Note that we do not require 0 ∈ D.



Digits

If the digit set D is exactly a complete residue system, we call it

irredundant, otherwise it is redundant.

If D is irredundant, then for each v ∈ V , we write v modD X, or

simply v mod X, for the unique digit d such that v − d is divisible

by X.

We then define the transformation T : V → V by

T(v) = (v − (v mod X))/X,

and the (X,D)-expansion of v ∈ V by

∑

i≥0

diX
i with di = T i(v) mod X.



Examples

A simple example is where f = X − a for some integer a, |a| ≥ 2.

Here V ∼= Z, and modulo X − a, X is actually equal to a, so this is

just the a-ary system, if we take digits

{0,1, . . . , |a| − 1},
the classical digits. a = 2: binary; a = 10: decimal; etc.

A cryptographical example: f = X2 + X + 2, with zeros τ =
−1±

√
−7

2 . Now V is a quadratic ring; the classical digits here are

{0,1, . . . , |f(0)| − 1} = {0,1}.

Here, every element v ∈ V can be written as

v =
ℓ

∑

i=0

diX
i (mod f),

with digits di ∈ D.



Questions

1. given f and D, can we write all elements of V in the form

ℓ
∑

i=0

diX
i (mod f)

with di in D?

2. given f , is there any digit set D with this property?

Theorem (B. Kovács, Pethő, Brunotte, et al.)

There is an algorithm that, given f and D, decides question 1.

Theorem (A. Kovács and L. Germán, CvdW, 2007)

The answer to question 2 is Yes when all roots of f have (complex)

absolute value bigger than 2.



More questions

Why do we want to consider digit sets without zero?

1. for a cryptographic reason: side channel attacks on (hyper)elliptic

curve cryptography implementations

2. because they are there

3. specifically, because of the following construction of digit sets

using the Chinese Remainder Theorem

SCA: we compute nP =
(

∑ℓ
i=0 niτ

i
)

P .

That is,
∑ℓ
i=0 ni(τ

iP).

Observe when ni = 0; know something about n!



Periodic and finite expansions

We know: if f is expanding, then for all v ∈ V , the (X,D)-expansion

is eventually periodic.

When is
∑

i≥0

diX
i a finite expansion?

Answer: when
∑

i≥0

diX
i =

N−1
∑

i=0

diX
i, so

∞
∑

i=N

diX
i = 0 !

If 0 is a digit, this is simple: di = 0 for i = N,N + 1, . . .

If 0 is not a digit, and f is expanding, the only way is to have a

zero period:

ℓ−1
∑

i=0

diX
i = 0,

and this repeated indefinitely.



The zero period

Assume D is irredundant and f is expanding. Then we saw

di = T i(v) mod X;

because expansions are unique, we see that the zero period is

unique and is found as the (X,D)-expansion of 0.

Let’s see what this means for the transformation T on V . The

zero period can be represented as

0 → T(0) = [0 − (0 mod X)] /X → T2(0) → . . .→ 0.

If any nonzero element v has a finite expansion, then the sequence

(Tn(v))n≥0 must reach 0, and return there periodically. In partic-

ular, 0 must be a purely periodic element under T .

Conversely: if 0 is not purely periodic, then for all n ≥ 0, Tn(0)
does not have a finite expansion.



Example

Consider V = Z, and let M be an odd integer, |M | ≥ 2. Take

f = X −M . Consider the irredundant digit set

DM = {−M + 2, −M + 4, . . . , −1, 1, . . . , M − 2, M}.

I claim that this digit set makes (Z,DM) into a number system.

We have here T(a) =
a− (a modDM M)

M
; it’s easy to prove that

whenever |a| > M

M − 1
, we have |T(a)| < |a|.

But 1 and −1 are digits, and 0 → 0 −M

M
= −1 → 0, so we have a

finite zero-period.

We will call these digits the odd digits modulo M .



The Chinese Remainder Theorem (1)

Let f1 and f2 in Z[X] be coprime monic polynomials. The Chinese

Remainder Theorem tells us that

Q[X]

(f1f2)
∼= Q[X]

(f1)
× Q[X]

(f2)
;

but what about Z[X]?

The sequence 0 → Z[X]

(f1f2)

ψ→ Z[X]

(f1)
× Z[X]

(f2)
⇉

Z[X]

(f1, f2)
→ 0 is exact.

Thus, ψ is an isomorphism iff 1 ∈ (f1, f2), iff Res(f1, f2) = ±1.



The Chinese Remainder Theorem (2)

What do we want to do with the CRT? Suppose:

• Z[X]/(f1) is a number system with digit set D1;

• Z[X]/(f2) is a number system with digit set D2.

Let v ∈ V = Z[X]/(f1f2); we expand

v mod f1 =
∑

i≥0

d
(1)
i Xi; v mod f2 =

∑

i≥0

d
(2)
i Xi.

Suppose that for all i ≥ 0 we can solve







di ≡ d
(1)
i (mod f1)

di ≡ d
(2)
i (mod f2)

for

di ∈ V ; then we have an

expansion v =
∑

i≥0

diX
i modulo f1f2!



CRT problems (1)

Problem 1: when is







d ≡ d(1) (mod f1)

d ≡ d(2) (mod f2)
solvable?

From the exact sequence, we see: iff

d(1) mod (f1, f2) = d(2) mod (f1, f2).

This is satisfied, e.g., if we have Res(f1, f2) = ±1.

But we can also select the digits in such a way that the above

system is always satisfied!

Note, by the way, that Z[X]/(f1, f2) is a finite ring, as we assume

f1 and f2 to be coprime.



Example

Let f1 = X − 5 and f2 = X − 7, and let’s try the canonical digits

on both sides.

Now suppose we have d(1) = 0 and d(2) = 1. Can we “merge”?

CRT: d = 1
2(X − 5) (mod (X − 5)(X − 7)). That’s not integral!

And indeed, we have |Res(X − 5, X − 7)| = 2.

Better idea: let all digits be pairwise congruent modulo 2. As we

saw above, we can take

D1 = {−3,−1,1,3,5} and D2 = {−5,−3,−1,1,3,5,7}.

Trick question: why can’t we take all digits even (so 0 could be a

digit)?



CRT problems (2)

Problem 2: if

v mod f1 =
∑

i≥0

d
(1)
i Xi and v mod f2 =

∑

i≥0

d
(2)
i Xi

are both finite, and we can “merge”, is the merged expansion

v =
∑

i≥0 diX
i again finite?

In other words, is there N with
∑N−1
i=0 diX

i = v?

Let D ∈ Z[X] be such that all digits in D1 and D∈ are congruent

to D modulo (f1, f2). We saw that such a D must exist.



Phasing in

Then
∑ℓ
i=0 diX

i ≡ D
∑ℓ
i=0X

i (mod f1, f2). Let r = Res(f1, f2).

We have:

Lemma. The sequence 0,1,1 + X,1 + X + X2, . . . has period r

modulo (f1, f2).

Lemma. Let v ∈ Z[X]/(f1f2). The lengths of any finite expansions

for v “on the left” and “on the right” are congruent modulo r.

Lemma. For i = 1,2, let Li be the length of the zero period for

Di modulo fi. Then L1 ≡ L2 (mod r).



Theorem

Let f1 and f2 be monic polynomials in Z[X], and let D1 and D2

be digit sets such that Z[X]/(f1) and Z[X]/(f2) become number

systems. Put r = Res(f1, f2), and assume r 6= 0. For i = 1,2, let

Li be the length of the zero period for Di modulo fi. Then the

following are equivalent:

• all elements of D1∪D2 are pairwise congruent modulo (f1, f2),

the sequence s0 = 0, sℓ = Xsℓ−1 + 1 has period r modulo

(f1, f2),

and gcd(L1, L2) = |r|;
• Z[X]/(f1f2) becomes a number system with digit set

ψ−1(D1 ×D2).



The half-linear case

If f1 = X − a, then we have Z[X]/(f1, f2)
∼= Z/(r), so we can

simplify the conditions. In particular, we have r = f2(a). Thus,

condition 2 becomes:

X ≡ 1 (mod p) for all primes p|r,
X ≡ 1 (mod 4) if 2|r.

independently of the chosen digit sets.



Example (continued)

Still, let f1 = X − 5 and f2 = X − 7, with the given digits. They

are all congruent to 1 modulo 2.

The zero periods of both are 0 → −1, of length 2.

It follows that Z[X]/((X − 5)(X − 7)) becomes a number system

with the digits {1, −1, 3, −3, 5, X, X−2, −X+2, X−4, −X+4,

X−6, −X+6, X−8, −X+8, −X+10, 2X−7, 2X−9, −2X+9,

2X − 11, −2X + 11, 2X − 13, −2X + 13, −2X + 15, 3X − 14,

3X − 16, −3X + 16, −3X + 18, 3X − 18, −3X + 20, 4X − 21,

4X − 23, −4X + 23, −4X + 25, 5X − 28, −5X + 30}.

It also works with the digit sets {505,1,−1,3,−3} at base 5 and

{777,1,−1,3,−3,5,−5} at base 7. The corresponding zero periods

have length 10 and 4, respectively.


