◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Example: The standard normal distribution is a spherical distribution.

Let $X \sim N_d(0, I)$. Then $X \sim S_d(\psi)$ mit $\psi = \exp(-x/2)$. Indeed, $\phi_X(t) = \exp\{it^T 0 - \frac{1}{2}t^T It\} = \exp\{-t^T t/2\} = \psi(t^T t)$, and thus X has a spherical distribution.

Example: The standard normal distribution is a spherical distribution.

Let $X \sim N_d(0, I)$. Then $X \sim S_d(\psi)$ mit $\psi = \exp(-x/2)$. Indeed, $\phi_X(t) = \exp\{it^T 0 - \frac{1}{2}t^T It\} = \exp\{-t^T t/2\} = \psi(t^T t)$, and thus X has a spherical distribution.

Let X = RS be the stochastic representation of $X \sim N_d(0, I)$. Then $||X||^2 \stackrel{d}{=} R^2 \sim \chi^2_d$;

Example: The standard normal distribution is a spherical distribution.

Let $X \sim N_d(0, I)$. Then $X \sim S_d(\psi)$ mit $\psi = \exp(-x/2)$. Indeed, $\phi_X(t) = \exp\{it^T 0 - \frac{1}{2}t^T It\} = \exp\{-t^T t/2\} = \psi(t^T t)$, and thus X has a spherical distribution.

Let X = RS be the stochastic representation of $X \sim N_d(0, I)$. Then $||X||^2 \stackrel{d}{=} R^2 \sim \chi^2_d$;

Simulation of a spherical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere S^{d-1} (e.g. by simulating y from a multivariate standard normal distribution $Y \sim N_d(0, I)$ and then setting s = y/||y||).

Example: The standard normal distribution is a spherical distribution.

Let $X \sim N_d(0, I)$. Then $X \sim S_d(\psi)$ mit $\psi = \exp(-x/2)$. Indeed, $\phi_X(t) = \exp\{it^T 0 - \frac{1}{2}t^T It\} = \exp\{-t^T t/2\} = \psi(t^T t)$, and thus X has a spherical distribution.

Let X = RS be the stochastic representation of $X \sim N_d(0, I)$. Then $||X||^2 \stackrel{d}{=} R^2 \sim \chi^2_d$;

Simulation of a spherical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere S^{d-1} (e.g. by simulating y from a multivariate standard normal distribution $Y \sim N_d(0, I)$ and then setting s = y/||y||).

(ii) Simulate r from R.

Example: The standard normal distribution is a spherical distribution.

Let $X \sim N_d(0, I)$. Then $X \sim S_d(\psi)$ mit $\psi = \exp(-x/2)$. Indeed, $\phi_X(t) = \exp\{it^T 0 - \frac{1}{2}t^T It\} = \exp\{-t^T t/2\} = \psi(t^T t)$, and thus X has a spherical distribution.

Let X = RS be the stochastic representation of $X \sim N_d(0, I)$. Then $||X||^2 \stackrel{d}{=} R^2 \sim \chi^2_d$;

Simulation of a spherical distribution:

(i) Simulate *s* from *S* which is uniformly distributed on the unit sphere S^{d-1} (e.g. by simulating *y* from a multivariate standard normal distribution $Y \sim N_d(0, I)$ and then setting s = y/||y||).

- (ii) Simulate r from R.
- (iii) Set x = rs.

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

The characteristic function can be written as

$$\phi_X(t) = E(\exp\{it^T X\}) = E(\exp\{it^T (\mu + AY)\})$$
$$= \exp\{it^T \mu\}E(\exp\{i(A^T t)^T Y\})$$
$$= \exp\{it^T \mu\}\psi(t^T \Sigma t),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\Sigma = AA^{T}$.

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

The characteristic function can be written as

$$\phi_X(t) = E(\exp\{it^T X\}) = E(\exp\{it^T (\mu + AY)\})$$
$$= \exp\{it^T \mu\}E(\exp\{i(A^T t)^T Y\})$$
$$= \exp\{it^T \mu\}\psi(t^T \Sigma t),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\Sigma = AA^T$. Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

The characteristic function can be written as

$$\phi_X(t) = E(\exp\{it^T X\}) = E(\exp\{it^T (\mu + AY)\})$$
$$= \exp\{it^T \mu\}E(\exp\{i(A^T t)^T Y\})$$
$$= \exp\{it^T \mu\}\psi(t^T \Sigma t),$$

where $\Sigma = AA^T$. Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 μ is called *location parameter*, Σ is called *dispersion parameter*, ψ is called *characteristic generator of the elliptic distribution*.

(日) (同) (三) (三) (三) (○) (○)

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

The characteristic function can be written as

$$\phi_X(t) = E(\exp\{it^T X\}) = E(\exp\{it^T (\mu + AY)\})$$
$$= \exp\{it^T \mu\}E(\exp\{i(A^T t)^T Y\})$$
$$= \exp\{it^T \mu\}\psi(t^T \Sigma t),$$

where $\Sigma = AA^T$. Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 μ is called *location parameter*, Σ is called *dispersion parameter*, ψ is called *characteristic generator of the elliptic distribution*.

If E(X) exists, then $E(X) = \mu$.

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

The characteristic function can be written as

$$\phi_X(t) = E(\exp\{it^T X\}) = E(\exp\{it^T (\mu + AY)\})$$
$$= \exp\{it^T \mu\}E(\exp\{i(A^T t)^T Y\})$$
$$= \exp\{it^T \mu\}\psi(t^T \Sigma t),$$

where $\Sigma = AA^T$. Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 μ is called *location parameter*, Σ is called *dispersion parameter*, ψ is called *characteristic generator of the elliptic distribution*.

If
$$E(X)$$
 exists, then $E(X) = \mu$.

IF $A \in \mathbb{R}^{d \times d}$ is nonsingular, then we have the following relation between elliptical and spherical distributions:

 $X \sim E_d(\mu, \Sigma, \psi) \Leftrightarrow A^{-1}(X - \mu) \sim S_d(\psi), A \in \mathrm{IR}^{d \times d}, AA^T = \Sigma.$

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^d$ be an *d*-dimensional random vector. $X \sim E_d(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu + RAS$, where $S \in \mathbb{R}^k$ is a random vector uniformly distributed on the unit sphere S^{k-1} , $R \ge 0$ is a r.v. independent of S, $A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma = AA^T$ and $\mu \in \mathbb{R}^d$ is a constant vector.

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^d$ be an *d*-dimensional random vector. $X \sim E_d(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu + RAS$, where $S \in \mathbb{R}^k$ is a random vector uniformly distributed on the unit sphere S^{k-1} , $R \ge 0$ is a r.v. independent of S, $A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma = AA^T$ and $\mu \in \mathbb{R}^d$ is a constant vector.

Simulation of an elliptical distribution:

(i) Simulate *s* from *S* which is uniformly distributed on the unit sphere S^{d-1} (e.g. by simulating *y* from a multivariate standard normal distribution $Y \sim N_d(0, I)$ and then setting s = y/||y||).

(日) (同) (三) (三) (三) (○) (○)

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^d$ be an *d*-dimensional random vector. $X \sim E_d(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu + RAS$, where $S \in \mathbb{R}^k$ is a random vector uniformly distributed on the unit sphere S^{k-1} , $R \ge 0$ is a r.v. independent of S, $A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma = AA^T$ and $\mu \in \mathbb{R}^d$ is a constant vector.

Simulation of an elliptical distribution:

(i) Simulate *s* from *S* which is uniformly distributed on the unit sphere S^{d-1} (e.g. by simulating *y* from a multivariate standard normal distribution $Y \sim N_d(0, I)$ and then setting s = y/||y||).

(日) (同) (三) (三) (三) (○) (○)

(ii) Simulate r from R.

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^d$ be an *d*-dimensional random vector. $X \sim E_d(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu + RAS$, where $S \in \mathbb{R}^k$ is a random vector uniformly distributed on the unit sphere S^{k-1} , $R \ge 0$ is a r.v. independent of S, $A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma = AA^T$ and $\mu \in \mathbb{R}^d$ is a constant vector.

Simulation of an elliptical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere S^{d-1} (e.g. by simulating y from a multivariate standard normal distribution $Y \sim N_d(0, I)$ and then setting s = y/||y||).

(日) (同) (三) (三) (三) (○) (○)

- (ii) Simulate r from R.
- (iii) Set $x = \mu + rAs$.

Examples of elliptical distributions

Examples of elliptical distributions

Multivariate normal distribution

Let $X \sim N(\mu, \Sigma)$ with Σ positive definite. Then for $A \in \mathbb{R}^{d \times k}$ with $AA^T = \Sigma$ we have $X \stackrel{d}{=} \mu + AZ$, where $Z \in N_k(0, I)$. Moreover Z = RS holds with S being uniformly distributed on the unit sphere S^{k-1} and $R^2 \sim \chi_k^2$. Thus $X \stackrel{d}{=} \mu + RAS$ holds and hence $X \sim E_d(\mu, \Sigma, \psi)$ with $\psi(x) = \exp\{-x/2\}$.

Examples of elliptical distributions

Multivariate normal distribution

Let $X \sim N(\mu, \Sigma)$ with Σ positive definite. Then for $A \in \mathbb{R}^{d \times k}$ with $AA^T = \Sigma$ we have $X \stackrel{d}{=} \mu + AZ$, where $Z \in N_k(0, I)$. Moreover Z = RS holds with S being uniformly distributed on the unit sphere S^{k-1} and $R^2 \sim \chi_k^2$. Thus $X \stackrel{d}{=} \mu + RAS$ holds and hence $X \sim E_d(\mu, \Sigma, \psi)$ with $\psi(x) = \exp\{-x/2\}$.

Multivariate normal variance mixtures

Let $Z \sim N_d(0, I)$. Then Z has a spherical distribution with stochastic representation $Z \stackrel{d}{=} VS$ with $V^2 = ||Z||^2 \sim \chi_d^2$. Let $X = \mu + WAZ$ be a variance normal mixture distribution. Then we get $X \stackrel{d}{=} \mu + VWAS$ with $V^2 \sim \chi_d^2$ and VW is a nonnegative r.v. independent of S. Thus X is elliptically distributed with R = VW.

Properties of elliptical distributions Theorem:

Let $X \sim E_k(\mu, \Sigma, \psi)$. X has the following properties:

• Linear combinations For $B \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^k$ we have:

 $BX + b \in E_k(B\mu + b, B\Sigma B^T, \psi).$

・ロト・日本・モート モー うへぐ

Properties of elliptical distributions Theorem:

Let $X \sim E_k(\mu, \Sigma, \psi)$. X has the following properties:

• Linear combinations For $B \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^k$ we have:

$$BX + b \in E_k(B\mu + b, B\Sigma B^T, \psi).$$

Marginal distributions

Set
$$X^T = \left(X^{(1)T}, X^{(2)T}\right)$$
 for $X^{(1)T} = (X_1, X_2, \dots, X_n)^T$ and
 $X^{(2)T} = (X_{n+1}, X_{n+2}, \dots, X_k)^T$ and analogously set
 $\mu^T = \left(\mu^{(1)T}, \mu^{(2)T}\right)$ as well as $\Sigma = \left(\begin{array}{cc} \Sigma^{(1,1)} & \Sigma^{(1,2)} \\ \Sigma^{(2,1)} & \Sigma^{(2,2)} \end{array}\right)$. Then
 $X_1 \sim E_n \left(\mu^{(1)}, \Sigma^{(1,1)}, \psi\right)$ and $X_2 \sim E_{k-n} \left(\mu^{(2)}, \Sigma^{(2,2)}, \psi\right)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conditional distributions

Assume that Σ is nonsingular. Then
$$\begin{split} X^{(2)} \middle| X^{(1)} &= x^{(1)} \sim E_{d-k} \bigg(\mu^{(2,1)}, \Sigma^{(22,1)}, \tilde{\psi} \bigg) \text{ where} \\ \mu^{(2,1)} &= \mu^{(2)} + \Sigma^{(2,1)} \bigg(\Sigma^{(1,1)} \bigg)^{-1} \bigg(x^{(1)} - \mu^{(1)} \bigg) \text{ and} \\ \Sigma^{(22,1)} &= \Sigma^{(2,2)} - \Sigma^{(2,1)} \bigg(\Sigma^{(1,1)} \bigg)^{-1} \Sigma^{(1,2)}. \end{split}$$

Typically $\tilde{\psi}$ is a different characteristic generator than the original ψ (see Fang, Katz and Ng 1987).

・ロト ・母ト ・ヨト ・ヨー ・ つへで

Quadratic forms

If Σ is nonsingular, then $D^2 = (X - \mu)^T \Sigma^{-1} (X - \mu) \sim R^2$, where R is the nonnegative r.v. in the stochastic representation Y = RS of

the spherical distribution Y with $S \sim U\left(S^{(d-1)}\right)$ and $X = \mu + AY$.

The random variable D is called Mahalanobis distance.

Quadratic forms

If Σ is nonsingular, then $D^2 = (X - \mu)^T \Sigma^{-1} (X - \mu) \sim R^2$, where R is the nonnegative r.v. in the stochastic representation Y = RS of the spherical distribution Y with $S \sim U\left(S^{(d-1)}\right)$ and $X = \mu + AY$.

The random variable D is called Mahalanobis distance.

Convolutions

Let $X \sim E_k(\mu, \Sigma, \psi)$ and $Y \sim E_k(\tilde{\mu}, \Sigma, \tilde{\psi})$ be two independent random vectors. Then $X + Y \sim E_k(\mu + \tilde{\mu}, \Sigma, \bar{\psi})$ where $\bar{\psi} = \psi \tilde{\psi}$.

Quadratic forms

If Σ is nonsingular, then $D^2 = (X - \mu)^T \Sigma^{-1} (X - \mu) \sim R^2$, where R is the nonnegative r.v. in the stochastic representation Y = RS of the spherical distribution Y with $S \sim U\left(S^{(d-1)}\right)$ and $X = \mu + AY$. The random variable D is called *Mahalanobis distance*.

Convolutions

Let $X \sim E_k(\mu, \Sigma, \psi)$ and $Y \sim E_k(\tilde{\mu}, \Sigma, \tilde{\psi})$ be two independent random vectors. Then $X + Y \sim E_k(\mu + \tilde{\mu}, \Sigma, \bar{\psi})$ where $\bar{\psi} = \psi \tilde{\psi}$. Note that the dispersion matrix Σ must be the same for X and Y.

Quadratic forms

If Σ is nonsingular, then $D^2 = (X - \mu)^T \Sigma^{-1} (X - \mu) \sim R^2$, where R is the nonnegative r.v. in the stochastic representation Y = RS of the spherical distribution Y with $S \sim U\left(S^{(d-1)}\right)$ and $X = \mu + AY$.

The random variable D is called Mahalanobis distance.

Convolutions

Let $X \sim E_k(\mu, \Sigma, \psi)$ and $Y \sim E_k(\tilde{\mu}, \Sigma, \tilde{\psi})$ be two independent random vectors. Then $X + Y \sim E_k(\mu + \tilde{\mu}, \Sigma, \bar{\psi})$ where $\bar{\psi} = \psi \tilde{\psi}$. Note that the dispersion matrix Σ must be the same for X and Y.

Important: $X \sim E_k(\mu, I_k, \psi)$ does not imply that the components of X are independent. The components of X are independent iff X is multivariate normally distributed with the unit matrix as a covariance matrix.

Let (Ω, \mathcal{F}, P) be a probability space with a sample space Ω , a σ -algebra of events \mathcal{F} and a probability measure P.

Let (Ω, \mathcal{F}, P) be a probability space with a sample space Ω , a σ -algebra of events \mathcal{F} and a probability measure P.

Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in (Ω, \mathcal{F}) . Let $M \subseteq L^{(0)}$ and $\rho \colon M \to \mathbb{R}$ a risk measure in M.

Let (Ω, \mathcal{F}, P) be a probability space with a sample space Ω , a σ -algebra of events \mathcal{F} and a probability measure P.

Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in (Ω, \mathcal{F}) . Let $M \subseteq L^{(0)}$ and $\rho \colon M \to \mathbb{R}$ a risk measure in M.

Definition: A risk measure ρ in *M* is called *coherent* iff it has the following properties

Let (Ω, \mathcal{F}, P) be a probability space with a sample space Ω , a σ -algebra of events \mathcal{F} and a probability measure P.

Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in (Ω, \mathcal{F}) . Let $M \subseteq L^{(0)}$ and $\rho \colon M \to \mathbb{R}$ a risk measure in M.

Definition: A risk measure ρ in M is called *coherent* iff it has the following properties

(C1) Invariance with respect to translation:

 $\rho(X+r) = \rho(X) + r, \ \forall r \in \mathrm{I\!R} \text{ and } \forall X \in M.$

Let (Ω, \mathcal{F}, P) be a probability space with a sample space Ω , a σ -algebra of events \mathcal{F} and a probability measure P.

Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in (Ω, \mathcal{F}) . Let $M \subseteq L^{(0)}$ and $\rho \colon M \to \mathbb{R}$ a risk measure in M.

Definition: A risk measure ρ in M is called *coherent* iff it has the following properties

(C1) Invariance with respect to translation:

 $\rho(X+r) = \rho(X) + r, \ \forall r \in \mathrm{I\!R} \ \mathrm{and} \ \forall X \in M.$

(C2) Subadditivity:

 $\forall X_1, X_2 \in M \text{ it holds } \rho(X_1 + X_2) \leq \rho(X_1) + \rho(X_2).$

(日) (同) (三) (三) (三) (○) (○)

Let (Ω, \mathcal{F}, P) be a probability space with a sample space Ω , a σ -algebra of events \mathcal{F} and a probability measure P.

Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in (Ω, \mathcal{F}) . Let $M \subseteq L^{(0)}$ and $\rho \colon M \to \mathbb{R}$ a risk measure in M.

Definition: A risk measure ρ in M is called *coherent* iff it has the following properties

(C1) Invariance with respect to translation:

 $\rho(X+r) = \rho(X) + r, \forall r \in \mathbb{R} \text{ and } \forall X \in M.$

(C2) Subadditivity:

 $\forall X_1, X_2 \in M \text{ it holds } \rho(X_1 + X_2) \leq \rho(X_1) + \rho(X_2).$

(日) (同) (三) (三) (三) (○) (○)

(C3) Positive homogeneity:

$$\rho(\lambda X) = \lambda \rho(X), \ \forall \lambda \ge 0, \ \forall X \in M.$$

Coherent risk measures

Let (Ω, \mathcal{F}, P) be a probability space with a sample space Ω , a σ -algebra of events \mathcal{F} and a probability measure P.

Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in (Ω, \mathcal{F}) . Let $M \subseteq L^{(0)}$ and $\rho \colon M \to \mathbb{R}$ a risk measure in M.

Definition: A risk measure ρ in M is called *coherent* iff it has the following properties

(C1) Invariance with respect to translation:

$$ho(X+r)=
ho(X)+r$$
, $orall r\in{
m I\!R}$ and $orall X\in M.$

(C2) Subadditivity:

 $orall X_1, X_2 \in M ext{ it holds }
ho(X_1 + X_2) \leq
ho(X_1) +
ho(X_2).$

(C3) Positive homogeneity:

$$\rho(\lambda X) = \lambda \rho(X), \ \forall \lambda \ge 0, \ \forall X \in M.$$

(C4) Monotonicity:

 $\forall X_1, X_2 \in M \text{ the implication } X_1 \stackrel{a.s.}{\leq} X_2 \Longrightarrow \rho(X_1) \leq \rho(X_2) \text{ holds.}$

Consider the property:

(C5) Convexity:

 $egin{aligned} &orall X_1, X_2 \in \mathit{M}, \, orall \lambda \in [0,1] \ &
ho(\lambda X_1 + (1-\lambda) X_2) \leq \lambda
ho(X_1) + (1-\lambda)
ho(X_2) ext{ holds.} \end{aligned}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Consider the property:

(C5) Convexity:

 $egin{aligned} &orall X_1, X_2 \in \mathit{M}, \ orall \lambda \in [0,1] \ &
ho(\lambda X_1 + (1-\lambda) X_2) \leq \lambda
ho(X_1) + (1-\lambda)
ho(X_2) \ ext{holds}. \end{aligned}$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice-verca.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Consider the property:

(C5) Convexity:

 $egin{aligned} &orall X_1, X_2 \in \mathit{M}, \ orall \lambda \in [0,1] \ &
ho(\lambda X_1 + (1-\lambda) X_2) \leq \lambda
ho(X_1) + (1-\lambda)
ho(X_2) \ ext{holds}. \end{aligned}$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice-verca.

Definition: A risk measure ρ in M with the properties (C1),(C4) and (C5) is called *convex* in M.

Consider the property:

(C5) Convexity:

 $egin{aligned} &orall X_1, X_2 \in \mathit{M}, \ orall \lambda \in [0,1] \ &
ho(\lambda X_1 + (1-\lambda) X_2) \leq \lambda
ho(X_1) + (1-\lambda)
ho(X_2) \ ext{holds}. \end{aligned}$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice-verca.

Definition: A risk measure ρ in M with the properties (C1),(C4) and (C5) is called *convex* in M.

Observation: VaR is not coherent in general.

Consider the property:

(C5) Convexity:

 $egin{aligned} &orall X_1, X_2 \in \mathit{M}, \ orall \lambda \in [0,1] \ &
ho(\lambda X_1 + (1-\lambda) X_2) \leq \lambda
ho(X_1) + (1-\lambda)
ho(X_2) \ ext{holds}. \end{aligned}$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice-verca.

Definition: A risk measure ρ in M with the properties (C1),(C4) and (C5) is called *convex* in M.

Observation: VaR is not coherent in general.

Let the probability measure P be defined by some continuous or discrete probability distribution F.

 $VaR_{\alpha}(F) = F^{\leftarrow}(\alpha)$ has the properties (C1), (C3) and (C4), whereas the subadditivity (C2) is not fulfilled in general.

・ロト・日本・ヨト・ヨト・日・ うへぐ

Example: Let the probability measure *P* be defined by the binomial distribution B(p, n) for $n \in \mathbb{N}$, $p \in (0, 1)$. We show that $VaR_{\alpha}(B(p, n))$ is not subadditive.

Example: Let the probability measure P be defined by the binomial distribution B(p, n) for $n \in \mathbb{N}$, $p \in (0, 1)$. We show that $VaR_{\alpha}(B(p, n))$ is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently with probability p. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

Example: Let the probability measure P be defined by the binomial distribution B(p, n) for $n \in \mathbb{N}$, $p \in (0, 1)$. We show that $VaR_{\alpha}(B(p, n))$ is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently with probability p. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

Theorem: Let (Ω, \mathcal{F}, P) be a probability space and $M \subseteq L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of the random variables with a continuous distribution in (Ω, \mathcal{F}, P) . $CVaR_{\alpha}$ is a coherent risk measure in M, $\forall \alpha \in (0, 1)$.

Example: Let the probability measure P be defined by the binomial distribution B(p, n) for $n \in \mathbb{N}$, $p \in (0, 1)$. We show that $VaR_{\alpha}(B(p, n))$ is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently with probability p. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

Theorem: Let (Ω, \mathcal{F}, P) be a probability space and $M \subseteq L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of the random variables with a continuous distribution in (Ω, \mathcal{F}, P) . $CVaR_{\alpha}$ is a coherent risk measure in M, $\forall \alpha \in (0, 1)$. **Sketch of the proof:** (C1), (C3), (C4) follow from $CVaR_{\alpha}(F) = \frac{1}{1-\alpha} \int_{\alpha}^{1} Var_{p}(F)dp$.

Example: Let the probability measure P be defined by the binomial distribution B(p, n) for $n \in \mathbb{N}$, $p \in (0, 1)$. We show that $VaR_{\alpha}(B(p, n))$ is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently with probability p. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

Theorem: Let (Ω, \mathcal{F}, P) be a probability space and $M \subseteq L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of the random variables with a continuous distribution in (Ω, \mathcal{F}, P) . $CVaR_{\alpha}$ is a coherent risk measure in M, $\forall \alpha \in (0, 1)$. Sketch of the proof:

(C1),(C3), (C4) follow from $CVaR_{\alpha}(F) = \frac{1}{1-\alpha} \int_{\alpha}^{1} Var_{\rho}(F)dp$.

To show (C2) observe that for a sequence of i.i.d. r.v. L_1 , L_2 , ..., L_n with order statistics $L_{1,n} \ge L_{2,n} \ge ... \ge L_{n,n}$ and for any $m \in \{1, 2, ..., n\}$

$$\sum_{i=1}^{m} L_{i,n} = \sup\{L_{i_1} + L_{i_2} + \ldots + L_{i_m} \colon 1 \le i_1 < \ldots < i_m \le n\} \text{ holds.}$$

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, ..., X_d)^T$ of their returns. Let $E(X) = \mu$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, \dots, X_d)^T$ of their returns. Let $E(X) = \mu$.

Let \mathcal{P} be the family of all portfolios consisting of the obove d assets

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, \dots, X_d)^T$ of their returns. Let $E(X) = \mu$.

Let \mathcal{P} be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in \mathcal{P} is uniquelly determined by its weight vector $w = (w_i) \in \mathbb{R}^d$ with $\sum_{i=1^d} |w_i| = 1$. $w_i > 0$ ($w_i < 0$) represents a long (short) investment.

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, ..., X_d)^T$ of their returns. Let $E(X) = \mu$.

Let \mathcal{P} be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in \mathcal{P} is uniquelly determined by its weight vector $w = (w_i) \in \mathbb{R}^d$ with $\sum_{i=1^d} |w_i| = 1$. $w_i > 0$ ($w_i < 0$) represents a long (short) investment.

The return of portfolio w is the r.v. $Z(w) = \sum_{i=1}^{d} w_i X_i$. The expected portfolio return is $E(Z(w)) = w^T \mu$.

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, ..., X_d)^T$ of their returns. Let $E(X) = \mu$.

Let \mathcal{P} be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in \mathcal{P} is uniquelly determined by its weight vector $w = (w_i) \in \mathbb{R}^d$ with $\sum_{i=1^d} |w_i| = 1$. $w_i > 0$ ($w_i < 0$) represents a long (short) investment.

The return of portfolio w is the r.v. $Z(w) = \sum_{i=1}^{d} w_i X_i$. The expected portfolio return is $E(Z(w)) = w^T \mu$.

Let \mathcal{P}_m be the family of portfolios in \mathcal{P} with E(Z(w)) = m, for some $m \in \mathbb{R}, m > 0$. $\mathcal{P}_m := \{w = (w_i) \in \mathbb{R}^d, \sum_{i=1}^d |w_i| = 1, w^T \mu = m\}$

(日) (同) (三) (三) (三) (○) (○)

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, ..., X_d)^T$ of their returns. Let $E(X) = \mu$.

Let \mathcal{P} be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in \mathcal{P} is uniquelly determined by its weight vector $w = (w_i) \in \mathbb{R}^d$ with $\sum_{i=1^d} |w_i| = 1$. $w_i > 0$ ($w_i < 0$) represents a long (short) investment.

The return of portfolio w is the r.v. $Z(w) = \sum_{i=1}^{d} w_i X_i$. The expected portfolio return is $E(Z(w)) = w^T \mu$.

Let \mathcal{P}_m be the family of portfolios in \mathcal{P} with E(Z(w)) = m, for some $m \in \mathbb{R}, m > 0$. $\mathcal{P}_m := \{w = (w_i) \in \mathbb{R}^d, \sum_{i=1}^d |w_i| = 1, w^T \mu = m\}$

For a risk measure ρ the mean- ρ portfolio optimization model is:

$$\min_{w \in \mathcal{P}_m} \rho(Z(w)) \tag{1}$$

(日) (同) (三) (三) (三) (○) (○)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If ρ equals the portfolio variance we get $\min_{w \in \mathcal{P}_m} var(Z(w))$

If ρ equals the portfolio variance we get $\min_{w \in \mathcal{P}_m} var(Z(w))$

m s

If $Cov(x) = \Sigma$ and the weights are nonnegative (long-only portfolio) we get the Markovitz portfolio optimization model (Markowitz 1952):

$$\lim_{w} w^{T} \Sigma w$$
.t.
$$w^{T} \mu = m$$

$$\sum_{i=1}^{d} |w_{i}| = 1$$

If ρ equals the portfolio variance we get $\min_{w \in \mathcal{P}_m} var(Z(w))$

If $Cov(x) = \Sigma$ and the weights are nonnegative (long-only portfolio) we get the Markovitz portfolio optimization model (Markowitz 1952):

$$\min_{w} \qquad w^{T} \Sigma w$$
s.t.
$$w^{T} \mu = m$$

$$\sum_{i=1}^{d} |w_{i}| = 1$$

If $ho = VaR_{lpha}$, $lpha \in (0,1)$ we get the mean-VaR pf. optimization model

$$\min_{w\in\mathcal{P}_m} VaR_\alpha(Z(w)).$$

Question: What is the relationship between these three portfolio optimization models?