
Copulas: invariance property

Corollary: Let F be a c.d.f. with continuous marginal d.f. F1,. . .,Fd . The
unique copula C of F is given as :

C (u1, u2, . . . , ud) = F (F←1 (u1),F←2 (u2), . . . ,F←d (ud)).

Theorem: (Copula invariance w.r.t. strictly monotone transformations)

Let X = (X1,X2, . . . ,Xd)T be a random vector with continuous marginal
d.f. F1,F2, . . . ,Fd and copula C . Let T1,T2,. . ., Td be strictly monotone
increasing functions in IR. Then C is also the copula of
(T1(X1),T2(X2), . . . ,Td(Xd))T .

Example: Let X = (X1, . . . ,Xd) ∼ Nd(0,Σ) with Σ = R being the
correlation matrix of X . Let φR and φ be the c.d.f of X and X1, resp..
The copula of X is called a Gaussian copula and is denoted by CGa

R :

CGa
R (u1, u2, . . . , ud) = φR(φ−1(u1), φ−1(u2), . . . , φ−1(ud)).

CGa
R is the copula of any non-degenerate normal distribution Nd(µ,Σ)

with correlation matrix R.

For d = 2 and ρ = R12 ∈ (−1, 1) we have :

CGa
R (u1, u2) =

∫ φ−1(u1)

−∞

∫ φ−1(u2)

−∞

1

2π
√

1− ρ2
exp

{
−(x21 − 2ρx1x2 + x22 )

2(1− ρ2)

}
dx1dx2
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Copulas: lower and upper bounds

Theorem: (Fréchet bounds)
The following inequalities hold for any d-dimensional copula C and any
(u1, u2, . . . , ud) ∈ [0, 1]d , where d ∈ IN:

max

{
d∑

k=1

uk − d + 1, 0

}
≤ C (u1, u2, . . . , ud) ≤ min{u1, u2, . . . , ud}.

Notation: Lower bound =: Wd , upper bound =: Md , for d ≥ 2.
For d = 2 we write M := M2, W := W2.

Remark: Analogous inequalities hold for any general c.d.f. F with
marginal d.f. Fi , 1 ≤ i ≤ d :

max

{
d∑

k=1

Fk(xk)− d + 1, 0

}
≤ F (x1, x2, . . . , xd) ≤ min{F1(x1),F2(x2), . . . ,Fd(xd)}.

Exercise: The Fréchet lower bound Wd is not a copula for d ≥ 3.

Hint: Check that the rectangle inequality∑2
k1=1

∑2
k2=1 . . .

∑2
kd=1(−1)k1+k2+...+kdWd(u1k1 , u2k2 , . . . , udkd ) ≥ 0 with

uj1 = aj and uj2 = bj for j ∈ {1, 2, . . . , d}, is not fulfilled for d ≥ 3 and
ai = 1

2 , bi = 1, for i = 1, 2, . . . , d .
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Copulas: lower and upper bounds (contd.)

Theorem: (for a proof see Nelsen 1999)
For any d ∈ IN, d ≥ 3, and any u ∈ [0, 1]d , there exists a copula Cd,u

such that Cd,u(u) = Wd(u).

Remark 1: The Fréchet upper bound Md is a copula for any d ∈ IN,
d ≥ 2.
The fulfillment of the three copula axioms is simple to check.

Remark 2: M and W are copulas.
Hint: Let X be a r.v. eine with d.f. FX , let T be a strictly monotone
increasing function, and let S be a strictly monotone decreasing function.
Consider the r.v. Y := T (X ) and Z := S(X ).

Then M is the copula of (X ,T (X ))T and W is the copula of (X ,S(X ))T .
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Copulas: co-monotonicity and anti-monotonicity

Definition: X1 and X2 are called co-monotone if M is a copula of
(X1,X2)T . X1 snd X2 are called anti-monotone if W is a copula of
(X1,X2)T .

Theorem: Assume that W or M is a copula of (X1,X2)T . Then there
exist two monotone functions α, β : IR→ IR and a r.v. Z , such that

(X1,X2)
d
= (α(Z ), β(Z )) .

If M is the copula of (X1,X2)T , then both α and β are monotone
increasing, if W is the copula of (X1,X2)T , then one of the functions α,
β is monotone increasing and the other one is monotone decreasing.

If C is the copula of (X1,X2) and the marginal d.f. F1 and F2 of (X1,X2)
are continuous, then the following hold:

C = W iff X2
a.s.
= T (X1) with T = F←2 ◦ (1− F1) monotone decreasing,

C = M iff X2
a.s.
= T (X1) with T = F←2 ◦ F1 monotone increasing.

Proof: In McNeil et al., 2005.
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= T (X1) with T = F←2 ◦ F1 monotone increasing.

Proof: In McNeil et al., 2005.



Copulas: co-monotonicity and anti-monotonicity
Definition: X1 and X2 are called co-monotone if M is a copula of
(X1,X2)T . X1 snd X2 are called anti-monotone if W is a copula of
(X1,X2)T .

Theorem: Assume that W or M is a copula of (X1,X2)T . Then there
exist two monotone functions α, β : IR→ IR and a r.v. Z , such that

(X1,X2)
d
= (α(Z ), β(Z )) .

If M is the copula of (X1,X2)T , then both α and β are monotone
increasing, if W is the copula of (X1,X2)T , then one of the functions α,
β is monotone increasing and the other one is monotone decreasing.

If C is the copula of (X1,X2) and the marginal d.f. F1 and F2 of (X1,X2)
are continuous, then the following hold:

C = W iff X2
a.s.
= T (X1) with T = F←2 ◦ (1− F1) monotone decreasing,

C = M iff X2
a.s.
= T (X1) with T = F←2 ◦ F1 monotone increasing.

Proof: In McNeil et al., 2005.



Copulas: bounds for the linear correlation

Theorem: Let (X1,X2)T be a random vector with marginal d.f. F1, F2

and some unknown copula. Let var(X1), var(X2) ∈ (0,∞) hold. Then
the following statements hold:

1. The possible values of the linear correlation coefficient of X1 and X2

build a closed interval [ρL,min; ρL,max ] with 0 ∈ [ρL,min; ρL,max ].

2. The minimal linear correlation ρL,min is reached iff X1 and X2 are
anti-monotone. The maximal linear correlation ρL,max is reached iff
X1 and X2 are co-monotone.

The proof uses the equality of Höffding:
Lemma: (The Höffding equality)
Let (X1,X2)T be a random vector with c.d.f. F and marginal d.f. F1, F2.
If cov(X1,X2) <∞ then the following equality holds:

cov(X1,X2) =

∫ ∞
−∞

∫ ∞
−∞

(F (x1, x2)− F1(x1)F2(x2))dx1dx2 .

Proof in McNeil et al., 2005.
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Copulas: bounds for the linear correlation (examples)

Example: Let X1, X2 be two random variables with
X1 ∼ Lognormal(0, 1), X2 ∼ Lognormal(0, σ2), σ > 0. Determine Sie
ρL,min(X1,X2) und ρL,max(X1,X2).

Hint: Observe that X1
d
= exp(Z ) and X2

d
= exp(σZ )

d
= exp(−σZ ).

Moreover eZ , eσZ are co-monotone and eZ ,e−σZ are anti-monotone.

Example: Determine two random vectors (X1,X2)T and (Y1,Y2)T with
different c.d.f.s such that F←X1+X2

(α) 6= F←Y1+Y2
(α) holds while

X1,X2,Y1,Y2 ∼ N(0, 1) and ρL(X1,X2) = 0, ρL(Y1,Y2) = 0 also hold.

If (X1,X2)T , (Y1,Y2)T represent the asset returns of two different
portfolios consisting of two assets each, then we have two portfolios with
the same marginal distributions of their assets and the same linear
correlation coefficient, respectively, but having different value at risk.

Conclusion: The marginal distributions of the assets in a portfolio and
the linear correlation between the assets do not determine the loss
distribution, in particular, they do not determine the risk measure of the
portfolio.
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The rang correlation Kendall’s Tau

Let (x , y)T and (x̃ , ỹ)T be two samples of a random vector (X ,Y )T .
(x , y)T und (x̃ , ỹ)T are called concordant if (x − x̃)(y − ỹ) > 0 and
discordant if (x − x̃)(y − ỹ) < 0.

Definition: Let (X1,X2)T be a random vector with continuous marginal
distributions. The Kendall’s Tau of (X1,X2)T is defined as
ρτ (X1,X2) = P((X1 − X ′1)(X2 − X ′2) > 0)− P((X1 − X ′1)(X2 − X ′2) < 0),
where (X ′1,X

′
2)T is an independent copy of (X1,X2)T .

Equivalently: ρτ (X1,X2) = E (sign[(X1 − X ′1)(X2 − X ′2)]). In the

d-dimensional case X ∈ IRd : ρτ (X ) = cov(sign(X − X ′)), where
X ′ ∈ IRD is an independent copy of X ∈ IRd .

The sample Kendall’s Tau:
Let {(x1, y1)T , (x2, y2)T , . . . , (xn, yn)T} be a sample of size n of the
random vector (X ,Y )T with continuous marginal distributions. Let c be
the number concordant pairs in the sample and let d be the number of
discordant pairs. Then the sample Kendall’s Tau is given as

ρ̃τ (X ,Y ) =
c − d

c + d
a.s.
=

c − d

n(n − 1)/2
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discordant if (x − x̃)(y − ỹ) < 0.

Definition: Let (X1,X2)T be a random vector with continuous marginal
distributions. The Kendall’s Tau of (X1,X2)T is defined as
ρτ (X1,X2) = P((X1 − X ′1)(X2 − X ′2) > 0)− P((X1 − X ′1)(X2 − X ′2) < 0),
where (X ′1,X

′
2)T is an independent copy of (X1,X2)T .

Equivalently: ρτ (X1,X2) = E (sign[(X1 − X ′1)(X2 − X ′2)]). In the

d-dimensional case X ∈ IRd : ρτ (X ) = cov(sign(X − X ′)), where
X ′ ∈ IRD is an independent copy of X ∈ IRd .

The sample Kendall’s Tau:
Let {(x1, y1)T , (x2, y2)T , . . . , (xn, yn)T} be a sample of size n of the
random vector (X ,Y )T with continuous marginal distributions. Let c be
the number concordant pairs in the sample and let d be the number of
discordant pairs. Then the sample Kendall’s Tau is given as

ρ̃τ (X ,Y ) =
c − d

c + d
a.s.
=

c − d

n(n − 1)/2



The rang correlation Kendall’s Tau
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The rang correlation Spearman’s Rho

Definition: Let (X1,X2)T be a random vector with continuous marginal
distributions. The Spearman’s Rho of (X1,X2)T is defined as:

ρS(X1,X2) = 3(P((X1−X ′1)(X2−X ′′2 ) > 0)−P((X1−X ′1)(X2−X ′′2 ) < 0)),

where (X ′1,X
′
2)T , (X ′′1 ,X

′′
2 )T are i.i.d. copies of (X1,X2)T .

Equivalent definition (without a proof):
Let F1 und F2 be the continuous marginal distributions of (X1,X2)T .
Then ρS(X1,X2) = ρL(F1(X1),F2(X2)) holds, i.e. the Spearman’s Rho is
the linear correlation of the unique copula of (X1,X2)T .

In the d-dimensional case X ∈ IRd :
ρS(X ) = ρ(F1(X1),F2(X2), . . . ,Fd(Xd)) is the correlation matrix of the
unique copula of X , where F1,F2,. . .,Fd are the continuous marginal
distributions of X .
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