Exact values for Waring's problem in finite fields

Christiaan van de Woestijne Institut für Mathematik B
Technische Universität Graz, Austria

25th Journées Arīthmétiques,
Edinburgh, Scotland, 2-6 July 2007

Waring's problem in finite fields

joint work with Arne Winterhof
Over a ring R, Waring's problem in degree n asks whether every element a of R can be written in the form

$$
\begin{equation*}
a=\sum_{i} a_{i}^{n} \tag{1}
\end{equation*}
$$

for some $a_{i} \in R$, and whether the number of terms needed can be uniformly bounded for all $a \in R$.

The problem is best known over \mathbb{Z}, but was also much studied in the case where R is a finite field (see Winterhof (1998) for a survey).

We define the Waring function $g(k, q)$ as follows: if all $a \in \mathbb{F}_{q}$ have an expansion (1), then $g(k, q)$ is the maximal number of terms needed for any a; otherwise, $g(k, q)$ is undefined.

Some results on the Waring function

- We may assume that the exponent k divides $q-1$.
- If $k^{2}<q$ or if q is prime, then $g(k, q)$ exists.
- A counterexample: q nonprime, $k=q-1$.
- If $g(k, q)$ exists, then $g(k, q) \leq k$ (inhomogeneous ChevalleyWarning); there is then a deterministic polynomial time algorithm to solve

$$
a_{1}^{k}+\ldots+a_{k}^{k}=a .
$$

- If $(k-1)^{4}<q$, then $g(k, q)=1$ or 2 (Weil bound). Assuming this, in fact, whenever $a b c \neq 0$, then

$$
a x^{k}+b y^{k}=c
$$

is solvable.

Reduction to the prime field

We have the following nice inequality: if $g\left(k, p^{n}\right)$ exists, then

$$
g\left(k, p^{n}\right) \leq n g(d, p)
$$

with $d=\frac{k}{\operatorname{gcd}\left(k, \frac{p^{n}-1}{p-1}\right)}$.
This follows because $g\left(k, p^{n}\right)$ exists if and only if

$$
\mathbb{F}_{p^{n}}=\mathbb{F}_{p}\left(\alpha^{k}\right)
$$

for some $\alpha \in \mathbb{F}_{p^{n}}$, so we have

$$
a=a_{0}+a_{1} \alpha^{k}+\ldots+a_{n-1} \alpha^{(n-1) k}
$$

and we write each a_{i} as a sum of d th powers in \mathbb{F}_{p}. Finally, more elements of \mathbb{F}_{p} may become d th powers in the extension field.

We use this reduction in the sequel.

Basic setup and results

We have odd primes p and r, with p a primitive root modulo r. Thus,

$$
\mathbb{F}_{p^{r-1}} \text { is generated over } \mathbb{F}_{p} \text { by } \zeta_{r} .
$$

We let $k=\frac{p^{r-1}}{r}$ or $\frac{p^{r-1}}{2 r}$, so k th powers are r th or $2 r$ th roots of unity. We compute $g\left(k, p^{r-1}\right)$ for these cases:

Theorem We have $\left\{\begin{array}{l}g\left(\frac{p^{r-1}-1}{r}, p^{r-1}\right)=\frac{(p-1)(r-1)}{2} . \\ g\left(\frac{p^{r-1}-1}{2 r}, p^{r-1}\right)= \begin{cases}\left\lfloor\frac{p r}{4}-\frac{p}{4 r}\right\rfloor & \text { if } r<p ; \\ \left\lfloor\frac{p r}{4}-\frac{r}{4 p}\right\rfloor & \text { if } r \geq p .\end{cases} \end{array}\right.$

Norm and weight

Let's call the minimal number of k 'th powers needed to form a the Waring weight of a. For a vector $\mathbf{a} \in \mathbb{F}_{p}^{r}$, we write

$$
\|\mathbf{a}\|=\left|a_{0}\right|+\ldots+\left|a_{r-1}\right|
$$

where $|a|$ is the Waring weight of a (depending on the exponent $k)$.

Lemma Let $a=a_{0}+a_{1} \zeta_{r}+\ldots+a_{r-1} \zeta_{r}^{r-1}$. Then the weight of a is equal to

$$
\min \{\|\mathbf{a}+x \mathbf{e}\|: x \in\{0,1, \ldots, p-1\}\}
$$

Lemma If $k=\frac{p^{r-1}-1}{r}$, then $|a|=$ " a " for all $a \in \mathbb{F}_{p}$.
Lemma If $k=\frac{p^{r-1}-1}{2 r}$, then $|a|=" \min \{a, p-a\}$ " for all $a \in \mathbb{F}_{p}$.

Reformulation of the problem

We can now reformulate the Waring problem for these cases as follows.

Let $V=(\mathbb{Z} / m \mathbb{Z})^{r}$, let $|\cdot|: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z}$ be some weight function on $\mathbb{Z} / m \mathbb{Z}$, and for $\mathbf{a} \in V$, let $\|\mathbf{a}\|=\left|a_{0}\right|+\ldots+\left|a_{r-1}\right|$.

We say a is admissible if

$$
\|\mathbf{a}\| \leq\|\mathbf{a}+x \mathbf{e}\| \text { for all } x \in \mathbb{Z} / m \mathbb{Z}
$$

Now we want to know the maximal norm of an admissible vector.

We use the weights defined earlier, i.e.,
$|a|_{1}$ is the smallest nonnegative integer representative of a;
$|a|_{2}$ is the absolute value of the symmetric integer representative of a.

An upper bound on ||a\|

If $\|\mathbf{a}\|_{i} \leq\|\mathbf{a}+x \mathbf{e}\|_{i}$ for all x, add these and get

$$
\begin{equation*}
m\|\mathbf{a}\|_{i} \leq r \sum_{x=0}^{m-1}|x|_{i} \tag{2}
\end{equation*}
$$

Lemma We have

$$
\sum_{x}|x|_{1}=\frac{m(m-1)}{2} \quad ; \quad \sum_{x}|x|_{2}= \begin{cases}\frac{m^{2}}{4} & \text { if } m \text { is even } \\ \frac{m^{2}-1}{4} & \text { if } m \text { is odd }\end{cases}
$$

We refine (2) a little bit by noting that

$$
\|\mathbf{a}+x \mathbf{e}\|_{1} \equiv\|\mathbf{a}\|+r x \quad(\bmod m)
$$

so in fact we have $\|\mathbf{a}\|_{1} \leq\|\mathbf{a}+x \mathbf{e}\|_{1}-|r x|_{1}$, and get the sharp

$$
\|\mathbf{a}\|_{1} \leq \frac{m r-m-r+\operatorname{gcd}(m, r)}{2}
$$

An aside, with an open problem

In general, assume q is a positive integer and $p \equiv 1(\bmod q)$ is prime. Let ζ_{q} be a primitive q th root of unity in \mathbb{F}_{p}, and define

$$
|x|_{q}=\min \left\{\left|\zeta^{i} x\right|_{1}: 0 \leq i \leq q-1\right\}
$$

Note that this agrees with our earlier definition of $|\cdot|_{2}$.
Proposition We have for $q \geq 2$

$$
\sum_{x}|x|_{q}=\left(\frac{1}{q+1}-\frac{B_{q}}{q!}\right) p^{2}+O\left(p^{2-\varepsilon}\right)
$$

where B_{q} is the q th Bernoulli number.
Conjecture We have

$$
\sum_{x}|x|_{3}=\frac{p^{2}-1}{4}
$$

Any takers??

An upper bound for $\|\mathrm{a}\|$ (continued)

Recall that $\mathbf{a} \in V=(\mathbb{Z} / m \mathbb{Z})^{r}$, and $|x|_{2}=\min \{x, m-x\}$.
For $|\cdot|_{2}$, the upper bound on $\|\mathbf{a}\|_{2}$ for admissible vectors a that we get is sharp whenever $r \geq m$ or r is even. If $r<m$ and r is odd, we consider the norm sequence

$$
N_{x}=\|\mathbf{a}+x \mathbf{e}\|
$$

and using symmetry properties of this sequence, we derive a sharp bound in this case also.

We have, for admissible $\mathbf{a} \in V$,

$$
\|\mathbf{a}\|_{2} \leq \begin{cases}\frac{m r}{4} & \text { if } m \text { and } r \text { are even; } \\ \left\lfloor\frac{m r}{4}-\frac{1}{2}\right\rfloor & \text { if } m \text { is even, } r \text { is odd, and } r>m ; \\ \left\lfloor\frac{m r}{4}-\frac{r}{4 m}\right\rfloor & \text { if } m \text { is odd and } r \geq m ; \\ \left\lfloor\frac{m r}{4}-\frac{1}{2}\right\rfloor & \text { if } m \text { is odd, } r \text { is even, and } r<m ; \\ \left\lfloor\frac{m r}{4}-\frac{m}{4 r}\right\rfloor & \text { if } r \text { is odd and } r<m\end{cases}
$$

Matching up

To show that the given upper bounds are sharp, we need to construct admissible vectors attaining the bound.

If m and r are even, $\left(0, \ldots, 0, \frac{m}{2}, \ldots, \frac{m}{2}\right)$ is admissible of norm $m r / 4$, which is maximal.

If m is odd and r is even, we use $\left(0, \frac{m-1}{2}\right)$ as a building block, with some cunning.

For odd r, the constructions are rather involved. First, by induction we reduce to the case that $r<2 m$. Then, we solve some integer programming problems with the goal to make the norm sequence, which has $N_{x+1} \neq N_{x}$ for all x, as smooth and as flat as possible. Finally, the case of odd m is derived from the case of even m.

Recapitulation

Theorem Let p and r be odd primes, with p a primitive root modulo r. Then we have

$$
\begin{aligned}
g\left(\frac{p^{r-1}-1}{r}, p^{r-1}\right) & =\frac{(p-1)(r-1)}{2} \\
g\left(\frac{p^{r-1}-1}{2 r}, p^{r-1}\right) & = \begin{cases}\left\lfloor\frac{p r}{4}-\frac{p}{4 r}\right\rfloor & \text { if } r<p \\
\left\lfloor\frac{p r}{4}-\frac{r}{4 p}\right\rfloor & \text { if } r \geq p\end{cases}
\end{aligned}
$$

Furthermore, there exists an algorithm that shows elements in $\mathbb{F}_{p^{r-1}}$ that need this many terms when writing them as sum of k th powers (KASH 2.5 code available...).

Note that all bounds are symmetric in p and r !

