Random vectors and dependence modelling

Random vectors and dependence modelling

Goal: model the risk factor changes $X_{n}=\left(X_{n, 1}, X_{n, 2}, \ldots, X_{n, d}\right)$ Assumption: $X_{n, i}$ and $X_{n, j}$ are dependent but $X_{n, i}$ und $X_{n \pm k, j}$ are independent fot $k \in \mathbb{N}, k \neq 0,1 \leq i, j \leq d$.

Random vectors and dependence modelling

Goal: model the risk factor changes $X_{n}=\left(X_{n, 1}, X_{n, 2}, \ldots, X_{n, d}\right)$ Assumption: $X_{n, i}$ and $X_{n, j}$ are dependent but $X_{n, i}$ und $X_{n \pm k, j}$ are independent fot $k \in \mathbb{N}, k \neq 0,1 \leq i, j \leq d$.

Random vectors and dependence modelling

Goal: model the risk factor changes $X_{n}=\left(X_{n, 1}, X_{n, 2}, \ldots, X_{n, d}\right)$ Assumption: $X_{n, i}$ and $X_{n, j}$ are dependent but $X_{n, i}$ und $X_{n \pm k, j}$ are independent fot $k \in \mathbb{N}, k \neq 0,1 \leq i, j \leq d$.
A d-dimensional random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ is uniquely specified by its (multivariate) cumulative distribution function (c.d.f.) F :
$F(x): F\left(x_{1}, x_{2}, \ldots, x_{d}\right):=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{d} \leq x_{d}\right)=P(X \leq x)$.

Random vectors and dependence modelling

Goal: model the risk factor changes $X_{n}=\left(X_{n, 1}, X_{n, 2}, \ldots, X_{n, d}\right)$ Assumption: $X_{n, i}$ and $X_{n, j}$ are dependent but $X_{n, i}$ und $X_{n \pm k, j}$ are independent fot $k \in \mathbb{N}, k \neq 0,1 \leq i, j \leq d$.
A d-dimensional random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ is uniquely specified by its (multivariate) cumulative distribution function (c.d.f.) F :
$F(x): F\left(x_{1}, x_{2}, \ldots, x_{d}\right):=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{d} \leq x_{d}\right)=P(X \leq x)$.
The i-th marginal distribution F_{i} of F is the distribution function of X_{i} given as follows:

$$
F_{i}\left(x_{i}\right)=P\left(X_{i} \leq x_{i}\right)=F\left(\infty, \ldots, \infty, x_{i}, \infty, \ldots, \infty\right)
$$

Random vectors and dependence modelling

Goal: model the risk factor changes $X_{n}=\left(X_{n, 1}, X_{n, 2}, \ldots, X_{n, d}\right)$ Assumption: $X_{n, i}$ and $X_{n, j}$ are dependent but $X_{n, i}$ und $X_{n \pm k, j}$ are independent fot $k \in \mathbb{N}, k \neq 0,1 \leq i, j \leq d$.
A d-dimensional random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ is uniquely specified by its (multivariate) cumulative distribution function (c.d.f.) F :
$F(x): F\left(x_{1}, x_{2}, \ldots, x_{d}\right):=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{d} \leq x_{d}\right)=P(X \leq x)$.
The i-th marginal distribution F_{i} of F is the distribution function of X_{i} given as follows:

$$
F_{i}\left(x_{i}\right)=P\left(X_{i} \leq x_{i}\right)=F\left(\infty, \ldots, \infty, x_{i}, \infty, \ldots, \infty\right)
$$

The distribution function F is continuous if there exists a non-negative function $f \geq 0$, such that

$$
F\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} \ldots \int_{-\infty}^{x_{d}} f\left(u_{1}, u_{2}, \ldots, u_{d}\right) d u_{1} d u_{2} \ldots d u_{d}
$$

f is then called the (multivariate) density function (d.f.) of F.

Ramdom vectors (contd.)

Ramdom vectors (contd.)

The components of X are independent iff $F(x)=\prod_{i=1}^{d} F_{i}\left(x_{i}\right)$. If the d.f. f and the marginal d.f. $f_{i}, 1 \leq i \leq d$, exist, then the components of X are independent iff

$$
f(x)=\prod_{i=1}^{d} f_{i}\left(x_{i}\right)
$$

Ramdom vectors (contd.)

The components of X are independent iff $F(x)=\prod_{i=1}^{d} F_{i}\left(x_{i}\right)$. If the d.f. f and the marginal d.f. $f_{i}, 1 \leq i \leq d$, exist, then the components of X are independent iff

$$
f(x)=\prod_{i=1}^{d} f_{i}\left(x_{i}\right)
$$

A random vector can be uniquely characterized in terms of its characteristic function $\phi_{X}(t)$:

$$
\phi_{X}(t):=E\left(\exp \left\{i t^{T} X\right\}\right), t \in \mathbb{R}^{d}
$$

Ramdom vectors (contd.)

The components of X are independent iff $F(x)=\prod_{i=1}^{d} F_{i}\left(x_{i}\right)$. If the d.f. f and the marginal d.f. $f_{i}, 1 \leq i \leq d$, exist, then the components of X are independent iff

$$
f(x)=\prod_{i=1}^{d} f_{i}\left(x_{i}\right)
$$

A random vector can be uniquely characterized in terms of its characteristic function $\phi_{X}(t)$:

$$
\phi_{X}(t):=E\left(\exp \left\{i t^{T} X\right\}\right), t \in \mathbb{R}^{d}
$$

If $E\left(X_{k}^{2}\right)<\infty$ for all k, the the covariance (matrix) of X exists and is given es

$$
\operatorname{Cov}(X)=E\left((X-E(X))(X-E(X))^{T}\right)
$$

Ramdom vectors (contd.)

The components of X are independent iff $F(x)=\prod_{i=1}^{d} F_{i}\left(x_{i}\right)$. If the d.f. f and the marginal d.f. $f_{i}, 1 \leq i \leq d$, exist, then the components of X are independent iff

$$
f(x)=\prod_{i=1}^{d} f_{i}\left(x_{i}\right)
$$

A random vector can be uniquely characterized in terms of its characteristic function $\phi_{X}(t)$:

$$
\phi_{X}(t):=E\left(\exp \left\{i t^{T} X\right\}\right), t \in \mathbb{R}^{d}
$$

If $E\left(X_{k}^{2}\right)<\infty$ for all k, the the covariance (matrix) of X exists and is given es

$$
\operatorname{Cov}(X)=E\left((X-E(X))(X-E(X))^{T}\right)
$$

For an n-dimensional random vector X, a constant matrix $B \in \mathbb{R}^{n \times n}$ and a constant vector $b \in \mathbb{R}^{n}$ the following hold:

$$
E(B X+b)=B E(X)+b \quad \operatorname{Cov}(B X+b)=B \operatorname{Cov}(X) B^{T}
$$

Ramdom vectors (contd.)

Ramdom vectors (contd.)
Example: The d.f. f and the characteristic function ϕ_{X} of the multivariate normal distribution with expected value μ and covariance Σ are given as

$$
\begin{gathered}
f(x)=\frac{1}{\sqrt{(2 \pi)^{d}|\Sigma|}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\}, x \in \mathbb{R}^{d} \\
\phi_{X}(t)=\exp \left\{i t^{T} \mu-\frac{1}{2} t^{T} \Sigma t\right\}, t \in \mathbb{R}^{d},
\end{gathered}
$$

where $|\Sigma|=|\operatorname{Det}(\Sigma)|$.

Ramdom vectors (contd.)

Example: The d.f. f and the characteristic function ϕ_{X} of the multivariate normal distribution with expected value μ and covariance Σ are given as

$$
\begin{gathered}
f(x)=\frac{1}{\sqrt{(2 \pi)^{d}|\Sigma|}} \exp \left\{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right\}, x \in \mathbb{R}^{d} \\
\phi_{X}(t)=\exp \left\{i t^{T} \mu-\frac{1}{2} t^{T} \Sigma t\right\}, t \in \mathbb{R}^{d}
\end{gathered}
$$

where $|\Sigma|=|\operatorname{Det}(\Sigma)|$.
Modelling the depedencies of risk factor changes (or financial data in general) in terms of the multivariate normal distribution might be inappropriate:

- risk factor changes are in general heavier tailed than normal
- the dependence between large return drops is in general stronger than the dependence between ordinary returns. This type of dependency cannot be modelled by the multivariate normal distribution.

Dependence measures

Let X_{1} and X_{2} be r.v. There exist several scalar measures for the dependence between X_{1} und X_{2}.

Dependence measures

Let X_{1} and X_{2} be r.v. There exist several scalar measures for the dependence between X_{1} und X_{2}.

Linear correlation

Assumption: $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$.
The linear correlation coefficient $\rho_{L}\left(X_{1}, X_{2}\right)$ ist given as follows

$$
\rho_{L}\left(X_{1}, X_{2}\right)=\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{var}\left(X_{1}\right) \operatorname{var}\left(X_{2}\right)}}
$$

Dependence measures

Let X_{1} and X_{2} be r.v. There exist several scalar measures for the dependence between X_{1} und X_{2}.
Linear correlation
Assumption: $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$.
The linear correlation coefficient $\rho_{L}\left(X_{1}, X_{2}\right)$ ist given as follows

$$
\rho_{L}\left(X_{1}, X_{2}\right)=\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{var}\left(X_{1}\right) \operatorname{var}\left(X_{2}\right)}}
$$

Properties of the linear correlation coefficient:

- X_{1} and X_{2} are independent $\Rightarrow \rho_{L}\left(X_{1}, X_{2}\right)=0$, but $\rho_{L}\left(X_{1}, X_{2}\right)=0 \nRightarrow X_{1}$ and X_{2} are independent
Example: Let $X_{1} \sim N(0,1)$ and $X_{2}=X_{1}^{2} . \rho_{L}\left(X_{1}, X_{2}\right)=0$ holds although X_{1} and X_{2} are dependent.

Dependence measures

Let X_{1} and X_{2} be r.v. There exist several scalar measures for the dependence between X_{1} und X_{2}.
Linear correlation
Assumption: $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$.
The linear correlation coefficient $\rho_{L}\left(X_{1}, X_{2}\right)$ ist given as follows

$$
\rho_{L}\left(X_{1}, X_{2}\right)=\frac{\operatorname{cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{var}\left(X_{1}\right) \operatorname{var}\left(X_{2}\right)}}
$$

Properties of the linear correlation coefficient:

- X_{1} and X_{2} are independent $\Rightarrow \rho_{L}\left(X_{1}, X_{2}\right)=0$, but $\rho_{L}\left(X_{1}, X_{2}\right)=0 \nRightarrow X_{1}$ and X_{2} are independent
Example: Let $X_{1} \sim N(0,1)$ and $X_{2}=X_{1}^{2} . \rho_{L}\left(X_{1}, X_{2}\right)=0$ holds although X_{1} and X_{2} are dependent.
- $\left|\rho_{L}\left(X_{1}, X_{2}\right)\right|=1 \Leftrightarrow \exists \alpha, \beta \in \mathbb{R}, \beta \neq 0$, such that $X_{2} \stackrel{d}{=} \alpha+\beta X_{1}$ and $\operatorname{signum}(\beta)=\operatorname{signum}\left(\rho_{L}\left(X_{1}, X_{2}\right)\right)$.

Properties of the linear correlation coefficient (contd.):

Properties of the linear correlation coefficient (contd.):

- The linear correlation coefficient is invariant under strict monotone increasing linear transformations. This means that for any two r.v. X_{1} and X_{2} and real constants $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}, \beta_{1}>0, \beta_{2}>0$ the following holds:

$$
\rho_{L}\left(\alpha_{1}+\beta_{1} X_{1}, \alpha_{2}+\beta_{2} X_{2}\right)=\rho_{L}\left(X_{1}, X_{2}\right) .
$$

Properties of the linear correlation coefficient (contd.):

- The linear correlation coefficient is invariant under strict monotone increasing linear transformations. This means that for any two r.v. X_{1} and X_{2} and real constants $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}, \beta_{1}>0, \beta_{2}>0$ the following holds:

$$
\rho_{L}\left(\alpha_{1}+\beta_{1} X_{1}, \alpha_{2}+\beta_{2} X_{2}\right)=\rho_{L}\left(X_{1}, X_{2}\right) .
$$

However, in general, the linear correlation coefficient is not invariant under strict monotone increasing non linear transformations.

Properties of the linear correlation coefficient (contd.):

- The linear correlation coefficient is invariant under strict monotone increasing linear transformations. This means that for any two r.v. X_{1} and X_{2} and real constants $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}, \beta_{1}>0, \beta_{2}>0$ the following holds:

$$
\rho_{L}\left(\alpha_{1}+\beta_{1} X_{1}, \alpha_{2}+\beta_{2} X_{2}\right)=\rho_{L}\left(X_{1}, X_{2}\right) .
$$

However, in general, the linear correlation coefficient is not invariant under strict monotone increasing non linear transformations.

Example: Let $X_{1} \sim \operatorname{Exp}(\lambda), X_{2}=X_{1}$, and T_{1}, T_{2} be two strict monotone increasing transformations: $T_{1}\left(X_{1}\right)=X_{1}$ and $\left.T_{2}\left(X_{1}\right)\right)=X_{1}^{2}$. Then

$$
\rho_{L}\left(X_{1}, X_{1}\right)=1 \text { and } \rho_{L}\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{1}\right)\right)=\frac{2}{\sqrt{5}} .
$$

Rank correlation coefficients

Rank correlation coefficients

Let $\left(x_{1}, x_{2}\right)$ and ($\left.\tilde{x}_{1}, \tilde{x}_{2}\right)$ be two points in \mathbb{R}^{2}. They are called concordant iff $\left(x_{1}-\tilde{x}_{1}\right)\left(x_{2}-\tilde{x}_{2}\right)>0$ and discordant iff $\left(x_{1}-\tilde{x}_{1}\right)\left(x_{2}-\tilde{x}_{2}\right)<0$.

Rank correlation coefficients

Let $\left(x_{1}, x_{2}\right)$ and ($\left.\tilde{x}_{1}, \tilde{x}_{2}\right)$ be two points in \mathbb{R}^{2}. They are called concordant iff $\left(x_{1}-\tilde{x}_{1}\right)\left(x_{2}-\tilde{x}_{2}\right)>0$ and discordant iff $\left(x_{1}-\tilde{x}_{1}\right)\left(x_{2}-\tilde{x}_{2}\right)<0$.

Let $\left(X_{1}, X_{2}\right)^{T}$ and $\left(\tilde{X}_{1}, \tilde{X}_{2}\right)^{T}$ be two i.i.d. random vectors.
The Kendall's Tau ρ_{τ} is defined as
$\rho_{\tau}\left(X_{1}, X_{2}\right)=P\left(\left(X_{1}-\tilde{X}_{1}\right)\left(X_{2}-\tilde{X}_{2}\right)>0\right)-P\left(\left(X_{1}-\tilde{X}_{1}\right)\left(X_{2}-\tilde{X}_{2}\right)<0\right)$

Rank correlation coefficients

Let $\left(x_{1}, x_{2}\right)$ and ($\left.\tilde{x}_{1}, \tilde{x}_{2}\right)$ be two points in \mathbb{R}^{2}. They are called concordant iff $\left(x_{1}-\tilde{x}_{1}\right)\left(x_{2}-\tilde{x}_{2}\right)>0$ and discordant iff $\left(x_{1}-\tilde{x}_{1}\right)\left(x_{2}-\tilde{x}_{2}\right)<0$.

Let $\left(X_{1}, X_{2}\right)^{T}$ and $\left(\tilde{X}_{1}, \tilde{X}_{2}\right)^{T}$ be two i.i.d. random vectors.
The Kendall's Tau ρ_{τ} is defined as
$\rho_{\tau}\left(X_{1}, X_{2}\right)=P\left(\left(X_{1}-\tilde{X}_{1}\right)\left(X_{2}-\tilde{X}_{2}\right)>0\right)-P\left(\left(X_{1}-\tilde{X}_{1}\right)\left(X_{2}-\tilde{X}_{2}\right)<0\right)$
Let $\left(\hat{X}_{1}, \hat{X}_{2}\right)$ be a third random vector independent from $\left(X_{1}, X_{2}\right)$ and $\left(\tilde{X}_{1}, \tilde{X}_{2}\right)$ with the same distribution as the later two vectors.
The Spearman's Rho ρ_{S} is defined as
$\rho_{S}\left(X_{1}, X_{2}\right)=3\left\{P\left(\left(X_{1}-\tilde{X}_{1}\right)\left(X_{2}-\hat{X}_{2}\right)>0\right)-P\left(\left(X_{1}-\tilde{X}_{1}\right)\left(X_{2}-\hat{X}_{2}\right)<0\right)\right\}$

Some properties of ρ_{τ} und ρ_{S} :

Some properties of ρ_{τ} und ρ_{S} :

$$
\text { 1. } \rho_{\tau}\left(X_{1}, X_{2}\right) \in[-1,1] \text { and } \rho_{S}\left(X_{1}, X_{2}\right) \in[-1,1] \text {. }
$$

Some properties of ρ_{τ} und ρ_{S} :

1. $\rho_{\tau}\left(X_{1}, X_{2}\right) \in[-1,1]$ and $\rho_{S}\left(X_{1}, X_{2}\right) \in[-1,1]$.
2. if X_{1} and X_{2} are independent, then $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=0$. In general the converse does not hold.

Some properties of ρ_{τ} und ρ_{S} :

1. $\rho_{\tau}\left(X_{1}, X_{2}\right) \in[-1,1]$ and $\rho_{S}\left(X_{1}, X_{2}\right) \in[-1,1]$.
2. if X_{1} and X_{2} are independent, then $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=0$. In general the converse does not hold.
3. Let $T: \mathbb{R} \rightarrow \mathbb{R}$ be a strict monotone increasing function. Then the following holds

$$
\begin{aligned}
& \rho_{\tau}\left(T\left(X_{1}\right), T\left(X_{2}\right)\right)=\rho_{\tau}\left(X_{1}, X_{2}\right) \\
& \rho_{S}\left(T\left(X_{1}\right), T\left(X_{2}\right)\right)=\rho_{S}\left(X_{1}, X_{2}\right)
\end{aligned}
$$

Proof: 1) is trivial and 2) in the case of Kendall's Tau as well. The proof of 2) in the case of Spearman's Rho and the proof of 3) will be done in terms of copulas later.

Tail dependence

Tail dependence

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal c.d.f. F_{1} and F_{2}. The coefficient of upper tail dependence of $\left(X_{1}, X_{2}\right)^{T}$ is defined as:

$$
\lambda_{u}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 1^{-}} P\left(X_{2}>F_{2}^{\leftarrow}(u) \mid X_{1}>F_{1}^{\leftarrow}(u)\right)
$$

provided that this limit exists.

Tail dependence

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal c.d.f. F_{1} and F_{2}. The coefficient of upper tail dependence of $\left(X_{1}, X_{2}\right)^{T}$ is defined as:

$$
\lambda_{u}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 1^{-}} P\left(X_{2}>F_{2}^{\leftarrow}(u) \mid X_{1}>F_{1}^{\leftarrow}(u)\right)
$$

provided that this limit exists.
The coefficient of lower tail dependence of $\left(X_{1}, X_{2}\right)^{T}$ is defined as:

$$
\lambda_{L}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 0^{+}} P\left(X_{2} \leq F_{2}^{\leftarrow}(u) \mid X_{1} \leq F_{1}^{\leftarrow}(u)\right)
$$

provided that this limit exists.
If the limit exists and $\lambda_{U}>0\left(\lambda_{L}>0\right)$ we say that $\left(X_{1}, X_{2}\right)^{T}$ has an upper (lower) tail dependence.

Tail dependence

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal c.d.f. F_{1} and F_{2}. The coefficient of upper tail dependence of $\left(X_{1}, X_{2}\right)^{T}$ is defined as:

$$
\lambda_{u}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 1^{-}} P\left(X_{2}>F_{2}^{\leftarrow}(u) \mid X_{1}>F_{1}^{\leftarrow}(u)\right)
$$

provided that this limit exists.
The coefficient of lower tail dependence of $\left(X_{1}, X_{2}\right)^{T}$ is defined as:

$$
\lambda_{L}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 0^{+}} P\left(X_{2} \leq F_{2}^{\leftarrow}(u) \mid X_{1} \leq F_{1}^{\leftarrow}(u)\right)
$$

provided that this limit exists.
If the limit exists and $\lambda_{U}>0\left(\lambda_{L}>0\right)$ we say that $\left(X_{1}, X_{2}\right)^{T}$ has an upper (lower) tail dependence.
Exercise: Let $X_{1} \sim \operatorname{Exp}(\lambda)$ and $X_{2}=X_{1}^{2}$. Determine $\lambda_{U}\left(X_{1}, X_{2}\right)$, $\lambda_{L}\left(X_{1}, X_{2}\right)$ and show that $\left(X_{1}, X_{2}\right)^{T}$ has an upper tail dependence and a lower tail dependence. Compute also the linear correlation coefficient $\rho_{L}\left(X_{1}, X_{2}\right)$.

Multivariate elliptical distributions

Multivariate elliptical distributions

a) The multivariate normal distribution

Definition: The random vector $\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ has a multivariate normal distribution (or a multivariate Gaussian distribution) iff
$X \stackrel{d}{=} \mu+A Z$, where $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)^{T}$ is a vector of i.i.d. standard normal distributed r.v. $\left(Z_{i} \sim N(0,1), \forall i=1,2, \ldots, k\right)$, $A \in \mathbb{R}^{d \times k}$ is a constant matrix and $\mu \in \mathbb{R}^{d}$ is a constant vector.

Multivariate elliptical distributions

a) The multivariate normal distribution

Definition: The random vector $\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ has a multivariate normal distribution (or a multivariate Gaussian distribution) iff $X \stackrel{d}{=} \mu+A Z$, where $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)^{T}$ is a vector of i.i.d. standard normal distributed r.v. $\left(Z_{i} \sim N(0,1), \forall i=1,2, \ldots, k\right)$, $A \in \mathbb{R}^{d \times k}$ is a constant matrix and $\mu \in \mathbb{R}^{d}$ is a constant vector.
For such a random vector X we have: $E(X)=\mu, \operatorname{cov}(X)=\Sigma=A A^{T}$.
Thus Σ is positive semidefinite. Notation: $X \sim N_{d}(\mu, \Sigma)$.

Multivariate elliptical distributions

a) The multivariate normal distribution

Definition: The random vector $\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ has a multivariate normal distribution (or a multivariate Gaussian distribution) iff $X \stackrel{d}{=} \mu+A Z$, where $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)^{T}$ is a vector of i.i.d. standard normal distributed r.v. $\left(Z_{i} \sim N(0,1), \forall i=1,2, \ldots, k\right)$, $A \in \mathbb{R}^{d \times k}$ is a constant matrix and $\mu \in \mathbb{R}^{d}$ is a constant vector.
For such a random vector X we have: $E(X)=\mu, \operatorname{cov}(X)=\Sigma=A A^{T}$.
Thus Σ is positive semidefinite. Notation: $X \sim N_{d}(\mu, \Sigma)$.
Theorem: (Equivalent characterisations of the multivariate normal distribution)

1. $X \sim N_{d}(\mu, \Sigma)$ for some vector $\mu \in \mathbb{R}^{d}$ and some positive semidefinite matrix $\Sigma \in \mathbb{R}^{d \times d}$, iff $\forall a \in \mathbb{R}^{d}$, $a=\left(a_{1}, a_{2}, \ldots, a_{d}\right)^{T}$, the random variable $a^{T} X$ is normally distributed.

Equivalent characterisations of the multivariate normal distribution

2. A random vector $X \in \mathbb{R}^{d}$ is multivariate normally distributed iff its characteristic function $\phi_{X}(t)$ is given as

$$
\phi_{X}(t)=E\left(\exp \left\{i t^{T} X\right\}\right)=\exp \left\{i t^{T} \mu-\frac{1}{2} t^{T} \Sigma t\right\}
$$

for some vector $\mu \in \mathbb{R}^{d}$ and some positive semidefinite matrix $\Sigma \in \mathbb{R}^{d \times d}$.
3. A random vector $X \in \mathbb{R}^{d}$ with $E(X)=\mu$ and $\operatorname{cov}(X)=\Sigma$, $|\Sigma|>0$, is multivariate normally distributed, i.e. $X \sim N_{d}(\mu, \Sigma)$, iff its density function $f_{X}(x)$ is given as follows

$$
f_{X}(x)=\frac{1}{\sqrt{(2 \pi)^{d}|\Sigma|}} \exp \left\{-\frac{(x-\mu)^{T} \Sigma^{-1}(x-\mu)}{2}\right\}
$$

Proof: (see eg. Gut 1995)

Properties of the multivariate normal distribution

Properties of the multivariate normal distribution

Theorem:

Let $X \sim N_{d}(\mu, \Sigma)$. The following hold:

- Linear combinations:

Let $B \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^{k}$. Then $B X+b \in N_{k}\left(B \mu+b, B \Sigma B^{T}\right)$.

Properties of the multivariate normal distribution

Theorem:

Let $X \sim N_{d}(\mu, \Sigma)$. The following hold:

- Linear combinations:

Let $B \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^{k}$. Then $B X+b \in N_{k}\left(B \mu+b, B \Sigma B^{T}\right)$.

- Marginal distributions:

$$
\begin{aligned}
& \text { Let } X^{T}=\left(X^{(1)^{T}}, X^{(2)^{T}}\right) \text { with } X^{(1)^{T}}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)^{T} \text { and } \\
& X^{(2)^{T}}=\left(X_{k+1}, X_{k+2}, \ldots, X_{d}\right)^{T} \text {. Analogously let } \\
& \qquad \mu^{T}=\left(\mu^{(1)^{T}}, \mu^{(2)^{T}}\right) \text { and } \Sigma=\left(\begin{array}{cc}
\Sigma^{(1,1)} & \Sigma^{(1,2)} \\
\Sigma^{(2,1)} & \Sigma^{(2,2)}
\end{array}\right) .
\end{aligned}
$$

Then $X^{(1)} \sim N_{k}\left(\mu^{(1)}, \Sigma^{(1,1)}\right)$ and $X^{(2)} \sim N_{d-k}\left(\mu^{(2)}, \Sigma^{(2,2)}\right)$.

Properties of the multivariate normal distribution

 (contd.)
Properties of the multivariate normal distribution (contd.)

- Conditional distributions:

Let Σ be nonsingular. The conditioned random vector $X^{(2)} \mid X^{(1)}=x^{(1)}$ is multivariate normally distributed with

$$
\begin{gathered}
X^{(2)} \mid X^{(1)}=x^{(1)} \sim N_{d-k}\left(\mu^{(2,1)}, \Sigma^{(22,1)}\right) \text { where } \\
\mu^{(2,1)}=\mu^{(2)}+\Sigma^{(2,1)}\left(\Sigma^{(1,1)}\right)^{-1}\left(x^{(1)}-\mu^{(1)}\right) \text { and } \\
\Sigma^{(22,1)}=\Sigma^{(2,2)}-\Sigma^{(2,1)}\left(\Sigma^{(1,1)}\right)^{-1} \Sigma^{(1,2)} .
\end{gathered}
$$

Properties of the multivariate normal distribution (contd.)

Properties of the multivariate normal distribution (contd.)

- Quadratic forms:

Is Σ is nonsingular, then $D^{2}=(X-\mu)^{T} \Sigma^{-1}(X-\mu) \sim \chi_{d}^{2}$. The r.v.
D is called Mahalanobis distance.

Properties of the multivariate normal distribution (contd.)

- Quadratic forms:

Is Σ is nonsingular, then $D^{2}=(X-\mu)^{T} \Sigma^{-1}(X-\mu) \sim \chi_{d}^{2}$. The r.v.
D is called Mahalanobis distance.

- Convolutions:

Let $X \sim N_{d}(\mu, \Sigma)$ and $Y \sim N_{d}(\tilde{\mu}, \tilde{\Sigma})$ be two independent random vectors. Then $X+Y \sim N_{d}(\mu+\tilde{\mu}, \Sigma+\tilde{\Sigma})$.

Normal mixture

Normal mixture

Definition: A random vector $X \in \mathbb{R}^{d}$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{\text { d }}{=} \mu+W A Z$ where $Z \sim N_{k}(0, l), W \geq 0$ is a r.v. independent from $Z, \mu \in \mathbb{R}^{d}$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix.

Normal mixture

Definition: A random vector $X \in \mathbb{R}^{d}$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{\text { d }}{=} \mu+W A Z$ where $Z \sim N_{k}(0, l), W \geq 0$ is a r.v. independent from $Z, \mu \in \mathbb{R}^{d}$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix. By conditioning on $W=w$ we get $X \sim N_{d}\left(\mu, w^{2} \Sigma\right)$, with $\Sigma=A A^{T}$.

Normal mixture

Definition: A random vector $X \in \mathbb{R}^{d}$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{d}{=} \mu+W A Z$ where $Z \sim N_{k}(0, l), W \geq 0$ is a r.v. independent from $Z, \mu \in \mathbb{R}^{d}$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix. By conditioning on $W=w$ we get $X \sim N_{d}\left(\mu, w^{2} \Sigma\right)$, with $\Sigma=A A^{T}$. Moreover $E(X)=\mu$ and $\operatorname{cov}(X)=E\left(W^{2} A Z Z^{T} A^{T}\right)=E\left(W^{2}\right) \Sigma$, if $E\left(W^{2}\right)<\infty$

Normal mixture

Definition: A random vector $X \in \mathbb{R}^{d}$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{d}{=} \mu+W A Z$ where $Z \sim N_{k}(0, I), W \geq 0$ is a r.v. independent from $Z, \mu \in \mathbb{R}^{d}$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix.
By conditioning on $W=w$ we get $X \sim N_{d}\left(\mu, w^{2} \Sigma\right)$, with $\Sigma=A A^{T}$.
Moreover $E(X)=\mu$ and $\operatorname{cov}(X)=E\left(W^{2} A Z Z^{T} A^{T}\right)=E\left(W^{2}\right) \Sigma$, if $E\left(W^{2}\right)<\infty$

Example: the multivariate t_{α} distribution

Let $Y \sim I G(\alpha, \beta)$ (inverse-gamma distribution) with density function given as $f_{\alpha, \beta}(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} \exp (-\beta / x)$ for $x>0, \alpha>0, \beta>0$.
Then $E(Y)=\frac{\beta}{\alpha-1}$ for $\alpha>1, \operatorname{var}(Y)=\frac{\beta^{2}}{(\alpha-1)^{2}(\alpha-2)}$ for $\alpha>2$.

Normal mixture

Definition: A random vector $X \in \mathbb{R}^{d}$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{d}{=} \mu+W A Z$ where
$Z \sim N_{k}(0, I), W \geq 0$ is a r.v. independent from $Z, \mu \in \mathbb{R}^{d}$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix.
By conditioning on $W=w$ we get $X \sim N_{d}\left(\mu, w^{2} \Sigma\right)$, with $\Sigma=A A^{T}$.
Moreover $E(X)=\mu$ and $\operatorname{cov}(X)=E\left(W^{2} A Z Z^{T} A^{T}\right)=E\left(W^{2}\right) \Sigma$, if $E\left(W^{2}\right)<\infty$

Example: the multivariate t_{α} distribution

Let $Y \sim I G(\alpha, \beta)$ (inverse-gamma distribution) with density function given as $f_{\alpha, \beta}(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} \exp (-\beta / x)$ for $x>0, \alpha>0, \beta>0$.
Then $E(Y)=\frac{\beta}{\alpha-1}$ for $\alpha>1, \operatorname{var}(Y)=\frac{\beta^{2}}{(\alpha-1)^{2}(\alpha-2)}$ for $\alpha>2$.
Let $W^{2} \sim I G(\alpha / 2, \alpha / 2)$. Then $X=\mu+W A Z$ has the multivariate t_{α}-distribution with α degrees of freedom. Notation: $X \sim t_{d}(\alpha, \mu, \Sigma)$.

Normal mixture

Definition: A random vector $X \in \mathbb{R}^{d}$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{d}{=} \mu+W A Z$ where
$Z \sim N_{k}(0, l), W \geq 0$ is a r.v. independent from $Z, \mu \in \mathbb{R}^{d}$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix.
By conditioning on $W=w$ we get $X \sim N_{d}\left(\mu, w^{2} \Sigma\right)$, with $\Sigma=A A^{T}$.
Moreover $E(X)=\mu$ and $\operatorname{cov}(X)=E\left(W^{2} A Z Z^{T} A^{T}\right)=E\left(W^{2}\right) \Sigma$, if $E\left(W^{2}\right)<\infty$

Example: the multivariate t_{α} distribution

Let $Y \sim I G(\alpha, \beta)$ (inverse-gamma distribution) with density function given as $f_{\alpha, \beta}(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} \exp (-\beta / x)$ for $x>0, \alpha>0, \beta>0$.
Then $E(Y)=\frac{\beta}{\alpha-1}$ for $\alpha>1, \operatorname{var}(Y)=\frac{\beta^{2}}{(\alpha-1)^{2}(\alpha-2)}$ for $\alpha>2$.
Let $W^{2} \sim I G(\alpha / 2, \alpha / 2)$. Then $X=\mu+W A Z$ has the multivariate t_{α}-distribution with α degrees of freedom. Notation: $X \sim t_{d}(\alpha, \mu, \Sigma)$.
Since $E\left(W^{2}\right)=\alpha /(\alpha-2)$, for $\alpha>2$, we get $\operatorname{cov}(X)=E\left(W^{2}\right) \Sigma=\frac{\alpha}{\alpha-2} \Sigma$.

Spherical distributions

Spherical distributions

Definition: A random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ has a spherical distribution if for every orthogonal matrix $U \in \mathbb{R}^{d \times d}$ we have $U X \stackrel{d}{=} X$.

Spherical distributions

Definition: A random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ has a spherical distribution if for every orthogonal matrix $U \in \mathbb{R}^{d \times d}$ we have $U X \stackrel{d}{=} X$.
Theorem: The following statements are equivalent:

1. $X \in \mathbb{R}^{d}$ has a spherical distribution.

Spherical distributions

Definition: A random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ has a spherical distribution if for every orthogonal matrix $U \in \mathbb{R}^{d \times d}$ we have $U X \stackrel{d}{=} X$.
Theorem: The following statements are equivalent:

1. $X \in \mathbb{R}^{d}$ has a spherical distribution.
2. There exists a function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ of a scalar variable, such that the characteristic function of X satisfies

$$
\phi_{X}(t)=\psi\left(t^{\top} t\right)=\psi\left(t_{1}^{2}+t_{2}^{2}+\ldots+t_{d}^{2}\right)
$$

Spherical distributions

Definition: A random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ has a spherical distribution if for every orthogonal matrix $U \in \mathbb{R}^{d \times d}$ we have $U X \stackrel{d}{=} X$.
Theorem: The following statements are equivalent:

1. $X \in \mathbb{R}^{d}$ has a spherical distribution.
2. There exists a function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ of a scalar variable, such that the characteristic function of X satisfies

$$
\phi_{X}(t)=\psi\left(t^{\top} t\right)=\psi\left(t_{1}^{2}+t_{2}^{2}+\ldots+t_{d}^{2}\right)
$$

3. For every vector $a \in \mathbb{R}^{d}, a^{t} X \stackrel{d}{=}\|a\| X_{1}$ holds, where $\|a\|^{2}=a_{1}^{2}+a_{2}^{2}+\ldots+a_{d}^{2}$.

Spherical distributions

Definition: A random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ has a spherical distribution if for every orthogonal matrix $U \in \mathbb{R}^{d \times d}$ we have $U X \stackrel{d}{=} X$.
Theorem: The following statements are equivalent:

1. $X \in \mathbb{R}^{d}$ has a spherical distribution.
2. There exists a function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ of a scalar variable, such that the characteristic function of X satisfies

$$
\phi_{X}(t)=\psi\left(t^{T} t\right)=\psi\left(t_{1}^{2}+t_{2}^{2}+\ldots+t_{d}^{2}\right)
$$

3. For every vector $a \in \mathbb{R}^{d}, a^{t} X \stackrel{d}{=}\|a\| X_{1}$ holds, where $\|a\|^{2}=a_{1}^{2}+a_{2}^{2}+\ldots+a_{d}^{2}$.
4. X has the stochastic representation $X \stackrel{d}{=} R S$, where $S \in \mathbb{R}^{d}$ is a random vector uniformly distributed on the unit sphere S^{d-1}, $\mathcal{S}^{d-1}:=\left\{x \in \mathbb{R}^{d}:\|x\|=1\right\}$, and $R \geq 0$ is a r.v. independent of S.
Notation: $X \sim S_{d}(\psi)$, cf. 2.
