
Random vectors and dependence modelling

Goal: model the risk factor changes Xn = (Xn,1,Xn,2, . . . ,Xn,d)
Assumption: Xn,i and Xn,j are dependent but Xn,i und Xn±k,j are
independent fot k ∈ IN, k 6= 0, 1 ≤ i , j ≤ d .

A d-dimensional random vector X = (X1,X2, . . . ,Xd)T is uniquely
specified by its (multivariate) cumulative distribution function (c.d.f.) F :

F (x) : F (x1, x2, . . . , xd) := P(X1 ≤ x1,X2 ≤ x2, . . . ,Xd ≤ xd) = P(X ≤ x).

The i-th marginal distribution Fi of F is the distribution function of Xi

given as follows:

Fi (xi ) = P(Xi ≤ xi ) = F (∞, . . . ,∞, xi ,∞, . . . ,∞)

The distribution function F is continuous if there exists a non-negative
function f ≥ 0, such that

F (x1, x2, . . . , xd) =

∫ x1

−∞

∫ x2

−∞
. . .

∫ xd

−∞
f (u1, u2, . . . , ud)du1du2 . . . dud

f is then called the (multivariate) density function (d.f.) of F .
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Ramdom vectors (contd.)

The components of X are independent iff F (x) = Πd
i=1Fi (xi ). If the d.f.

f and the marginal d.f. fi , 1 ≤ i ≤ d , exist, then the components of X
are independent iff

f (x) = Πd
i=1fi (xi )

A random vector can be uniquely characterized in terms of its

characteristic function φX (t):

φX (t) := E (exp{itTX}), t ∈ IRd

If E (X 2
k ) <∞ for all k, the the covariance (matrix) of X exists and is

given es
Cov(X ) = E ((X − E (X ))(X − E (X ))T )

For an n-dimensional random vector X , a constant matrix B ∈ IRn×n and

a constant vector b ∈ IRn the following hold:

E (BX + b) = BE (X ) + b Cov(BX + b) = BCov(X )BT
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Ramdom vectors (contd.)

Example: The d.f. f and the characteristic function φX of the
multivariate normal distribution with expected value µ and covariance Σ
are given as

f (x) =
1√

(2π)d |Σ|
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
, x ∈ IRd

φX (t) = exp

{
itTµ− 1

2
tTΣt

}
, t ∈ IRd ,

where |Σ| = |Det(Σ)|.

Modelling the depedencies of risk factor changes (or financial data
in general) in terms of the multivariate normal distribution might
be inappropriate:

I risk factor changes are in general heavier tailed than normal

I the dependence between large return drops is in general stronger
than the dependence between ordinary returns. This type of
dependency cannot be modelled by the multivariate normal
distribution.



Ramdom vectors (contd.)
Example: The d.f. f and the characteristic function φX of the
multivariate normal distribution with expected value µ and covariance Σ
are given as

f (x) =
1√

(2π)d |Σ|
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
, x ∈ IRd

φX (t) = exp

{
itTµ− 1

2
tTΣt

}
, t ∈ IRd ,

where |Σ| = |Det(Σ)|.

Modelling the depedencies of risk factor changes (or financial data
in general) in terms of the multivariate normal distribution might
be inappropriate:

I risk factor changes are in general heavier tailed than normal

I the dependence between large return drops is in general stronger
than the dependence between ordinary returns. This type of
dependency cannot be modelled by the multivariate normal
distribution.



Ramdom vectors (contd.)
Example: The d.f. f and the characteristic function φX of the
multivariate normal distribution with expected value µ and covariance Σ
are given as

f (x) =
1√

(2π)d |Σ|
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
, x ∈ IRd

φX (t) = exp

{
itTµ− 1

2
tTΣt

}
, t ∈ IRd ,

where |Σ| = |Det(Σ)|.

Modelling the depedencies of risk factor changes (or financial data
in general) in terms of the multivariate normal distribution might
be inappropriate:

I risk factor changes are in general heavier tailed than normal

I the dependence between large return drops is in general stronger
than the dependence between ordinary returns. This type of
dependency cannot be modelled by the multivariate normal
distribution.



Dependence measures
Let X1 and X2 be r.v. There exist several scalar measures for the
dependence between X1 und X2.

Linear correlation
Assumption: var(X1), var(X2) ∈ (0,∞).
The linear correlation coefficient ρL(X1,X2) ist given as follows

ρL(X1,X2) =
cov(X1,X2)√
var(X1)var(X2)

Properties of the linear correlation coefficient:

I X1 and X2 are independent ⇒ ρL(X1,X2) = 0, but
ρL(X1,X2) = 0 6⇒ X1 and X2 are independent

Example: Let X1 ∼ N(0, 1) and X2 = X 2
1 . ρL(X1,X2) = 0 holds

although X1 and X2 are dependent.

I |ρL(X1,X2)| = 1⇔ ∃α, β ∈ IR, β 6= 0, such that X2
d
= α + βX1 and

signum(β) = signum(ρL(X1,X2)).
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Properties of the linear correlation coefficient (contd.):

I The linear correlation coefficient is invariant under strict monotone
increasing linear transformations. This means that for any two r.v.
X1 and X2 and real constants α1, α2, β1, β2 ∈ IR, β1 > 0, β2 > 0
the following holds:

ρL(α1 + β1X1, α2 + β2X2) = ρL(X1,X2).

However, in general, the linear correlation coefficient is not invariant
under strict monotone increasing non linear transformations.

Example: Let X1 ∼ Exp(λ), X2 = X1, and T1, T2 be two strict
monotone increasing transformations: T1(X1) = X1 and
T2(X1)) = X 2

1 . Then

ρL(X1,X1) = 1 and ρL(T1(X1),T2(X1)) =
2√
5
.
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Rank correlation coefficients

Let (x1, x2) and (x̃1, x̃2) be two points in IR2. They are called concordant
iff (x1 − x̃1)(x2 − x̃2) > 0 and discordant iff (x1 − x̃1)(x2 − x̃2) < 0.

Let (X1,X2)T and (X̃1, X̃2)T be two i.i.d. random vectors.

The Kendall’s Tau ρτ is defined as

ρτ (X1,X2) = P
(

(X1 − X̃1)(X2 − X̃2) > 0
)
−P

(
(X1 − X̃1)(X2 − X̃2) < 0

)
Let (X̂1, X̂2) be a third random vector independent from (X1,X2) and
(X̃1, X̃2) with the same distribution as the later two vectors.

The Spearman’s Rho ρS is defined as

ρS(X1,X2) = 3

{
P
(

(X1 − X̃1)(X2 − X̂2) > 0
)
−P

(
(X1 − X̃1)(X2 − X̂2) < 0

)}
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Some properties of ρτ und ρS :

1. ρτ (X1,X2) ∈ [−1, 1] and ρS(X1,X2) ∈ [−1, 1].

2. if X1 and X2 are independent, then ρτ (X1,X2) = ρS(X1,X2) = 0. In
general the converse does not hold.

3. Let T : IR→ IR be a strict monotone increasing function. Then the
following holds

ρτ (T (X1),T (X2)) = ρτ (X1,X2)

ρS(T (X1),T (X2)) = ρS(X1,X2)

Proof: 1) is trivial and 2) in the case of Kendall’s Tau as well.
The proof of 2) in the case of Spearman’s Rho and the proof of 3) will be
done in terms of copulas later.
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Tail dependence

Definition: Let (X1,X2)T be a random vector with marginal c.d.f. F1 and
F2. The coefficient of upper tail dependence of (X1,X2)T is defined as:

λU(X1,X2) = lim
u→1−

P(X2 > F←2 (u)|X1 > F←1 (u))

provided that this limit exists.

The coefficient of lower tail dependence of (X1,X2)T is defined as:

λL(X1,X2) = lim
u→0+

P(X2 ≤ F←2 (u)|X1 ≤ F←1 (u))

provided that this limit exists.
If the limit exists and λU > 0 (λL > 0) we say that (X1,X2)T has an
upper (lower) tail dependence.

Exercise: Let X1 ∼ Exp(λ) and X2 = X 2
1 . Determine λU(X1,X2),

λL(X1,X2) and show that (X1,X2)T has an upper tail dependence and a
lower tail dependence. Compute also the linear correlation coefficient
ρL(X1,X2).
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Multivariate elliptical distributions

a) The multivariate normal distribution

Definition: The random vector (X1,X2, . . . ,Xd)T has a multivariate
normal distribution (or a multivariate Gaussian distribution) iff

X
d
= µ+ AZ , where Z = (Z1,Z2, . . . ,Zk)T is a vector of i.i.d. standard

normal distributed r.v. (Zi ∼ N(0, 1), ∀i = 1, 2, . . . , k),
A ∈ IRd×k is a constant matrix and µ ∈ IRd is a constant vector.

For such a random vector X we have: E (X ) = µ, cov(X ) = Σ = AAT .
Thus Σ is positive semidefinite. Notation: X ∼ Nd(µ,Σ).

Theorem: (Equivalent characterisations of the multivariate normal
distribution)

1. X ∼ Nd(µ,Σ) for some vector µ ∈ IRd and some positive
semidefinite matrix Σ ∈ IRd×d , iff ∀a ∈ IRd , a = (a1, a2, . . . , ad)T ,
the random variable aTX is normally distributed.
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Equivalent characterisations of the multivariate normal
distribution

2. A random vector X ∈ IRd is multivariate normally distributed iff its
characteristic function φX (t) is given as

φX (t) = E (exp{itTX}) = exp{itTµ− 1

2
tTΣt}

for some vector µ ∈ IRd and some positive semidefinite matrix
Σ ∈ IRd×d .

3. A random vector X ∈ IRd with E (X ) = µ and cov(X ) = Σ,
|Σ| > 0, is multivariate normally distributed, i.e. X ∼ Nd(µ,Σ), iff
its density function fX (x) is given as follows

fX (x) =
1√

(2π)d |Σ|
exp

{
− (x − µ)TΣ−1(x − µ)

2

}
.

Proof: (see eg. Gut 1995)



Properties of the multivariate normal distribution

Theorem:
Let X ∼ Nd(µ,Σ). The following hold:

I Linear combinations:

Let B ∈ IRk×d and b ∈ IRk . Then BX + b ∈ Nk(Bµ+ b,BΣBT ).

I Marginal distributions:

Let XT =

(
X (1)T ,X (2)T

)
with X (1)T = (X1,X2, . . . ,Xk)T and

X (2)T = (Xk+1,Xk+2, . . . ,Xd)T . Analogously let

µT =

(
µ(1)T , µ(2)T

)
and Σ =

(
Σ(1,1) Σ(1,2)

Σ(2,1) Σ(2,2)

)
.

Then X (1) ∼ Nk

(
µ(1),Σ(1,1)

)
and X (2) ∼ Nd−k

(
µ(2),Σ(2,2)

)
.
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Properties of the multivariate normal distribution
(contd.)

I Conditional distributions:

Let Σ be nonsingular. The conditioned random vector

X (2)

∣∣∣∣X (1) = x (1) is multivariate normally distributed with

X (2)|X (1) = x (1) ∼ Nd−k

(
µ(2,1),Σ(22,1)

)
where

µ(2,1) = µ(2) + Σ(2,1)

(
Σ(1,1)

)−1(
x (1) − µ(1)

)
and

Σ(22,1) = Σ(2,2) − Σ(2,1)

(
Σ(1,1)

)−1

Σ(1,2).
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Properties of the multivariate normal distribution
(contd.)

I Quadratic forms:

Is Σ is nonsingular, then D2 = (X − µ)TΣ−1(X − µ) ∼ χ2
d . The r.v.

D is called Mahalanobis distance.

I Convolutions:

Let X ∼ Nd(µ,Σ) and Y ∼ Nd(µ̃, Σ̃) be two independent random
vectors. Then X + Y ∼ Nd(µ+ µ̃,Σ + Σ̃).
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Normal mixture

Definition: A random vector X ∈ IRd is said to have a multivariate
normal variance mixture distribution if X

d
= µ+ WAZ where

Z ∼ Nk(0, I ), W ≥ 0 is a r.v. independent from Z , µ ∈ IRd is a constant
vector, A ∈ IRd×k is a constant matrix, and I is the unit matrix.

By conditioning on W = w we get X ∼ Nd(µ,w2Σ), with Σ = AAT .

Moreover E (X ) = µ and cov(X ) = E (W 2AZZTAT ) = E (W 2)Σ, if
E (W 2) <∞
Example: the multivariate tα distribution
Let Y ∼ IG (α, β) (inverse-gamma distribution) with density function

given as fα,β(x) = βα

Γ(α)x
−(α+1) exp(−β/x) for x > 0, α > 0, β > 0.

Then E (Y ) = β
α−1 for α > 1, var(Y ) = β2

(α−1)2(α−2) for α > 2.

Let W 2 ∼ IG (α/2, α/2). Then X = µ+ WAZ has the multivariate
tα-distribution with α degrees of freedom. Notation: X ∼ td(α, µ,Σ).

Since E (W 2) = α/(α− 2), for α > 2, we get
cov(X ) = E (W 2)Σ = α

α−2 Σ.
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Spherical distributions

Definition: A random vector X = (X1,X2, . . . ,Xd)T has a spherical

distribution if for every orthogonal matrix U ∈ IRd×d we have UX
d
= X .

Theorem: The following statements are equivalent:

1. X ∈ IRd has a spherical distribution.

2. There exists a function ψ : IR→ IR of a scalar variable, such that
the characteristic function of X satisfies

φX (t) = ψ(tT t) = ψ(t2
1 + t2

2 + . . .+ t2
d)

3. For every vector a ∈ IRd , atX
d
= ||a||X1 holds, where

||a||2 = a2
1 + a2

2 + . . .+ a2
d .

4. X has the stochastic representation X
d
= RS , where S ∈ IRd is a

random vector uniformly distributed on the unit sphere Sd−1,
Sd−1 := {x ∈ IRd : ||x || = 1}, and R ≥ 0 is a r.v. independent of S .

Notation: X ∼ Sd(ψ), cf. 2.
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