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Abstract

Let A be a square integer matrix of determinant ±2, and assume

A is expanding, that is, all its eigenvalues are greater than 1 in

absolute value. Let {d, D} be integer vectors such that d is in

the image of A and D is not. If every integer vector v has a

representation of the form

v = d0 + Ad1 + A2d2 + . . . + Akdk

with the di being either d or D, we call the triple (A, Zn, {d, D}) a

number system.

Our goal, which will not be achieved in this talk, is to classify all

such number systems with two digits, which generalise the well-

known binary number system. We will show the technical obstacles

for such a classification and also give some partial results, such as

a complete classification in the 1-dimensional case.



Enumerating expanding polynomials (1)

Let f = anXn + . . . + a1X + a0 ∈ Z[X]. For given an and a0, the

number of expanding f is finite. But how to find them?

Lemma If f is expanding, then |ai| < |a0|
(

n−1
n−i+1

)

+ |an|
(

n−1
n−i

)

.

Proof. These are the coefficients of (X +1)n−1(anX + a0), which

is an extremal point of the space of expanding polynomials.

Let si (1 ≤ i ≤ n) denote the elementary symmetric functions of

the roots of f ; we have an−i = (−1)iansi. Also, let σi be the sum

of ith powers of the roots.

Lemma. |σi| < n − 1 + |a0/an|i.



Enumerating expanding polynomials (2)

By Newton’s theorem,

σi = P(s1, . . . , si−1) − (−1)i · i · si

for some P ∈ Z[X1, . . . , Xi−1]. Now assume that an−1, . . . , an−i+1

are already known. We obtain an interval for an−i as follows.

Lemma (Browkin/CvdW)
∣

∣

∣

∣

∣

an−i

an
− P(s1, . . . , si−1)

i

∣

∣

∣

∣

∣

<
n − 1 + |a0/an|i

i
.

Next, we use the Schur-Cohn criterion for expansiveness.

Lemma f is expanding if and only if ∆i(f) > 0 for i = 1, . . . , n.



The Schur-Cohn determinants (1)

Here the ∆i are subdeterminants of the Sylvester matrix of f and

its reciprocal polynomial f∗ (actually, of f∗ and f), which has size

2n × 2n:
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For ∆i, take columns and rows 1, . . . , i and n + 1, . . . , n + i.

We note that ∆i is a homogeneous polynomial in the ai of degree

2i, and contains terms a2i
n and a2i

0 . We have ∆1 = a2
0 − a2

n.



The Schur-Cohn determinants (2)

Theorem For all i, ∆i = ∆+
i ∆−

i with ∆+
i and ∆−

i of degree i.

For i = 0, . . . , ⌈n/2⌉ − 1, we have

∆i+1 = (a0∆
−
i−1ai − an∆

−
i−1an−i + P)×

(−a0∆
+
i−1ai + an∆

+
i−1an−i + R),

where P and R are homogeneous in a0, . . . , ai−1,an−i+1, . . . , an of

degree i. It follows that, given ai, and assuming ∆k(f) > 0 for

k = 1, . . . , i, we obtain an interval for an−i, with bounds that are

linear in a0 and an.

For n even, we also obtain an interval for an/2 in terms of all the

other coefficients, with bounds that are quadratic in a0 and an.

Finally, one can prove that

∆n = Res(f∗, f) = (∆−
n−1)

2f(1)f(−1),

which again gives linear inequalities on the ai.



Enumerating expanding polynomials (3)

We now use the following enumeration algorithm. Let

f = Xn + an−1Xn−1 + . . . + a1X + 2.

Then:

1: use the interval an−1 ∈ [−n..n].

2: use ∆2 to find an interval for a1.

3: use the Browkin lemma to bound an−2 in terms of an−1.

4: use ∆3 to bound a2.

5: and so on...

Here, at all points we check whether the bounds from the first

Lemma still hold. Now, for all f within this region:

6: check whether f(1) and f(−1) have the same sign.

7: check whether ∆⌈n/2⌉(f), . . . ,∆n−1(f) are positive.



Results and timings

The algorithm was implemented in Magma 2.16 and run for degree

≤ 10 on an Athlon 64 X2 Dual Core 3800+ CPU. We list the time

used (t), amount of tests done (d), and number of remaining

polynomials (r):

n 3 4 5 6 7 8 9 10

t 0.01 0.01 0.06 0.38 4.89s 26.47s 8m18s 59m29s
d 35 92 1165 3549 58459 159421 3532745 7877246
r 7 21 29 71 95 201 192 408

For r, we choose one polynomial from each orbit {f(x), f(−x)}.
For odd degree, this means taking f(0) = 2. For even degree,

we may have f(0) = −2, but we require the highest odd-degree

nonzero term to be positive.

For degree 10, the precomputation of the ∆i as polynomials in

a1, . . . , a9 and factoring them takes about 32m time and 300Mb of

memory, taking into account that ∆10 is already known.



Enumerating Pisot polynomials (1)

The algorithm can be applied to enumerate all Pisot polynomials

of given degree and given constant coefficient (unequal to ±1,

unfortunately).

Following Akiyama-Gjini (2005), let f = Xn+an−1Xn−1+a1X+a0

be a Pisot polynomial. Then putting Tf = a0f − anf∗, with f∗ the

reciprocal, we find

Tf =
n−1
∑

i=1

(a0ai − anan−i)X
i + (a2

0 − 1).

Because a2
0 − 1 6= 0, it follows from the Schur-Cohn theory that

(Tf)∗ is an expanding polynomial of degree n − 1 and leading co-

efficient a2
0 − 1.



Enumerating Pisot polynomials (2)

Lemma Let a0 ∈ Z with |a0| ≥ 2, and let

g = (a2
0 − 1)Xn−1 + bn−2Xn−2 + . . . + b1X + b0

be expanding, and such that bi ≡ −a0bn−i (mod a2
0−1) for all i ≥ 1.

Then there exists exactly one Pisot polynomial f as above with

Tf = g.

It is easy to incorporate the above congruences into the algorithm.

Thus running the algorithm for constant coefficient a2
0, a2

0 + 1, . . .

and their negatives, we must obtain all Pisot polynomials f of

degree n and with f(0) = a0.



Definitions

We define a pre-number system as a triple (V, φ,D), where

• V is a finite free Z-module;

• φ is an expanding endomorphism of V ;

• D is a system of representatives of V modulo φ(V ).

A pre-number system (V, φ,D) is a number system if there exist

finite expansions

a =
ℓ

∑

i=0

φi(di) (di ∈ D)

for all a ∈ V .

We are ultimately interested in the classification of all number

systems.



Examples

• (Z, b, {0, . . . , |b| − 1}) is a pre-number system whenever |b| ≥ 2,

and a number system if and only if b ≤ −2.

• (Z[i], b, {0, . . . , |b|2−1}) is a pre-number system whenever |b| >

1, and a number system if and only if b = −a ± i, for some

a ∈ N.

• (Z,−2, {d, D}) is a number system if and only if ... (see later)

• (Z[X]/((X −5)(X −7)), X, {1, −1, 3, −3, 5, X, X −2, −X +2,

X−4, −X +4, X−6, −X +6, X−8, −X +8, −X +10, 2X−7,

2X − 9, −2X + 9, 2X − 11, −2X + 11, 2X − 13, −2X + 13,

−2X + 15, 3X − 14, 3X − 16, −3X + 16, −3X + 18, 3X − 18,

−3X + 20, 4X − 21, 4X − 23, −4X + 23, −4X + 25, 5X − 28,

−5X + 30}) is a number system



Example: the odd digits

Assume V = Z and φ is multiplication by some integer b. Let b be

odd, |b| ≥ 3, and let

Dodd := {−|b| + 2,−|b| + 4, . . . ,−1,1, . . . , |b| − 2, b}.

This is a valid digit set for all odd b.

For b = 3: it’s {−1,1,3}. We get 0 = 3 · 1 + (−1) · 3.

a (a)3,odd a (a)3,odd a (a)3,odd a (a)3,odd

0 13 5 111 −1 1 −6 1133
1 1 6 13 −2 11 −7 111
2 11 7 111 −3 113 −8 1131
3 3 8 31 −4 11 −9 113
4 11 9 113 −5 111 −10 1131



The dynamic mapping

Define functions

d : V → D : d(a) is the unique d ∈ D with a − d ∈ φ(V );

T : V → V : T(a) = φ−1(a − d(a)).

We call T the dynamic mapping of (V, φ,D).

Theorem (V, φ,D) is a number system if and only for all v ∈ V

there exists n ≥ 0 with Tn(v) = 0.

Recall that a pre-number system has a finite attractor A ⊆ V with

the properties

• for all a ∈ V we have Tn(a) ∈ A if n is large enough.

• T is bijective on A.

Theorem (V, φ,D) is a number system if and only if the attractor

contains 0, and consists exactly of one cycle under T .



Tiles and translation

The tile of the pre-number system (V, φ,D) is

T =







∞
∑

i=1

φ−i(di) : di ∈ D






.

By results of Lagarias and Wang (building on earlier authors), T
is a compact set of positive measure that is the closure of its

interior. Let Λ be the Z[φ]-submodule of V generated by D − D,

the differences of the digits; then we can tile V ⊗ R with T by a

sublattice M of Λ, and we have

µ(T ) = [V : M ] = [Λ : M ] · [V : Λ].

If the characteristic polynomial of φ is irreducible, then we may

take Λ = M .

One can prove that the attractor A is equal to −T ∩ V .



Binary number systems

Suppose |det(φ)| = 2; then there are exactly 2 digits, and we

speak of a binary (pre-)number system. There are many special

properties:

• The tile is connected

• The characteristic polynomial χφ is irreducible

• The tiling lattice is generated by one element

We may assume V is an ideal in R = Z[α], where α is a zero of

f = χφ.

Write D = {d, D} with d divisible by α in V and D not, and let

δ = d − D.

Then the tiling lattice is the ideal generated by δ, and µ(T ) =

|Norm(δ)|.



The goal

We want to classify all binary number systems, that is, for all

algebraic integers α of norm ±2 and all ideals V ⊆ Z[α], find all

pairs {d, D} such that (V, α, {d, D}) is a number system.

To do this, we have three tasks:

1. compute and/or characterise all such α and all such ideals V ;

2. for all possible δ, compute how many elements are in A;

3. find their cycle structure under the dynamic map T .

Note that if all points of A are interior points of −T , then |A| =

|Norm(δ)|, since only boundary points can be in more than one

tile translate.

Note also that when α − 1 is a unit, then d/(α − 1) and D/(α − 1)

both start 1-cycles in A, so α is not the base of any number system.



Order structure (1)

We notice that if V1 and V2 are isomorphic as Z[φ]-modules, then

they carry the same number systems. For the binary case, for a

given α, this means we need only consider one representative from

each ideal class of Z[α].

Thus we need an algorithm to compute the ideal class semigroup

of Z[α]. The ideal class group is not enough!

Unfortunately, there is no algorithm known to compute the repre-

sentatives of the class semigroup of nonmaximal orders. It is not

even true that all singular ideal classes of such orders belong to an

overorder; this is equivalent to the order being Cohen-Macaulay

(H.W.Lenstra, pers.comm.).

See also Lagarias-Wang (1996 and corrigendum/addendum 1999)

for some small examples.



Order structure (2)

Among all computed expanding polynomials f , fortunately there

are many examples where Z[X]/(f) is a maximal order with trivial

class group, so we need only consider Z[α] itself.

In degree 4, we find that the equation order x4 + x2 + 2 has con-

ductor 2.

In degree 6, there are 2 examples with conductor 2, one with 3

and one with 4.

In degree 7, there is one example of conductor 2 and one with 5.

In degree 8, we find that x8−x6−x2+2 has class group C(2), which

answers a question of Browkin. Several others have conductor up

to 8 or 9.

In degree 10, we find conductors 5, 9, 11 and 16, and some class

groups of C(2).



Example: the case V = Z

Let V = Z; then α = ±2. If α = 2, then α − 1 is a unit.

−80

−120

160

0

100

40

−160

0

200

−40
200−100

−200

80

120

−200

In the figure, we see

all valid digit sets for

α = −2 with both digits

less than 200 in absolute

value.

What is the structure of

this set?



The fundamental lemma

We are interested in the cycles in V under the dynamic map T .

Now a0 ∈ V starts a cycle of length ℓ if and only if

a0(1 − αℓ) =
ℓ−1
∑

i=0

diα
i.

Now because the only digits are d and d − δ, this means

a0(1 − αℓ) = d
αℓ − 1

α − 1
− δ

ℓ−1
∑

i=0

εiα
i,

so that

(d + (α − 1)a0)
αℓ − 1

(α − 1)δ
=

ℓ−1
∑

i=0

εiα
i,

with εi = 0,1 for all i.

This is our fundamental tool to study the cycle structure.



Algebraic number theory

Theorem Suppose δ =
∏

π
hi
i , where the πi are regular totally split

primes of Z[α] dividing α − 1 lying above distinct primes of Z, and

such that πi divides α + 1 exactly once if πi lies above 2. Then

(α − 1)δ divides αℓ − 1

if and only if Norm(δ) divides ℓ.

Conversely, if the order of α modulo (α−1)δ is |Norm(δ)|, and δ is

made up of regular primes, then up to a factor of bounded norm,

δ is as described above.

I do not know if it is necessary for α to have order |Norm(δ)| for δ

large enough, in order to have a number system, but my examples

lead me to conjecture that it is.



Sketch of proof

Suppose δ has the right form. Let πh exactly divide δ. As π divides

α − 1, the order of α modulo πg is 1, where g = vπ(α − 1). If π is

regular and unramified and lies above p, then

πg+i ‖ αpi − 1.

Thus if also π has residue degree 1, we have Norm(π) = p and

α|Norm(πh)| ≡ 1 (mod (α − 1)πh),

where the exponent is minimal with this property.

Combining divisors of δ, the order of α modulo
∏

π
hi
i is the l.c.m.

of those modulo the π
hi
i .

If π lies over p with ramification index e and residue class degree

f , then the order of α modulo (α − 1)πh is roughly ph/e, whereas

the norm of πh is pfh. Thus, we want e = f = 1.



Points in the tile

Given δ, first compute the order ℓ of α modulo (α−1)δ. Then, we

know that the length of every cycle in A is divisible by ℓ. Thus, ℓ

divides |A| = |T ∩ V |. Note that ℓ = 1 if and only if δ is a unit.

If we embed Z[α] into Rn using the canonical embedding, then T is

congruent under translation to the tile corresponding to the digit

set {0,1} multiplied by δ.

“Theorem” If δ is expanding and satisfies ℓ = |Norm(δ)| and if ℓ

is large enough, then |A| = ℓ. Equivalently, then all lattice points

of T are interior.

If the statement is false, we can have huge numbers of lattice

points on the tile boundary. Note that this is difficult when δ is

not expanding.



Examples: factorisation of α − 1

If α = 2, then α − 1 = 1, a unit. If α = −2, then α − 1 = −3, so

the only prime dividing α − 1 is 3.

If f = x4 + x + 2, then α − 1 = (α + 1)2, where α + 1 is a totally

split prime lying over 2. This implies that for f = x4 − x + 2, we

have α + 1 ∼ (α − 1)2!

If f = x4 + x3 + 2x2 + x + 2, then α − 1 is a totally split prime

lying over 7. However, if {d, D} = {α,1}, A consists of a cycle

of length 14, with elements pairwise congruent modulo α − 1. If

{d, D} = {α2 − 2,2α− 3}, we have δ = (α− 1)2 and, indeed, A has

one cycle of length 49.

If f = x4+x2+x+2, then for {d, D} = {0,1}, we have an 11-cycle!

For digits {α,1}, we have two 5-cycles, one containing 0 and the

other α− 1. For digits {α2 +2α +2,1}, with δ = (α− 1)2, we find

a unique cycle of length 25.



Examples: factorisation of α − 1 (2)

Among all expanding f ∈ Z[x] with degree at most 8 and |f(0)| = 2,

the only prime divisors of α − 1 with residue degree more than 1

are non-regular.

However, many primes are ramified. For example, for f = x5−x+2,

α − 1 lies over 2 with ramification index 4! We find, for example,

that α8−1 is divisible by (α−1)9, which has norm 29, whereas we

would like to have only 3 factors, with norm 8.

An interesting case is f = x2+x+2, with root τ = −1+
√
−7

2 , which
is much used in cryptography. Here, τ − 1 = (τ +1)2, and τ +1 is

a regular prime of norm 2. Thus, all conditions on τ are met.

Indeed, I have computed all valid digit sets for base τ of the form

{a+ bτ, c+ dτ +1} with a, b, c, d ∈ {−4, . . . ,4}, and it turns out that

for all of them, δ is a power of τ + 1. All attractors have the

”right” number of elements, except when δ is a unit and dD 6= 0;

in those cases, |A| = 3.



Example: the case V = Z (2)

Let α = −2, let δ ∈ Z odd with |δ| > 1; let d, D ∈ Z with 2 | d and

D = d − δ. We have:

1. |A| = |δ| iff 3 ∤ dD;

2. if 3 ∤ dD, then A has one cycle if and only if |δ| = 3i with i ≥ 1;

if 3 | dD, then A has more than one cycle;

3. there is an easy criterion to see whether 0 ∈ A.

In fact, the only connected subsets of R are intervals, so T must

be an interval.

If |δ| = 1, then the only valid {d, D} are {0,±1}, {1,2} and {−1,−2}.
For the latter, T has only boundary lattice points.



Main theorem

Let α be an expanding algebraic integer of norm ±2, and suppose

δ =
∏

π
hi
i where the πi are regular totally split primes of Z[α]

dividing α − 1 and lying above distinct primes of Z, and such that

πi exactly divides α + 1 if πi lies above 2.

Let d, D ∈ Z[α] have d − D = δ, let V = (d, D), and suppose that

d ∈ αV (so that D 6∈ αV , because α is prime).

Let T be the tile of (V, α, {d, D}), and suppose T ∩ V consists of

interior points of T , and that 0 ∈ T .

Then (V, α, {d, D}) is a number system.

I conjecture that the converse holds: if Norm(δ) is large enough,

and (V, α, {d, D}) is a number system, then δ has the form given

above and all points of T ∩ V are interior.



Example: the case V = Z (3)

Theorem Let d, D ∈ Z, with d < D. Then (Z,−2, {d, D}) is a

number system if and only if

1. one of {d, D} is even and one is odd;

2. neither of d and D is divisible by 3, except when the even digit

is 0;

3. we have 2d ≤ D and 2D ≥ d;

4. D − d = 3i for some i ≥ 0.

Example Thus, {1,3k + 1} is valid for b = −2, for all k ≥ 0.

The only valid digit sets for b = −2 that have 0 are {0,1} and

{0,−1}.


