The generalized evd

▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

The generalized evd

Definition: (The generalized extreme value distribution (gevd)) Let the distribution function H_{γ} be given as follows:

$$H_{\gamma}(x) = \begin{cases} \exp\{-(1+\gamma x)^{-1/\gamma}\} & \text{wenn } \gamma \neq 0\\ \exp\{-\exp\{-x\}\} & \text{wenn } \gamma = 0 \end{cases}$$

where $1 + \gamma x > 0$, i.e. the definition area of H_{γ} is given as

$x > -\gamma^{-1}$	wenn $\gamma > 0$
$x < -\gamma^{-1}$	wenn $\gamma < 0$
$x \in {\rm I\!R}$	wenn $\gamma = 0$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 H_{γ} is called generalized extreme value distribution (gevd).

The generalized evd

Definition: (The generalized extreme value distribution (gevd)) Let the distribution function H_{γ} be given as follows:

$$H_{\gamma}(x) = \begin{cases} \exp\{-(1+\gamma x)^{-1/\gamma}\} & \text{wenn } \gamma \neq 0\\ \exp\{-\exp\{-x\}\} & \text{wenn } \gamma = 0 \end{cases}$$

where $1 + \gamma x > 0$, i.e. the definition area of H_{γ} is given as

$x > -\gamma^{-1}$	wenn $\gamma > 0$
$x < -\gamma^{-1}$	wenn $\gamma < 0$
$x \in {\rm I\!R}$	wenn $\gamma = 0$

 H_{γ} is called *generalized extreme value distribution (gevd)*. **Theorem:** (Characterisation of $MDA(H_{\gamma})$)

• $F \in MDA(H_{\gamma})$ with $\gamma > 0 \iff F \in MDA(\Phi_{\alpha})$ with $\alpha = 1/\gamma > 0$.

•
$$F \in MDA(H_0) \iff F \in MDA(\Lambda).$$

► $F \in MDA(H_{\gamma})$ with $\gamma < 0 \iff F \in MDA(\Psi_{\alpha})$ with $\alpha = -1/\gamma > 0$.

Clearly every standard evd belongs to its own MDA!

(ロ)、(型)、(E)、(E)、 E) の(の)

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha > 0$)?

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha > 0$)?

Observation: $\lim_{x\to+\infty} \frac{\bar{\Phi}_{\alpha}(x)}{x^{-\alpha}} = 1$, $\forall \alpha > 0$. Thus for $\Phi_{\alpha} \in MDA(\Phi_{\alpha})$ we have $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$. Does this generally hold for members of $MDA(\Phi_{\alpha})$?

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha > 0$)?

Observation: $\lim_{x\to+\infty} \frac{\bar{\Phi}_{\alpha}(x)}{x^{-\alpha}} = 1$, $\forall \alpha > 0$. Thus for $\Phi_{\alpha} \in MDA(\Phi_{\alpha})$ we have $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$. Does this generally hold for members of $MDA(\Phi_{\alpha})$?

Theorem: $(MDA(\Phi_{\alpha}), \text{ Gnedenko 1943})$ $F \in MDA(\Phi_{\alpha}) \ (\alpha > 0) \iff \overline{F} \in RV_{-\alpha} \ (\alpha > 0).$ If $F \in MDA(\Phi_{\alpha})$, then $\lim_{n\to\infty} a_n^{-1}M_n = \Phi_{\alpha}$ with $a_n = F^{\leftarrow}(1 - n^{-1}).$

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha > 0$)?

Observation: $\lim_{x\to+\infty} \frac{\bar{\Phi}_{\alpha}(x)}{x^{-\alpha}} = 1$, $\forall \alpha > 0$. Thus for $\Phi_{\alpha} \in MDA(\Phi_{\alpha})$ we have $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$. Does this generally hold for members of $MDA(\Phi_{\alpha})$?

Theorem: $(MDA(\Phi_{\alpha}), \text{ Gnedenko 1943})$ $F \in MDA(\Phi_{\alpha}) \ (\alpha > 0) \iff \overline{F} \in RV_{-\alpha} \ (\alpha > 0).$ If $F \in MDA(\Phi_{\alpha})$, then $\lim_{n\to\infty} a_n^{-1}M_n = \Phi_{\alpha}$ with $a_n = F^{\leftarrow}(1 - n^{-1}).$

Examples: The following distributions belong to $MDA(\Phi_{\alpha})$:

• Pareto:
$$F(x) = 1 - x^{-\alpha}$$
, $x > 1$, $\alpha > 0$.

- Cauchy: $f(x) = (\pi(1+x^2))^{-1}$, $x \in \mathbb{R}$.
- ► Student: $f(x) = \frac{\Gamma((\alpha+1)/2)}{\sqrt{\alpha\pi}\Gamma(\alpha/2)(1+x^2/\alpha)^{(\alpha+1)/2}}$, $\alpha \in \mathbb{N}$, $x \in \mathbb{R}$.

► Loggamma:
$$f(x) = \frac{\alpha^{\beta}}{\Gamma(\beta)} (\ln x)^{\beta-1} x^{-\alpha-1}$$
, $x > 1$, $\alpha, \beta > 0$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Observation: $\Psi_{\alpha}(-x^{-1}) = \Phi_{\alpha}(x)$ holds for x > 0 and for every $\alpha > 0$. Are $MDA(\Phi_{\alpha})$ and $MDA(\Psi_{\alpha})$ "similar" somehow?

Observation: $\Psi_{\alpha}(-x^{-1}) = \Phi_{\alpha}(x)$ holds for x > 0 and for every $\alpha > 0$. Are $MDA(\Phi_{\alpha})$ and $MDA(\Psi_{\alpha})$ "similar" somehow?

Theorem: $(MDA(\Psi_{\alpha}), \text{ Gnedenko 1943})$ $F \in MDA(\Psi_{\alpha}) \ (\alpha > 0) \iff x_F := \sup\{x \in \mathbb{R} : F(x) < 1\} < \infty \text{ and }$ $\overline{F}(x_F - x^{-1}) \in RV_{-\alpha} \ (\alpha > 0).$ If $F \in MDA(\Psi_{\alpha})$, then $\lim_{n \to \infty} a_n^{-1}(M_n - x_F) = \Psi_{\alpha}$ with $a_n = x_F - F^{\leftarrow}(1 - n^{-1}).$

Observation: $\Psi_{\alpha}(-x^{-1}) = \Phi_{\alpha}(x)$ holds for x > 0 and for every $\alpha > 0$. Are $MDA(\Phi_{\alpha})$ and $MDA(\Psi_{\alpha})$ "similar" somehow?

Theorem: $(MDA(\Psi_{\alpha}), \text{ Gnedenko 1943})$ $F \in MDA(\Psi_{\alpha}) \ (\alpha > 0) \iff x_F := \sup\{x \in \mathbb{R} : F(x) < 1\} < \infty \text{ and }$ $\overline{F}(x_F - x^{-1}) \in RV_{-\alpha} \ (\alpha > 0).$ If $F \in MDA(\Psi_{\alpha})$, then $\lim_{n \to \infty} a_n^{-1}(M_n - x_F) = \Psi_{\alpha}$ with $a_n = x_F - F^{\leftarrow}(1 - n^{-1}).$

Example: Let $X \sim U(0, 1)$. it holds $X \in MDA(\Psi_1)$ with $a_n = 1/n$, $n \in \mathbb{N}$.

・ロト・日本・日本・日本・日本・日本

Observation: $\lim_{x\to+\infty} \frac{\bar{h}(x)}{e^{-x}} = 1$, $\forall \alpha > 0$. Thus for $\Lambda \in MDA(\Lambda)$ we have $\bar{\Lambda} \sim e^{-x}$. Does this (or smth. similar) generally hold for members of $MDA(\Lambda)$?

Observation: $\lim_{x\to+\infty} \frac{\bar{\Lambda}(x)}{e^{-x}} = 1$, $\forall \alpha > 0$. Thus for $\Lambda \in MDA(\Lambda)$ we have $\bar{\Lambda} \sim e^{-x}$. Does this (or smth. similar) generally hold for members of $MDA(\Lambda)$?

Theorem: $(MDA(\Lambda))$

Let F be a distribution function with right endpoint $x_F \leq \infty$. $F \in MDA(\Lambda)$ holds iff there exists a $z < x_F$ such that F can be represented as

$$ar{F}(x) = c(x)exp\left\{-\int_{z}^{x} rac{g(t)}{a(t)}dt
ight\}, orall x, z < x \leq x_{F},$$

where the functions c(x) and g(x) fulfill $\lim_{x\uparrow x_F} c(x) = c > 0$ and $\lim_{t\uparrow x_F} g(t) = 1$, and a(t) is a positive absolutely continuous function with $\lim_{t\uparrow x_F} a'(t) = 0$.

(日) (同) (三) (三) (三) (○) (○)

Observation: $\lim_{x\to+\infty} \frac{\bar{\Lambda}(x)}{e^{-x}} = 1$, $\forall \alpha > 0$. Thus for $\Lambda \in MDA(\Lambda)$ we have $\bar{\Lambda} \sim e^{-x}$. Does this (or smth. similar) generally hold for members of $MDA(\Lambda)$?

Theorem: $(MDA(\Lambda))$

Let F be a distribution function with right endpoint $x_F \leq \infty$. $F \in MDA(\Lambda)$ holds iff there exists a $z < x_F$ such that F can be represented as

$$\bar{F}(x) = c(x)exp\left\{-\int_{z}^{x} \frac{g(t)}{a(t)}dt\right\}, \forall x, z < x \leq x_{F},$$

where the functions c(x) and g(x) fulfill $\lim_{x\uparrow x_F} c(x) = c > 0$ and $\lim_{t\uparrow x_F} g(t) = 1$, and a(t) is a positive absolutely continuous function with $\lim_{t\uparrow x_F} a'(t) = 0$.

See the book by Embrechts et al. for the proofs of the above theorem and of the following theorem concerning the characterisation of $MDA(\Lambda)$.

Theorem: (*MDA*(Λ), alternative characterisation)

A distribution function F belongs to $MDA(\Lambda)$ iff there exists a a positive function \tilde{a} such that

$$\lim_{x\uparrow x_F}\frac{\bar{F}(x+u\tilde{a}(x))}{\bar{F}(x)}=e^{-u}, \forall u\in {\rm I\!R}$$

A possible choice for \tilde{a} is $\tilde{a}(x) = a(x)$ with $a(x) := \int_x^{x_F} \frac{\tilde{F}(t)}{\tilde{F}(x)} dt$.

Theorem: ($MDA(\Lambda)$, alternative characterisation)

A distribution function F belongs to $MDA(\Lambda)$ iff there exists a a positive function \tilde{a} such that

$$\lim_{x\uparrow x_F} \frac{\bar{F}(x+u\tilde{a}(x))}{\bar{F}(x)} = e^{-u}, \forall u \in {\rm I\!R}$$

A possible choice for \tilde{a} is $\tilde{a}(x) = a(x)$ with $a(x) := \int_{x}^{x_{F}} \frac{\tilde{F}(t)}{\tilde{F}(x)} dt$.

Definition: The function a(x) above is called *mean excess function* and it can be alternatively represented as

$$a(x) := E(X - x | X > x), \forall x \leq x_F$$
.

Theorem: ($MDA(\Lambda)$, alternative characterisation)

A distribution function F belongs to $MDA(\Lambda)$ iff there exists a a positive function \tilde{a} such that

$$\lim_{x\uparrow x_F}\frac{\bar{F}(x+u\tilde{a}(x))}{\bar{F}(x)}=e^{-u}, \forall u\in {\rm I\!R}$$

A possible choice for \tilde{a} is $\tilde{a}(x) = a(x)$ with $a(x) := \int_x^{x_F} \frac{\tilde{F}(t)}{\tilde{F}(x)} dt$.

Definition: The function a(x) above is called *mean excess function* and it can be alternatively represented as

$$a(x) := E(X - x | X > x), \forall x \leq x_F$$
.

Examples: The following distributions belong to $MDA(\Lambda)$:

- Normal: $F(x) = (2\pi)^{-1/2} \exp\{-x^2/2\}$, $x \in \mathbb{R}$.
- Exponential: $f(x) = \lambda^{-1} \exp\{-\lambda x\}, x > 0, \lambda > 0.$
- Lognormal: $f(x) = (2\pi x^2)^{-1/2} \exp\{-(\ln x)^2/2\}, x > 0.$
- Gamma: $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp\{-\beta x\}, x > 0, \alpha, \beta > 0.$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Histogram

- Histogram
- Quantile-quantile plots

Let X_1, X_2, \ldots, X_n be i.i.d. r.v. with unknown distribution \tilde{F} . We assume that the right range of \tilde{F} can be approximated by a known distribution F.

Question: How to check whether this assumption holds?

- Histogram
- Quantile-quantile plots

Let X_1, X_2, \ldots, X_n be i.i.d. r.v. with unknown distribution \tilde{F} . We assume that the right range of \tilde{F} can be approximated by a known distribution F.

Question: How to check whether this assumption holds?

Let $x_{n,n} \leq x_{n-1,n} \leq \ldots \leq x_{1,n}$ be a sorted sample of X_1, X_2, \ldots, X_n . qq-plot: $\{(x_{k,n}, F^{\leftarrow}(\frac{n-k+1}{n+1})): k = 1, 2, \ldots, n\}.$

- Histogram
- Quantile-quantile plots

Let X_1, X_2, \ldots, X_n be i.i.d. r.v. with unknown distribution \tilde{F} . We assume that the right range of \tilde{F} can be approximated by a known distribution F.

Question: How to check whether this assumption holds?

Let $x_{n,n} \leq x_{n-1,n} \leq \ldots \leq x_{1,n}$ be a sorted sample of X_1, X_2, \ldots, X_n . qq-plot: $\{(x_{k,n}, F \leftarrow (\frac{n-k+1}{n+1})): k = 1, 2, \ldots, n\}.$

If the assumption is plausible then the qq-plot is similar to the graph of a linear function. This property holds also if the reference distribution and the real distribution do not coincide but are of the same type.

- Histogram
- Quantile-quantile plots

Let X_1, X_2, \ldots, X_n be i.i.d. r.v. with unknown distribution \tilde{F} . We assume that the right range of \tilde{F} can be approximated by a known distribution F.

Question: How to check whether this assumption holds?

Let $x_{n,n} \leq x_{n-1,n} \leq \ldots \leq x_{1,n}$ be a sorted sample of X_1, X_2, \ldots, X_n . qq-plot: $\{(x_{k,n}, F^{\leftarrow}(\frac{n-k+1}{n+1})): k = 1, 2, \ldots, n\}.$

If the assumption is plausible then the qq-plot is similar to the graph of a linear function. This property holds also if the reference distribution and the real distribution do not coincide but are of the same type.

Rule of thumb: the larger the quantile the heavier the tails of the distribution!

The Hill estimator

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

The Hill estimator

Let X_1, X_2, \ldots, X_n be i.i.d. r.v. with distribution function F, such that $\overline{F} \in RV_{-\alpha}$, $\alpha > 0$, i.e. $\overline{F}(x) = x^{-\alpha}L(x)$ with $L \in RV_0$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Goal: Estimate α !

The Hill estimator

Let X_1, X_2, \ldots, X_n be i.i.d. r.v. with distribution function F, such that $\overline{F} \in RV_{-\alpha}$, $\alpha > 0$, i.e. $\overline{F}(x) = x^{-\alpha}L(x)$ with $L \in RV_0$. Goal: Estimate $\alpha!$

Theorem: (Theorem of Karamata) Let *L* be a slowly varying locally bounded function on $[x_0, +\infty)$ for some $x_0 \in \mathbb{R}$. Then the following holds:

(a) For $\kappa > -1$: $\int_{x_0}^x t^{\kappa} L(t) dt \sim K(x_0) + \frac{1}{\kappa+1} x^{\kappa+1} L(x)$ for $x \to \infty$, where $K(x_0)$ is a constant depending on x_0 .

(b) For
$$\kappa < -1$$
: $\int_x^{+\infty} t^{\kappa} L(t) dt \sim -\frac{1}{\kappa+1} x^{\kappa+1} L(x)$ for $x \to \infty$.

Proof in Bingham et al. 1987.

Assumption: F is locally bounded on $[u, +\infty)$.

(ロ)、

Assumption: F is locally bounded on $[u, +\infty)$.

The theorem of Karamata implies: $E(\ln(X) - \ln(u)|\ln(X) > \ln(u)) =$

$$\lim_{u\to\infty}\frac{1}{\bar{F}(u)}\int_{u}^{\infty}(\ln x - \ln u)dF(x) = \alpha^{-1}.$$
 (1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assumption: *F* is locally bounded on $[u, +\infty)$.

The theorem of Karamata implies: $E(\ln(X) - \ln(u)|\ln(X) > \ln(u)) =$

$$\lim_{u\to\infty}\frac{1}{\bar{F}(u)}\int_{u}^{\infty}(\ln x - \ln u)dF(x) = \alpha^{-1}.$$
 (1)

For the empirical distribution $F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k,\infty)}(x)$ and a large threshold $x_{k,n}$ depending on the sample $x_{n,n} \le x_{n-1,n} \le \ldots \le x_{1,n}$ we get:

$$E\left(\ln(X) - \ln(x_{k,n})|\ln(X) > \ln(x_{k,n})\right) \approx$$

$$\frac{1}{\bar{F}_n(x_{k,n})}\int_{X_{k,n}}^{\infty} (\ln x - \ln x_{k,n}) dF_n(x) = \frac{1}{k-1}\sum_{j=1}^{k-1} (\ln x_{j,n} - \ln x_{k,n}).$$

Assumption: *F* is locally bounded on $[u, +\infty)$.

The theorem of Karamata implies: $E(\ln(X) - \ln(u)|\ln(X) > \ln(u)) =$

$$\lim_{u\to\infty}\frac{1}{\bar{F}(u)}\int_{u}^{\infty}(\ln x - \ln u)dF(x) = \alpha^{-1}.$$
 (1)

For the empirical distribution $F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k,\infty)}(x)$ and a large threshold $x_{k,n}$ depending on the sample $x_{n,n} \le x_{n-1,n} \le \ldots \le x_{1,n}$ we get:

$$E\left(\ln(X) - \ln(x_{k,n})|\ln(X) > \ln(x_{k,n})\right) \approx$$

$$\frac{1}{\bar{F}_n(x_{k,n})}\int_{X_{k,n}}^{\infty} (\ln x - \ln x_{k,n}) dF_n(x) = \frac{1}{k-1} \sum_{j=1}^{k-1} (\ln x_{j,n} - \ln x_{k,n}).$$

If $k = k(n) \to \infty$ and $k/n \to 0$, then $x_{k,n} \to \infty$ for $n \to \infty$, and (1) implies:

$$\lim_{n \to \infty} \frac{1}{k-1} \sum_{j=1}^{k-1} (\ln x_{j,n} - \ln x_{k,n}) \stackrel{d}{=} \alpha^{-1}$$