## Spherical distributions (contd.)

## Spherical distributions (contd.)

Example: The standard normal distribution is a spherical distribution.
Let $X \sim N_{d}(0, I)$. Then $X \sim S_{d}(\psi)$ mit $\psi=\exp (-x / 2)$.
Indeed, $\phi_{X}(t)=\exp \left\{i t^{T} 0-\frac{1}{2} t^{T} I t\right\}=\exp \left\{-t^{T} t / 2\right\}=\psi\left(t^{T} t\right)$, and thus $X$ has a spherical distribution.

## Spherical distributions (contd.)

Example: The standard normal distribution is a spherical distribution.
Let $X \sim N_{d}(0, I)$. Then $X \sim S_{d}(\psi)$ mit $\psi=\exp (-x / 2)$.
Indeed, $\phi_{X}(t)=\exp \left\{i t^{T} 0-\frac{1}{2} t^{T} I t\right\}=\exp \left\{-t^{T} t / 2\right\}=\psi\left(t^{T} t\right)$, and thus $X$ has a spherical distribution.
Let $X=R S$ be the stochastic representation of $X \sim N_{d}(0, I)$. Then
$\|X\|^{2} \stackrel{d}{=} R^{2} \sim \chi_{d}^{2} ;$

## Spherical distributions (contd.)

Example: The standard normal distribution is a spherical distribution.
Let $X \sim N_{d}(0, I)$. Then $X \sim S_{d}(\psi)$ mit $\psi=\exp (-x / 2)$.
Indeed, $\phi_{X}(t)=\exp \left\{i t^{T} 0-\frac{1}{2} t^{T} I t\right\}=\exp \left\{-t^{T} t / 2\right\}=\psi\left(t^{T} t\right)$, and thus $X$ has a spherical distribution.
Let $X=R S$ be the stochastic representation of $X \sim N_{d}(0, l)$. Then
$\|X\|^{2} \stackrel{d}{=} R^{2} \sim \chi_{d}^{2}$;
Simulation of a spherical distribution:
(i) Simulate $s$ from $S$ which is uniformly distributed on the unit sphere $\mathcal{S}^{d-1}$ (e.g. by simulating $y$ from a multivariate standard normal distribution $Y \sim N_{d}(0, I)$ and then setting $\left.s=y /\|y\|\right)$.

## Spherical distributions (contd.)

Example: The standard normal distribution is a spherical distribution.
Let $X \sim N_{d}(0, I)$. Then $X \sim S_{d}(\psi)$ mit $\psi=\exp (-x / 2)$.
Indeed, $\phi_{X}(t)=\exp \left\{i t^{T} 0-\frac{1}{2} t^{T} I t\right\}=\exp \left\{-t^{T} t / 2\right\}=\psi\left(t^{T} t\right)$, and thus $X$ has a spherical distribution.
Let $X=R S$ be the stochastic representation of $X \sim N_{d}(0, l)$. Then
$\|X\|^{2} \stackrel{d}{=} R^{2} \sim \chi_{d}^{2}$;
Simulation of a spherical distribution:
(i) Simulate $s$ from $S$ which is uniformly distributed on the unit sphere $\mathcal{S}^{d-1}$ (e.g. by simulating $y$ from a multivariate standard normal distribution $Y \sim N_{d}(0, I)$ and then setting $\left.s=y /\|y\|\right)$.
(ii) Simulate $r$ from $R$.

## Spherical distributions (contd.)

Example: The standard normal distribution is a spherical distribution.
Let $X \sim N_{d}(0, I)$. Then $X \sim S_{d}(\psi)$ mit $\psi=\exp (-x / 2)$.
Indeed, $\phi_{X}(t)=\exp \left\{i t^{T} 0-\frac{1}{2} t^{T} I t\right\}=\exp \left\{-t^{T} t / 2\right\}=\psi\left(t^{T} t\right)$, and thus $X$ has a spherical distribution.
Let $X=R S$ be the stochastic representation of $X \sim N_{d}(0, l)$. Then $\|X\|^{2} \stackrel{d}{=} R^{2} \sim \chi_{d}^{2}$;
Simulation of a spherical distribution:
(i) Simulate $s$ from $S$ which is uniformly distributed on the unit sphere $\mathcal{S}^{d-1}$ (e.g. by simulating $y$ from a multivariate standard normal distribution $Y \sim N_{d}(0, I)$ and then setting $\left.s=y /\|y\|\right)$.
(ii) Simulate $r$ from $R$.
(iii) Set $x=r$.

Elliptical distributions

## Elliptical distributions

Definition: A random vector $X \in \mathbb{R}^{d}$ has an elliptical distribution if $X \stackrel{d}{=} \mu+A Y$, where $Y \sim S_{k}(\psi), \mu \in \mathbb{R}^{d}$ and $A \in \mathbb{R}^{d \times k}$.

## Elliptical distributions

Definition: A random vector $X \in \mathbb{R}^{d}$ has an elliptical distribution if $X \stackrel{d}{=} \mu+A Y$, where $Y \sim S_{k}(\psi), \mu \in \mathbb{R}^{d}$ and $A \in \mathbb{R}^{d \times k}$.
The characteristic function can be written as

$$
\begin{gathered}
\phi_{X}(t)=E\left(\exp \left\{i t^{T} X\right\}\right)=E\left(\exp \left\{i t^{T}(\mu+A Y)\right\}\right) \\
=\exp \left\{i t^{T} \mu\right\} E\left(\exp \left\{i\left(A^{T} t\right)^{T} Y\right\}\right) \\
=\exp \left\{i t^{T} \mu\right\} \psi\left(t^{T} \Sigma t\right)
\end{gathered}
$$

where $\Sigma=A A^{T}$.

## Elliptical distributions

Definition: A random vector $X \in \mathbb{R}^{d}$ has an elliptical distribution if $X \stackrel{d}{=} \mu+A Y$, where $Y \sim S_{k}(\psi), \mu \in \mathbb{R}^{d}$ and $A \in \mathbb{R}^{d \times k}$.
The characteristic function can be written as

$$
\begin{gathered}
\phi_{X}(t)=E\left(\exp \left\{i t^{T} X\right\}\right)=E\left(\exp \left\{i t^{T}(\mu+A Y)\right\}\right) \\
=\exp \left\{i t^{T} \mu\right\} E\left(\exp \left\{i\left(A^{T} t\right)^{T} Y\right\}\right) \\
=\exp \left\{i t^{T} \mu\right\} \psi\left(t^{T} \Sigma t\right)
\end{gathered}
$$

where $\Sigma=A A^{T}$.
Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.

## Elliptical distributions

Definition: A random vector $X \in \mathbb{R}^{d}$ has an elliptical distribution if $X \stackrel{d}{=} \mu+A Y$, where $Y \sim S_{k}(\psi), \mu \in \mathbb{R}^{d}$ and $A \in \mathbb{R}^{d \times k}$.
The characteristic function can be written as

$$
\begin{gathered}
\phi_{X}(t)=E\left(\exp \left\{i t^{T} X\right\}\right)=E\left(\exp \left\{i t^{T}(\mu+A Y)\right\}\right) \\
=\exp \left\{i t^{T} \mu\right\} E\left(\exp \left\{i\left(A^{T} t\right)^{T} Y\right\}\right) \\
=\exp \left\{i t^{T} \mu\right\} \psi\left(t^{T} \Sigma t\right),
\end{gathered}
$$

where $\Sigma=A A^{T}$.
Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.
$\mu$ is called location parameter, $\Sigma$ is called dispersion parameter, $\psi$ is called characteristic generator of the elliptic distribution.

## Elliptical distributions

Definition: A random vector $X \in \mathbb{R}^{d}$ has an elliptical distribution if $X \stackrel{d}{=} \mu+A Y$, where $Y \sim S_{k}(\psi), \mu \in \mathbb{R}^{d}$ and $A \in \mathbb{R}^{d \times k}$.
The characteristic function can be written as

$$
\begin{gathered}
\phi_{X}(t)=E\left(\exp \left\{i t^{T} X\right\}\right)=E\left(\exp \left\{i t^{T}(\mu+A Y)\right\}\right) \\
=\exp \left\{i t^{T} \mu\right\} E\left(\exp \left\{i\left(A^{T} t\right)^{T} Y\right\}\right) \\
=\exp \left\{i t^{T} \mu\right\} \psi\left(t^{T} \Sigma t\right),
\end{gathered}
$$

where $\Sigma=A A^{T}$.
Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.
$\mu$ is called location parameter, $\Sigma$ is called dispersion parameter, $\psi$ is called characteristic generator of the elliptic distribution.
If $E(X)$ exists, then $E(X)=\mu$.

## Elliptical distributions

Definition: A random vector $X \in \mathbb{R}^{d}$ has an elliptical distribution if $X \stackrel{d}{=} \mu+A Y$, where $Y \sim S_{k}(\psi), \mu \in \mathbb{R}^{d}$ and $A \in \mathbb{R}^{d \times k}$.
The characteristic function can be written as

$$
\begin{gathered}
\phi_{X}(t)=E\left(\exp \left\{i t^{T} X\right\}\right)=E\left(\exp \left\{i t^{T}(\mu+A Y)\right\}\right) \\
=\exp \left\{i t^{T} \mu\right\} E\left(\exp \left\{i\left(A^{T} t\right)^{T} Y\right\}\right) \\
=\exp \left\{i t^{T} \mu\right\} \psi\left(t^{T} \Sigma t\right)
\end{gathered}
$$

where $\Sigma=A A^{T}$.
Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.
$\mu$ is called location parameter, $\Sigma$ is called dispersion parameter, $\psi$ is called characteristic generator of the elliptic distribution.
If $E(X)$ exists, then $E(X)=\mu$.
IF $A \in \mathbb{R}^{d \times d}$ is nonsingular, then we have the following relation between elliptical and spherical distributions:
$X \sim E_{d}(\mu, \Sigma, \psi) \Leftrightarrow A^{-1}(X-\mu) \sim S_{d}(\psi), A \in \mathbb{R}^{d \times d}, A A^{T}=\Sigma$.

## Elliptical distributions (contd.)

## Elliptical distributions (contd.)

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^{d}$ be an $d$-dimensional random vector. $X \sim E_{d}(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu+R A S$, where $S \in \mathbb{R}^{k}$ is a random vector uniformly distributed on the unit sphere $\mathcal{S}^{k-1}, R \geq 0$ is a r.v. independent of $S, A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma=A A^{T}$ and $\mu \in \mathbb{R}^{d}$ is a constant vector.

## Elliptical distributions (contd.)

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^{d}$ be an $d$-dimensional random vector. $X \sim E_{d}(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu+R A S$, where $S \in \mathbb{R}^{k}$ is a random vector uniformly distributed on the unit sphere $\mathcal{S}^{k-1}, R \geq 0$ is a r.v. independent of $S, A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma=A A^{T}$ and $\mu \in \mathbb{R}^{d}$ is a constant vector.

Simulation of an elliptical distribution:
(i) Simulate $s$ from $S$ which is uniformly distributed on the unit sphere $\mathcal{S}^{d-1}$ (e.g. by simulating $y$ from a multivariate standard normal distribution $Y \sim N_{d}(0, I)$ and then setting $\left.s=y /\|y\|\right)$.

## Elliptical distributions (contd.)

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^{d}$ be an $d$-dimensional random vector. $X \sim E_{d}(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu+R A S$, where $S \in \mathbb{R}^{k}$ is a random vector uniformly distributed on the unit sphere $\mathcal{S}^{k-1}, R \geq 0$ is a r.v. independent of $S, A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma=A A^{T}$ and $\mu \in \mathbb{R}^{d}$ is a constant vector.

Simulation of an elliptical distribution:
(i) Simulate $s$ from $S$ which is uniformly distributed on the unit sphere $\mathcal{S}^{d-1}$ (e.g. by simulating $y$ from a multivariate standard normal distribution $Y \sim N_{d}(0, I)$ and then setting $\left.s=y /\|y\|\right)$.
(ii) Simulate $r$ from $R$.

## Elliptical distributions (contd.)

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^{d}$ be an $d$-dimensional random vector. $X \sim E_{d}(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu+R A S$, where $S \in \mathbb{R}^{k}$ is a random vector uniformly distributed on the unit sphere $\mathcal{S}^{k-1}, R \geq 0$ is a r.v. independent of $S, A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma=A A^{T}$ and $\mu \in \mathbb{R}^{d}$ is a constant vector.

Simulation of an elliptical distribution:
(i) Simulate $s$ from $S$ which is uniformly distributed on the unit sphere $\mathcal{S}^{d-1}$ (e.g. by simulating $y$ from a multivariate standard normal distribution $Y \sim N_{d}(0, I)$ and then setting $\left.s=y /\|y\|\right)$.
(ii) Simulate $r$ from $R$.
(iii) Set $x=\mu+r A s$.

## Examples of elliptical distributions

## Examples of elliptical distributions

- Multivariate normal distribution

Let $X \sim N(\mu, \Sigma)$ with $\Sigma$ positive definite. Then for $A \in \mathbb{R}^{d \times k}$ with $A A^{T}=\Sigma$ we have $X \stackrel{d}{=} \mu+A Z$, where $Z \in N_{k}(0, I)$. Moreover $Z=R S$ holds with $S$ being uniformly distributed on the unit sphere $\mathcal{S}^{k-1}$ and $R^{2} \sim \chi_{k}^{2}$. Thus $X \stackrel{d}{=} \mu+R A S$ holds and hence $X \sim E_{d}(\mu, \Sigma, \psi)$ with $\psi(x)=\exp \{-x / 2\}$.

## Examples of elliptical distributions

- Multivariate normal distribution

Let $X \sim N(\mu, \Sigma)$ with $\Sigma$ positive definite. Then for $A \in \mathbb{R}^{d \times k}$ with $A A^{T}=\Sigma$ we have $X \stackrel{d}{=} \mu+A Z$, where $Z \in N_{k}(0, I)$. Moreover $Z=R S$ holds with $S$ being uniformly distributed on the unit sphere $\mathcal{S}^{k-1}$ and $R^{2} \sim \chi_{k}^{2}$. Thus $X \stackrel{d}{=} \mu+R A S$ holds and hence $X \sim E_{d}(\mu, \Sigma, \psi)$ with $\psi(x)=\exp \{-x / 2\}$.

- Multivariate normal variance mixtures

Let $Z \sim N_{d}(0, I)$. Then $Z$ has a spherical distribution with stochastic representation $Z \stackrel{d}{=} V S$ with $V^{2}=\|Z\|^{2} \sim \chi_{d}^{2}$. Let $X=\mu+W A Z$ be a variance normal mixture distribution. Then we get $X \stackrel{d}{=} \mu+V W A S$ with $V^{2} \sim \chi_{d}^{2}$ and $V W$ is a nonnegative r.v. independent of $S$. Thus $X$ is elliptically distributed with $R=V W$.

## Properties of elliptical distributions

## Theorem:

Let $X \sim E_{k}(\mu, \Sigma, \psi)$. $X$ has the following properties:

- Linear combinations

For $B \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^{k}$ we have:

$$
B X+b \in E_{k}\left(B \mu+b, B \Sigma B^{T}, \psi\right) .
$$

## Properties of elliptical distributions

## Theorem:

Let $X \sim E_{k}(\mu, \Sigma, \psi)$. $X$ has the following properties:

- Linear combinations

For $B \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^{k}$ we have:

$$
B X+b \in E_{k}\left(B \mu+b, B \Sigma B^{T}, \psi\right) .
$$

- Marginal distributions

$$
\begin{aligned}
& \text { Set } X^{T}=\left(X^{(1)^{T}}, X^{(2)^{T}}\right) \text { for } X^{(1)^{T}}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T} \text { and } \\
& X^{(2)^{T}}=\left(X_{n+1}, X_{n+2}, \ldots, X_{k}\right)^{T} \text { and analogously set } \\
& \mu^{T}=\left(\mu^{(1)^{T}}, \mu^{(2)}{ }^{T}\right) \text { as well as } \Sigma=\left(\begin{array}{cc}
\Sigma^{(1,1)} & \Sigma^{(1,2)} \\
\Sigma^{(2,1)} & \Sigma^{(2,2)}
\end{array}\right) . \text { Then } \\
& X_{1} \sim E_{n}\left(\mu^{(1)}, \Sigma^{(1,1)}, \psi\right) \text { and } X_{2} \sim E_{k-n}\left(\mu^{(2)}, \Sigma^{(2,2)}, \psi\right) .
\end{aligned}
$$

Properties of elliptical distributions (contd.)

## Properties of elliptical distributions (contd.)

- Conditional distributions

Assume that $\Sigma$ is nonsingular. Then
$X^{(2)} \mid X^{(1)}=x^{(1)} \sim E_{d-k}\left(\mu^{(2,1)}, \Sigma^{(22,1)}, \tilde{\psi}\right)$ where

$$
\begin{aligned}
& \mu^{(2,1)}=\mu^{(2)}+\Sigma^{(2,1)}\left(\Sigma^{(1,1)}\right)^{-1}\left(x^{(1)}-\mu^{(1)}\right) \text { and } \\
& \Sigma^{(22,1)}=\Sigma^{(2,2)}-\Sigma^{(2,1)}\left(\Sigma^{(1,1)}\right)^{-1} \Sigma^{(1,2)} .
\end{aligned}
$$

Typically $\tilde{\psi}$ is a different characteristic generator than the original $\psi$ (see Fang, Katz and Ng 1987).

## Properties of elliptical distributions (contd.)

## Properties of elliptical distributions (contd.)

- Quadratic forms

If $\Sigma$ is nonsingular, then $D^{2}=(X-\mu)^{T} \Sigma^{-1}(X-\mu) \sim R^{2}$, where $R$ is the nonnegative r.v. in the stochastic representation $Y=R S$ of the spherical distribution $Y$ with $S \sim U\left(\mathcal{S}^{(d-1)}\right)$ and $X=\mu+A Y$.
The random variable $D$ is called Mahalanobis distance.

## Properties of elliptical distributions (contd.)

- Quadratic forms

If $\Sigma$ is nonsingular, then $D^{2}=(X-\mu)^{T} \Sigma^{-1}(X-\mu) \sim R^{2}$, where $R$ is the nonnegative r.v. in the stochastic representation $Y=R S$ of the spherical distribution $Y$ with $S \sim U\left(\mathcal{S}^{(d-1)}\right)$ and $X=\mu+A Y$.
The random variable $D$ is called Mahalanobis distance.

- Convolutions

Let $X \sim E_{k}(\mu, \Sigma, \psi)$ and $Y \sim E_{k}(\tilde{\mu}, \Sigma, \tilde{\psi})$ be two independent random vectors. Then $X+Y \sim E_{k}(\mu+\tilde{\mu}, \Sigma, \bar{\psi})$ where $\bar{\psi}=\psi \tilde{\psi}$.

## Properties of elliptical distributions (contd.)

- Quadratic forms

If $\Sigma$ is nonsingular, then $D^{2}=(X-\mu)^{T} \Sigma^{-1}(X-\mu) \sim R^{2}$, where $R$ is the nonnegative r.v. in the stochastic representation $Y=R S$ of the spherical distribution $Y$ with $S \sim U\left(\mathcal{S}^{(d-1)}\right)$ and $X=\mu+A Y$.
The random variable $D$ is called Mahalanobis distance.

- Convolutions

Let $X \sim E_{k}(\mu, \Sigma, \psi)$ and $Y \sim E_{k}(\tilde{\mu}, \Sigma, \tilde{\psi})$ be two independent random vectors. Then $X+Y \sim E_{k}(\mu+\tilde{\mu}, \Sigma, \bar{\psi})$ where $\bar{\psi}=\psi \tilde{\psi}$. Note that the dispersion matrix $\Sigma$ must be the same for $X$ and $Y$.

## Properties of elliptical distributions (contd.)

- Quadratic forms

If $\Sigma$ is nonsingular, then $D^{2}=(X-\mu)^{T} \Sigma^{-1}(X-\mu) \sim R^{2}$, where $R$ is the nonnegative r.v. in the stochastic representation $Y=R S$ of the spherical distribution $Y$ with $S \sim U\left(\mathcal{S}^{(d-1)}\right)$ and $X=\mu+A Y$.
The random variable $D$ is called Mahalanobis distance.

- Convolutions

Let $X \sim E_{k}(\mu, \Sigma, \psi)$ and $Y \sim E_{k}(\tilde{\mu}, \Sigma, \tilde{\psi})$ be two independent random vectors. Then $X+Y \sim E_{k}(\mu+\tilde{\mu}, \Sigma, \bar{\psi})$ where $\bar{\psi}=\psi \tilde{\psi}$. Note that the dispersion matrix $\Sigma$ must be the same for $X$ and $Y$.

Important: $X \sim E_{k}\left(\mu, I_{k}, \psi\right)$ does not imply that the components of $X$ are independent. The components of $X$ are independent iff $X$ is multivariate normally distributed with the unit matrix as a covariance matrix.

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.
Definition: A risk measure $\rho$ in $M$ is called coherent iff it has the following properties

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.
Definition: A risk measure $\rho$ in $M$ is called coherent iff it has the following properties
(C1) Invariance with respect to translation:

$$
\rho(X+r)=\rho(X)+r, \forall r \in \mathbb{R} \text { and } \forall X \in M .
$$

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.
Definition: A risk measure $\rho$ in $M$ is called coherent iff it has the following properties
(C1) Invariance with respect to translation:

$$
\rho(X+r)=\rho(X)+r, \forall r \in \mathbb{R} \text { and } \forall X \in M .
$$

(C2) Subadditivity:

$$
\forall X_{1}, X_{2} \in M \text { it holds } \rho\left(X_{1}+X_{2}\right) \leq \rho\left(X_{1}\right)+\rho\left(X_{2}\right) .
$$

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.
Definition: A risk measure $\rho$ in $M$ is called coherent iff it has the following properties
(C1) Invariance with respect to translation:

$$
\rho(X+r)=\rho(X)+r, \forall r \in \mathbb{R} \text { and } \forall X \in M .
$$

(C2) Subadditivity:
$\forall X_{1}, X_{2} \in M$ it holds $\rho\left(X_{1}+X_{2}\right) \leq \rho\left(X_{1}\right)+\rho\left(X_{2}\right)$.
(C3) Positive homogeneity:

$$
\rho(\lambda X)=\lambda \rho(X), \forall \lambda \geq 0, \forall X \in M .
$$

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.
Definition: A risk measure $\rho$ in $M$ is called coherent iff it has the following properties
(C1) Invariance with respect to translation:

$$
\rho(X+r)=\rho(X)+r, \forall r \in \mathbb{R} \text { and } \forall X \in M .
$$

(C2) Subadditivity:
$\forall X_{1}, X_{2} \in M$ it holds $\rho\left(X_{1}+X_{2}\right) \leq \rho\left(X_{1}\right)+\rho\left(X_{2}\right)$.
(C3) Positive homogeneity:
$\rho(\lambda X)=\lambda \rho(X), \forall \lambda \geq 0, \forall X \in M$.
(C4) Monotonicity:
$\forall X_{1}, X_{2} \in M$ the implication $X_{1} \stackrel{\text { a.s. }}{\leq} X_{2} \Longrightarrow \rho\left(X_{1}\right) \leq \rho\left(X_{2}\right)$ holds.

## Convex risk measures

Consider the property:
(C5) Convexity:

$$
\begin{aligned}
& \forall X_{1}, X_{2} \in M, \forall \lambda \in[0,1] \\
& \rho\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda \rho\left(X_{1}\right)+(1-\lambda) \rho\left(X_{2}\right) \text { holds. }
\end{aligned}
$$

## Convex risk measures

Consider the property:
(C5) Convexity:

$$
\begin{aligned}
& \forall X_{1}, X_{2} \in M, \forall \lambda \in[0,1] \\
& \rho\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda \rho\left(X_{1}\right)+(1-\lambda) \rho\left(X_{2}\right) \text { holds. }
\end{aligned}
$$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice-verca.

## Convex risk measures

Consider the property:
(C5) Convexity:

$$
\begin{aligned}
& \forall X_{1}, X_{2} \in M, \forall \lambda \in[0,1] \\
& \rho\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda \rho\left(X_{1}\right)+(1-\lambda) \rho\left(X_{2}\right) \text { holds. }
\end{aligned}
$$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice-verca.
Definition: A risk measure $\rho$ in $M$ with the properties (C1),(C4) and (C5) is called convex in $M$.

## Convex risk measures

Consider the property:
(C5) Convexity:

$$
\begin{aligned}
& \forall X_{1}, X_{2} \in M, \forall \lambda \in[0,1] \\
& \rho\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda \rho\left(X_{1}\right)+(1-\lambda) \rho\left(X_{2}\right) \text { holds. }
\end{aligned}
$$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice-verca.
Definition: A risk measure $\rho$ in $M$ with the properties (C1),(C4) and (C5) is called convex in $M$.
Observation: VaR is not coherent in general.

## Convex risk measures

Consider the property:
(C5) Convexity:

$$
\begin{aligned}
& \forall X_{1}, X_{2} \in M, \forall \lambda \in[0,1] \\
& \rho\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda \rho\left(X_{1}\right)+(1-\lambda) \rho\left(X_{2}\right) \text { holds. }
\end{aligned}
$$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice-verca.
Definition: A risk measure $\rho$ in $M$ with the properties (C1),(C4) and (C5) is called convex in $M$.
Observation: VaR is not coherent in general.
Let the probability measure $P$ be defined by some continuous or discrete probabilty distribution $F$.
$\mathrm{Va}_{\alpha} R_{\alpha}(F)=F^{\leftarrow}(\alpha)$ has the properties (C1), (C3) and (C4), whereas the subadditivity (C2) is not fulfilled in general.

Coherent risk measure (contd.)

## Coherent risk measure (contd.)

Example: Let the probability measure $P$ be defined by the binomial distribution $B(p, n)$ for $n \in \mathbb{N}, p \in(0,1)$. We show that $\operatorname{Va} R_{\alpha}(B(p, n))$ is not subadditive.

## Coherent risk measure (contd.)

Example: Let the probability measure $P$ be defined by the binomial distribution $B(p, n)$ for $n \in \mathbb{N}, p \in(0,1)$. We show that $\operatorname{Va}_{\alpha}(B(p, n))$ is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently with probability $p$. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

## Coherent risk measure (contd.)

Example: Let the probability measure $P$ be defined by the binomial distribution $B(p, n)$ for $n \in \mathbb{N}, p \in(0,1)$. We show that $\operatorname{Va}_{\alpha}(B(p, n))$ is not subadditive.
Consider a portfolio consisting of 100 bonds, which default independently with probability $p$. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

Theorem: Let $(\Omega, \mathcal{F}, P)$ be a probability space and $M \subseteq L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of the random variables with a continuous distribution in $(\Omega, \mathcal{F}, P) . C V a R_{\alpha}$ is a coherent risk measure in $M, \forall \alpha \in(0,1)$.

## Coherent risk measure (contd.)

Example: Let the probability measure $P$ be defined by the binomial distribution $B(p, n)$ for $n \in \mathbb{N}, p \in(0,1)$. We show that $\operatorname{Va}_{\alpha}(B(p, n))$ is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently with probability $p$. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

Theorem: Let $(\Omega, \mathcal{F}, P)$ be a probability space and $M \subseteq L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of the random variables with a continuous distribution in $(\Omega, \mathcal{F}, P) . C V a R_{\alpha}$ is a coherent risk measure in $M, \forall \alpha \in(0,1)$.
Sketch of the proof:
(C1),(C3), (C4) follow from $\mathrm{CVaR}_{\alpha}(F)=\frac{1}{1-\alpha} \int_{\alpha}^{1} \operatorname{Var}_{p}(F) d p$.

## Coherent risk measure (contd.)

Example: Let the probability measure $P$ be defined by the binomial distribution $B(p, n)$ for $n \in \mathbb{N}, p \in(0,1)$. We show that $\operatorname{Va}_{\alpha}(B(p, n))$ is not subadditive.
Consider a portfolio consisting of 100 bonds, which default independently with probability $p$. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

Theorem: Let $(\Omega, \mathcal{F}, P)$ be a probability space and $M \subseteq L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of the random variables with a continuous distribution in $(\Omega, \mathcal{F}, P) . C V a R_{\alpha}$ is a coherent risk measure in $M, \forall \alpha \in(0,1)$.
Sketch of the proof:
(C1),(C3), (C4) follow from $\mathrm{CVaR}_{\alpha}(F)=\frac{1}{1-\alpha} \int_{\alpha}^{1} \operatorname{Var}_{p}(F) d p$.
To show (C2) observe that for a sequence of i.i.d. r.v. $L_{1}, L_{2}, \ldots, L_{n}$ with order statistics $L_{1, n} \geq L_{2, n} \geq \ldots \geq L_{n, n}$ and for any $m \in\{1,2, \ldots, n\}$

$$
\sum_{i=1}^{m} L_{i, n}=\sup \left\{L_{i_{1}}+L_{i_{2}}+\ldots+L_{i_{m}}: 1 \leq i_{1}<\ldots<i_{m} \leq n\right\} \text { holds. }
$$

The mean-risk portfolio optimization model

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.
Let $\mathcal{P}$ be the family of all portfolios consisting of the obove $d$ assets

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.
Let $\mathcal{P}$ be the family of all portfolios consisting of the obove $d$ assets Any (long-short) portfolio in $\mathcal{P}$ is uniquelly determined by its weight vector $w=\left(w_{i}\right) \in \mathbb{R}^{d}$ with $\sum_{i=1^{d}}\left|w_{i}\right|=1 . w_{i}>0\left(w_{i}<0\right)$ represents a long (short) investment.

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.
Let $\mathcal{P}$ be the family of all portfolios consisting of the obove $d$ assets Any (long-short) portfolio in $\mathcal{P}$ is uniquelly determined by its weight vector $w=\left(w_{i}\right) \in \mathbb{R}^{d}$ with $\sum_{i=1^{d}}\left|w_{i}\right|=1 . w_{i}>0\left(w_{i}<0\right)$ represents a long (short) investment.
The return of portfolio $w$ is the r.v. $Z(w)=\sum_{i=1}^{d} w_{i} X_{i}$. The expected portfolio return is $E(Z(w))=w^{\top} \mu$.

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.
Let $\mathcal{P}$ be the family of all portfolios consisting of the obove $d$ assets Any (long-short) portfolio in $\mathcal{P}$ is uniquelly determined by its weight vector $w=\left(w_{i}\right) \in \mathbb{R}^{d}$ with $\sum_{i=1^{d}}\left|w_{i}\right|=1 . w_{i}>0\left(w_{i}<0\right)$ represents a long (short) investment.
The return of portfolio $w$ is the r.v. $Z(w)=\sum_{i=1}^{d} w_{i} X_{i}$. The expected portfolio return is $E(Z(w))=w^{\top} \mu$.
Let $\mathcal{P}_{m}$ be the family of portfolios in $\mathcal{P}$ with $E(Z(w))=m$, for some $m \in \mathbb{R}, m>0$.
$\mathcal{P}_{m}:=\left\{w=\left(w_{i}\right) \in \mathbb{R}^{d}, \sum_{i=1}^{d}\left|w_{i}\right|=1, w^{T} \mu=m\right\}$

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.
Let $\mathcal{P}$ be the family of all portfolios consisting of the obove $d$ assets Any (long-short) portfolio in $\mathcal{P}$ is uniquelly determined by its weight vector $w=\left(w_{i}\right) \in \mathbb{R}^{d}$ with $\sum_{i=1^{d}}\left|w_{i}\right|=1 . w_{i}>0\left(w_{i}<0\right)$ represents a long (short) investment.
The return of portfolio $w$ is the r.v. $Z(w)=\sum_{i=1}^{d} w_{i} X_{i}$. The expected portfolio return is $E(Z(w))=w^{\top} \mu$.
Let $\mathcal{P}_{m}$ be the family of portfolios in $\mathcal{P}$ with $E(Z(w))=m$, for some $m \in \mathbb{R}, m>0$.
$\mathcal{P}_{m}:=\left\{w=\left(w_{i}\right) \in \mathbb{R}^{d}, \sum_{i=1}^{d}\left|w_{i}\right|=1, w^{T} \mu=m\right\}$
For a risk measure $\rho$ the mean- $\rho$ portfolio optimization model is:

$$
\begin{equation*}
\min _{w \in \mathcal{P}_{m}} \rho(Z(w)) \tag{1}
\end{equation*}
$$

The mean-risk portfolio optimization model (contd.)

The mean-risk portfolio optimization model (contd.)
If $\rho$ equals the portfolio variance we get $\min _{w \in \mathcal{P}_{m}} \operatorname{var}(Z(w))$

## The mean-risk portfolio optimization model (contd.)

If $\rho$ equals the portfolio variance we get $\min _{w \in \mathcal{P}_{m}} \operatorname{var}(Z(w))$
If $\operatorname{Cov}(x)=\Sigma$ and the weights are nonnegative (long-only portfolio) we get the Markovitz portfolio optimization model (Markowitz 1952):

$$
\begin{array}{cc}
\min _{w} & w^{T} \sum w \\
\text { s.t. } & \\
& w^{T} \mu=m \\
& \sum_{i=1}^{d}\left|w_{i}\right|=1
\end{array}
$$

## The mean-risk portfolio optimization model (contd.)

If $\rho$ equals the portfolio variance we get $\min _{w \in \mathcal{P}_{m}} \operatorname{var}(Z(w))$
If $\operatorname{Cov}(x)=\Sigma$ and the weights are nonnegative (long-only portfolio) we get the Markovitz portfolio optimization model (Markowitz 1952):

$$
\begin{array}{lc}
\min _{w} & w^{\top} \sum w \\
\text { s.t. } & \\
& w^{T} \mu=m \\
& \sum_{i=1}^{d}\left|w_{i}\right|=1
\end{array}
$$

If $\rho=V_{a} R_{\alpha}, \alpha \in(0,1)$ we get the mean- $V a R$ pf. optimization model

$$
\min _{w \in \mathcal{P}_{m}} \operatorname{Va}_{\alpha}(Z(w))
$$

Question: What is the relationship between these three portfolio optimization models?

