Representations of numbers without the digit zero

Christiaan van de Woestijne
Institut für Mathematik B
Technische Universität Graz, Austria

TU Graz, 28 June 2007

Definition of number systems

A canonical number system is given by

- an algebraic integer α, the base, and
- a complete residue system \mathcal{D} of $\mathbb{Z}[\alpha]$ modulo α, usually taken as $\{0, \ldots,|\operatorname{Norm}(\alpha)|-1\}$, the digit set,
with the property that every $a \in \mathbb{Z}[\alpha]$ has a finite expansion

$$
\sum_{i=0}^{\ell} d_{i} \alpha^{i} \quad\left(d_{i} \in \mathcal{D}\right)
$$

This definition represents a step in an ongoing chain of generalisations, and is the last one that has a recognisable "number" as a base.

Definition of number systems (2)

The following generalisation is quite natural. We take:

- a monic nonconstant polynomial f with integral coefficients;
- a finite subset \mathcal{D} of $\mathbb{Z}[X]$ that contains a complete residue system of $\mathbb{Z}[X] /(f)$ modulo X.

By the isomorphism theorem, we have

$$
(\mathbb{Z}[X] /(f)) /(X) \cong \mathbb{Z} /(f(0))
$$

We write $V=\mathbb{Z}[X] /(f)$.

Note that we do not require $0 \in \mathcal{D}$.

Digits

If the digit set \mathcal{D} is exactly a complete residue system, we call it irredundant, otherwise it is redundant.

If \mathcal{D} is irredundant, then for each $v \in V$, we write $v \bmod _{\mathcal{D}} X$, or simply $v \bmod X$, for the unique digit d such that $v-d$ is divisible by X.

We then define the transformation $T: V \rightarrow V$ by

$$
T(v)=(v-(v \bmod X)) / X
$$

and the (X, \mathcal{D})-expansion of $v \in V$ by

$$
\sum_{i \geq 0} d_{i} X^{i} \quad \text { with } \quad d_{i}=T^{i}(v) \bmod X
$$

Examples

A simple example is where $f=X-a$ for some integer $a,|a| \geq 2$. Here $V \cong \mathbb{Z}$, and modulo $X-a, X$ is actually equal to a, so this is just the a-ary system, if we take digits

$$
\{0,1, \ldots,|a|-1\}
$$

the classical digits. $a=2$: binary; $a=10$: decimal; etc.
A cryptographical example: $f=X^{2}+X+2$, with zeros $\tau=$ $\frac{-1 \pm \sqrt{-7}}{2}$. Now V is a quadratic ring; the classical digits here are

$$
\{0,1, \ldots,|f(0)|-1\}=\{0,1\}
$$

Here, every element $v \in V$ can be written as

$$
v=\sum_{i=0}^{\ell} d_{i} X^{i} \quad(\bmod f)
$$

with digits $d_{i} \in \mathcal{D}$.

Questions

1. given f and \mathcal{D}, can we write all elements of V in the form

$$
\sum_{i=0}^{\ell} d_{i} X^{i} \quad(\bmod f)
$$

with d_{i} in \mathcal{D} ?
2. given f, is there any digit set \mathcal{D} with this property?

Theorem (B. Kovács, Pethő, Brunotte, et al.)
There is an algorithm that, given f and \mathcal{D}, decides question 1.

Theorem (A. Kovács and L. Germán, CvdW, 2007)
The answer to question 2 is Yes when all roots of f have (complex) absolute value bigger than 2.

More questions

Why do we want to consider digit sets without zero?

1. for a cryptographic reason: side channel attacks on (hyper)elliptic curve cryptography implementations
2. because they are there
3. specifically, because of the following construction of digit sets using the Chinese Remainder Theorem

SCA: we compute $n P=\left(\sum_{i=0}^{\ell} n_{i} \tau^{i}\right) P$.
That is, $\sum_{i=0}^{\ell} n_{i}\left(\tau^{i} P\right)$.
Observe when $n_{i}=0$; know something about n !

Periodic and finite expansions

We know: if f is expanding, then for all $v \in V$, the (X, \mathcal{D})-expansion is eventually periodic.

When is $\sum_{i \geq 0} d_{i} X^{i}$ a finite expansion?
Answer: when $\sum_{i \geq 0} d_{i} X^{i}=\sum_{i=0}^{N-1} d_{i} X^{i}$, so $\sum_{i=N}^{\infty} d_{i} X^{i}=0!$
If 0 is a digit, this is simple: $d_{i}=0$ for $i=N, N+1, \ldots$
If 0 is not a digit, and f is expanding, the only way is to have a zero period:

$$
\sum_{i=0}^{\ell-1} d_{i} X^{i}=0
$$

and this repeated indefinitely.

The zero period

Assume \mathcal{D} is irredundant and f is expanding. Then we saw

$$
d_{i}=T^{i}(v) \bmod X ;
$$

because expansions are unique, we see that the zero period is unique and is found as the (X, \mathcal{D})-expansion of 0 .

Let's see what this means for the transformation T on V. The zero period can be represented as

$$
0 \rightarrow T(0)=[0-(0 \bmod X)] / X \rightarrow T^{2}(0) \rightarrow \ldots \rightarrow 0
$$

If any nonzero element v has a finite expansion, then the sequence $\left(T^{n}(v)\right)_{n \geq 0}$ must reach 0 , and return there periodically. In particular, 0 must be a purely periodic element under T.

Conversely: if 0 is not purely periodic, then for all $n \geq 0, T^{n}(0)$ does not have a finite expansion.

Example

Consider $V=\mathbb{Z}$, and let M be an odd integer, $|M| \geq 2$. Take $f=X-M$. Consider the irredundant digit set

$$
\mathcal{D}_{M}=\{-M+2,-M+4, \ldots,-1,1, \ldots, M-2, M\}
$$

I claim that this digit set makes $\left(\mathbb{Z}, \mathcal{D}_{M}\right)$ into a number system.
We have here $T(a)=\frac{a-\left(a \bmod _{\mathcal{D}_{M}} M\right)}{M}$; it's easy to prove that whenever $|a|>\frac{M}{M-1}$, we have $|T(a)|<|a|$.

But 1 and -1 are digits, and $0 \rightarrow \frac{0-M}{M}=-1 \rightarrow 0$, so we have a finite zero-period.

We will call these digits the odd digits modulo M.

The Chinese Remainder Theorem (1)

Let f_{1} and f_{2} in $\mathbb{Z}[X]$ be coprime monic polynomials. The Chinese Remainder Theorem tells us that

$$
\frac{\mathbb{Q}[X]}{\left(f_{1} f_{2}\right)} \cong \frac{\mathbb{Q}[X]}{\left(f_{1}\right)} \times \frac{\mathbb{Q}[X]}{\left(f_{2}\right)} ;
$$

but what about $\mathbb{Z}[X]$?

The sequence $0 \rightarrow \frac{\mathbb{Z}[X]}{\left(f_{1} f_{2}\right)} \stackrel{\psi}{\rightarrow} \frac{\mathbb{Z}[X]}{\left(f_{1}\right)} \times \frac{\mathbb{Z}[X]}{\left(f_{2}\right)} \rightrightarrows \frac{\mathbb{Z}[X]}{\left(f_{1}, f_{2}\right)} \rightarrow 0$ is exact.
Thus, ψ is an isomorphism iff $1 \in\left(f_{1}, f_{2}\right)$, iff $\operatorname{Res}\left(f_{1}, f_{2}\right)= \pm 1$.

The Chinese Remainder Theorem (2)

What do we want to do with the CRT? Suppose:

- $\mathbb{Z}[X] /\left(f_{1}\right)$ is a number system with digit set \mathcal{D}_{1};
- $\mathbb{Z}[X] /\left(f_{2}\right)$ is a number system with digit set \mathcal{D}_{2}.

Let $v \in V=\mathbb{Z}[X] /\left(f_{1} f_{2}\right)$; we expand

$$
v \bmod f_{1}=\sum_{i \geq 0} d_{i}^{(1)} X^{i} ; \quad v \bmod f_{2}=\sum_{i \geq 0} d_{i}^{(2)} X^{i}
$$

Suppose that for all $i \geq 0$ we can solve $\left\{\begin{array}{l}d_{i} \equiv d_{i}^{(1)}\left(\bmod f_{1}\right) \\ d_{i} \equiv d_{i}^{(2)}\left(\bmod f_{2}\right)\end{array} \quad\right.$ for
$d_{i} \in V$; then we have an

$$
\text { expansion } \quad v=\sum_{i \geq 0} d_{i} X^{i} \quad \text { modulo } f_{1} f_{2}!
$$

CRT problems (1)

Problem 1: when is $\left\{\begin{array}{ll}d \equiv d^{(1)} & \left(\bmod f_{1}\right) \\ d \equiv d^{(2)} & \left(\bmod f_{2}\right)\end{array} \quad\right.$ solvable?
From the exact sequence, we see: iff

$$
d^{(1)} \bmod \left(f_{1}, f_{2}\right)=d^{(2)} \bmod \left(f_{1}, f_{2}\right)
$$

This is satisfied, e.g., if we have $\operatorname{Res}\left(f_{1}, f_{2}\right)= \pm 1$.

But we can also select the digits in such a way that the above system is always satisfied!

Note, by the way, that $\mathbb{Z}[X] /\left(f_{1}, f_{2}\right)$ is a finite ring, as we assume f_{1} and f_{2} to be coprime.

Example

Let $f_{1}=X-5$ and $f_{2}=X-7$, and let's try the canonical digits on both sides.

Now suppose we have $d^{(1)}=0$ and $d^{(2)}=1$. Can we "merge"? CRT: $d=\frac{1}{2}(X-5)(\bmod (X-5)(X-7))$. That's not integral!

And indeed, we have $|\operatorname{Res}(X-5, X-7)|=2$.
Better idea: let all digits be pairwise congruent modulo 2. As we saw above, we can take

$$
\mathcal{D}_{1}=\{-3,-1,1,3,5\} \quad \text { and } \quad \mathcal{D}_{2}=\{-5,-3,-1,1,3,5,7\}
$$

Trick question: why can't we take all digits even (so 0 could be a digit)?

CRT problems (2)

Problem 2: if

$$
v \bmod f_{1}=\sum_{i \geq 0} d_{i}^{(1)} X^{i} \quad \text { and } \quad v \bmod f_{2}=\sum_{i \geq 0} d_{i}^{(2)} X^{i}
$$

are both finite, and we can "merge", is the merged expansion $v=\sum_{i \geq 0} d_{i} X^{i}$ again finite?

In other words, is there N with $\sum_{i=0}^{N-1} d_{i} X^{i}=v ?$

Let $D \in \mathbb{Z}[X]$ be such that all digits in \mathcal{D}_{1} and \mathcal{D}_{\in} are congruent to D modulo (f_{1}, f_{2}). We saw that such a D must exist.

Phasing in

Then $\sum_{i=0}^{\ell} d_{i} X^{i} \equiv D \sum_{i=0}^{\ell} X^{i}\left(\bmod f_{1}, f_{2}\right)$. Let $r=\operatorname{Res}\left(f_{1}, f_{2}\right)$. We have:

Lemma. The sequence $0,1,1+X, 1+X+X^{2}, \ldots$ has period r modulo (f_{1}, f_{2}).

Lemma. Let $v \in \mathbb{Z}[X] /\left(f_{1} f_{2}\right)$. The lengths of any finite expansions for v "on the left" and "on the right" are congruent modulo r.

Lemma. For $i=1,2$, let L_{i} be the length of the zero period for \mathcal{D}_{i} modulo f_{i}. Then $L_{1} \equiv L_{2}(\bmod r)$.

Theorem

Let f_{1} and f_{2} be monic polynomials in $\mathbb{Z}[X]$, and let \mathcal{D}_{1} and \mathcal{D}_{2} be digit sets such that $\mathbb{Z}[X] /\left(f_{1}\right)$ and $\mathbb{Z}[X] /\left(f_{2}\right)$ become number systems. Put $r=\operatorname{Res}\left(f_{1}, f_{2}\right)$, and assume $r \neq 0$. For $i=1,2$, let L_{i} be the length of the zero period for \mathcal{D}_{i} modulo f_{i}. Then the following are equivalent:

- all elements of $\mathcal{D}_{1} \cup \mathcal{D}_{2}$ are pairwise congruent modulo $\left(f_{1}, f_{2}\right)$, the sequence $s_{0}=0, s_{\ell}=X s_{\ell-1}+1$ has period r modulo (f_{1}, f_{2}), and $\operatorname{gcd}\left(L_{1}, L_{2}\right)=|r|$;
- $\mathbb{Z}[X] /\left(f_{1} f_{2}\right)$ becomes a number system with digit set

$$
\psi^{-1}\left(\mathcal{D}_{1} \times \mathcal{D}_{2}\right)
$$

The half-linear case

If $f_{1}=X-a$, then we have $\mathbb{Z}[X] /\left(f_{1}, f_{2}\right) \cong \mathbb{Z} /(r)$, so we can simplify the conditions. In particular, we have $r=f_{2}(a)$. Thus, condition 2 becomes:

$$
\begin{array}{ll}
X \equiv 1 & (\bmod p) \text { for all primes } p \mid r, \\
X \equiv 1 & (\bmod 4) \text { if } 2 \mid r .
\end{array}
$$

independently of the chosen digit sets.

Example (continued)

Still, let $f_{1}=X-5$ and $f_{2}=X-7$, with the given digits. They are all congruent to 1 modulo 2 .

The zero periods of both are $0 \rightarrow-1$, of length 2 .
It follows that $\mathbb{Z}[X] /((X-5)(X-7))$ becomes a number system with the digits $\{1,-1,3,-3,5, X, X-2,-X+2, X-4,-X+4$, $X-6,-X+6, X-8,-X+8,-X+10,2 X-7,2 X-9,-2 X+9$, $2 X-11,-2 X+11,2 X-13,-2 X+13,-2 X+15,3 X-14$, $3 X-16,-3 X+16,-3 X+18,3 X-18,-3 X+20,4 X-21$, $4 X-23,-4 X+23,-4 X+25,5 X-28,-5 X+30\}$.

It also works with the digit sets $\{505,1,-1,3,-3\}$ at base 5 and $\{777,1,-1,3,-3,5,-5\}$ at base 7 . The corresponding zero periods have length 10 and 4, respectively.

