Conditional Value at Risk (contd.) Example 1:

- (a) Let $L \sim Exp(\lambda)$. Compute $CVaR_{\alpha}(L)$.
- (b) Let the distribution function F_L of the loss function L be given as follows : $F_L(x) = 1 (1 + \gamma x)^{-1/\gamma}$ for $x \ge 0$ and $\gamma \in (0,1)$. Compute $CVaR_{\alpha}(L)$.

Conditional Value at Risk (contd.) Example 1:

- (a) Let $L \sim Exp(\lambda)$. Compute $CVaR_{\alpha}(L)$.
- (b) Let the distribution function F_L of the loss function L be given as follows : $F_L(x) = 1 (1 + \gamma x)^{-1/\gamma}$ for $x \ge 0$ and $\gamma \in (0,1)$. Compute $CVaR_{\alpha}(L)$.

Example 2:

Let $L \sim N(0,1)$. Let ϕ und Φ be the density and the distribution function of L, respectively. Show that $CVaR_{\alpha}(L) = \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds. Let $L' \sim N(\mu, \sigma^2)$. Show that $CVaR_{\alpha}(L') = \mu + \sigma \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds.

Conditional Value at Risk (contd.) Example 1:

- (a) Let $L \sim Exp(\lambda)$. Compute $CVaR_{\alpha}(L)$.
- (b) Let the distribution function F_L of the loss function L be given as follows : $F_L(x) = 1 (1 + \gamma x)^{-1/\gamma}$ for $x \ge 0$ and $\gamma \in (0,1)$. Compute $CVaR_{\alpha}(L)$.

Example 2:

Let $L \sim N(0,1)$. Let ϕ und Φ be the density and the distribution function of L, respectively. Show that $CVaR_{\alpha}(L) = \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds.

Let $L' \sim N(\mu, \sigma^2)$. Show that $CVaR_{\alpha}(L') = \mu + \sigma \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds.

Exercise:

Let the loss L be distributed according to the Student's t-distribution with $\nu>1$ degrees of freedom. The density of L is

$$g_{\nu}(x) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2}$$

Show that $CVaR_{\alpha}(L) = \frac{g_{\nu}(t_{\nu}^{-1}(\alpha))}{1-\alpha} \left(\frac{\nu+(t_{\nu}^{-1}(a))^2}{\nu-1}\right)$, where t_{ν} is the distribution function of L.

Methods for the computation of VaR und CVaR

Consider the portfolio value $V_m = f(t_m, Z_m)$, where Z_m is the vector of risk factors.

Let the loss function over the interval $[t_m, t_{m+1}]$ be given as $L_{m+1} = I_{[m]}(X_{m+1})$, where X_{m+1} is the vector of the risk factor changes, i.e.

$$X_{m+1}=Z_{m+1}-Z_m.$$

Consider observations (historical data) of risk factor values Z_{m-n+1}, \ldots, Z_m . How to use these data to compute/estimate $VaR(L_{m+1})$, $CVaR(L_{m+1})$?

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. random variables $X_1, X_2, ..., X_n$ with distribution function F.

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. random variables $X_1, X_2, ..., X_n$ with distribution function F.

The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. random variables $X_1, X_2, ..., X_n$ with distribution function F.

The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} \colon F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. random variables $X_1, X_2, ..., X_n$ with distribution function F.

The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} : F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

Assumption: $x_1 > x_2 > \ldots > x_n$. Then $q_{\alpha}(F_n) = x_{[n(1-\alpha)]+1}$ holds, where $[y] := \sup\{n \in \mathbb{N} : n \leq y\}$ for every $y \in \mathbb{R}$.

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. random variables $X_1, X_2, ..., X_n$ with distribution function F.

The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} : F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

Assumption: $x_1 > x_2 > \ldots > x_n$. Then $q_{\alpha}(F_n) = x_{[n(1-\alpha)]+1}$ holds, where $[y] := \sup\{n \in \mathbb{N} : n \leq y\}$ for every $y \in \mathbb{R}$.

Lemma

Let $\hat{q}_{\alpha}(F) := q_{\alpha}(F_n)$ and let F be a strictly increasing function. Then $\lim_{n\to\infty}\hat{q}_{\alpha}(F) = q_{\alpha}(F)$ holds $\forall \alpha \in (0,1)$, i.e. the estimator $\hat{q}_{\alpha}(F)$ is consistent.

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. random variables $X_1, X_2, ..., X_n$ with distribution function F.

The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} : F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

Assumption: $x_1 > x_2 > \ldots > x_n$. Then $q_{\alpha}(F_n) = x_{[n(1-\alpha)]+1}$ holds, where $[y] := \sup\{n \in \mathbb{N} : n \leq y\}$ for every $y \in \mathbb{R}$.

Lemma

Let $\hat{q}_{\alpha}(F) := q_{\alpha}(F_n)$ and let F be a strictly increasing function. Then $\lim_{n\to\infty}\hat{q}_{\alpha}(F) = q_{\alpha}(F)$ holds $\forall \alpha \in (0,1)$, i.e. the estimator $\hat{q}_{\alpha}(F)$ is consistent.

The empirical estimator of CVaR is
$$\widehat{\text{CVaR}}_{\alpha}(F) = \frac{\sum_{k=1}^{\lfloor n(1-\alpha)\rfloor+1} x_k}{\lfloor (n(1-\alpha)\rfloor+1 \rfloor}$$

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F.

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F.

Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta = q_{\alpha}(F)$, and the corresponding confidence interval.

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F.

Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta = q_{\alpha}(F)$, and the corresponding confidence interval.

Let $\hat{\theta}(x_1,\ldots,x_n)$ be an estimator of θ , e.g. $\hat{\theta}(x_1,\ldots,x_n)=x_{[(n(1-\alpha)]+1}$ $\theta=q_{\alpha}(F)$.

The required confidence interval is an (a, b) with $a = a(x_1, ..., x_n)$ u. $b = b(x_1, ..., x_n)$, such that $P(a < \theta < b) = p$, for a given confidence level p.

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F.

Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta = q_{\alpha}(F)$, and the corresponding confidence interval.

Let $\hat{\theta}(x_1,\ldots,x_n)$ be an estimator of θ , e.g. $\hat{\theta}(x_1,\ldots,x_n)=x_{[(n(1-\alpha)]+1}$ $\theta=q_{\alpha}(F)$.

The required confidence interval is an (a, b) with $a = a(x_1, ..., x_n)$ u. $b = b(x_1, ..., x_n)$, such that $P(a < \theta < b) = p$, for a given confidence level p.

Case I: F is known.

Generate N samples $\tilde{x}_1^{(i)}, \tilde{x}_2^{(i)}, \dots, \tilde{x}_n^{(i)}, 1 \leq i \leq N$, by simulation from F (N should be large)

Let
$$\tilde{\theta}_i = \hat{\theta}\left(\tilde{x}_1^{(i)}, \tilde{x}_2^{(i)}, \dots, \tilde{x}_n^{(i)}\right)$$
, $1 \leq i \leq N$.

Case I (cont.)

The empirical distribution function of $\hat{\theta}(x_1, x_2, \dots, x_n)$ is given as

$$F_N^{\hat{\theta}} := \frac{1}{N} \sum_{i=1}^N I_{[\tilde{\theta}_i, \infty)}$$

and it tends to $F^{\hat{\theta}}$ for $N \to \infty$.

The required conficence interval is given as

$$\left(q_{\frac{1-p}{2}}(F_N^{\hat{ heta}}),q_{\frac{1+p}{2}}(F_N^{\hat{ heta}})
ight)$$

(assuming that the sample sizes N und n are large enough).

Case II: F is not known ⇒ Bootstrapping!

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing n elementes in $\{x_1, x_2, \ldots, x_n\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}$, $1 \le i \le N$.

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing n elementes in $\{x_1, x_2, \ldots, x_n\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}, 1 \le i \le N$.

Compute
$$\theta_i^* = \hat{\theta}\left(x_1^{*(i)}, x_2^{*(i)}, \dots, x_n^{*(i)}\right)$$
.

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing n elementes in $\{x_1, x_2, \ldots, x_n\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}$, $1 \le i \le N$.

Compute
$$\theta_i^* = \hat{\theta} \left(x_1^{*(i)}, x_2^{*(i)}, \dots, x_n^{*(i)} \right)$$
.

The empirical distribution of θ_i^* is given as $F_N^{\theta^*}(x) = \frac{1}{N} \sum_{i=1}^N I_{[\theta_i^*,\infty)}(x)$; it approximates the distribution function $F^{\hat{\theta}}$ of $\hat{\theta}(X_1,X_2,\ldots,X_n)$ for $N\to\infty$.

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing n elementes in $\{x_1, x_2, \ldots, x_n\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}$, $1 \le i \le N$.

Compute
$$\theta_i^* = \hat{\theta} \left(x_1^{*(i)}, x_2^{*(i)}, \dots, x_n^{*(i)} \right)$$
.

The empirical distribution of θ_i^* is given as $F_N^{\theta^*}(x) = \frac{1}{N} \sum_{i=1}^N I_{[\theta_i^*,\infty)}(x)$; it approximates the distribution function $F^{\hat{\theta}}$ of $\hat{\theta}(X_1,X_2,\ldots,X_n)$ for $N \to \infty$.

A confidence interval (a, b) with confidence level p is given by $a = q_{(1-p)/2}(F_N^{\theta^*}), b = q_{(1+p)/2}(F_N^{\theta^*}).$

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing n elementes in $\{x_1, x_2, \ldots, x_n\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}, 1 \le i \le N$.

Compute
$$\theta_i^* = \hat{\theta} \left(x_1^{*(i)}, x_2^{*(i)}, \dots, x_n^{*(i)} \right)$$
.

The empirical distribution of θ_i^* is given as $F_N^{\theta^*}(x) = \frac{1}{N} \sum_{i=1}^N I_{[\theta_i^*,\infty)}(x)$; it approximates the distribution function $F^{\hat{\theta}}$ of $\hat{\theta}(X_1,X_2,\ldots,X_n)$ for $N \to \infty$.

A confidence interval (a, b) with confidence level p is given by

$$a = q_{(1-p)/2}(F_N^{\theta^*}), b = q_{(1+p)/2}(F_N^{\theta^*}).$$

Thus $a = \theta^*_{[N(1+p)/2]+1}$, $b = \theta^*_{[N(1-p)/2]+1}$, where $\theta^*_1 \ge \ldots \ge \theta^*_N$ is the sorted θ^* sample.

Summary of the non-parametric bootstrapping approach to compute confidence intervals

Input: Sample x_1, x_2, \ldots, x_n of the i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F and an estimator $\hat{\theta}(x_1, x_2, \ldots, x_n)$ of an unknown parameter $\theta(F)$, A confidence level $p \in (0, 1)$.

Output: A confidence interval I_p for θ with confidence level p.

- Generate N new Samples $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}, 1 \le i \le N$, by chosing elements in $\{x_1, x_2, \ldots, x_n\}$ and putting them back right after the choice.
- ► Compute $\theta_i^* = \hat{\theta} \left(x_1^{*(i)}, x_2^{*(i)}, \dots, x_n^{*(i)} \right)$.
- $$\begin{split} & \text{Setz } I_p := \left(\theta_{[N(1+\rho)/2]+1,N}^*, \theta_{[N(1-\rho)/2]+1,N}^*\right), \text{ where} \\ & \theta_{1,N}^* \geq \theta_{2,N}^* \geq \dots \theta_{N,N}^* \text{ is obtained by sorting } \theta_1^*, \theta_2^*, \dots, \theta_N^* \ . \end{split}$$

Input: A sample x_1, x_2, \ldots, x_n of the random variables X_i , $1 \le i \le n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in (0,1)$.

Input: A sample x_1, x_2, \ldots, x_n of the random variables X_i , $1 \le i \le n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in (0,1)$.

Output: A $p' \in (0,1)$, with $p \leq p' \leq p + \epsilon$, for some small ϵ , and a confidence interval (a,b) for $q_{\alpha}(F)$, i.e. $a = a(x_1,x_2,\ldots,x_n)$, $b = b(x_1,x_2,\ldots,x_n)$, such that

$$P(a < q_{\alpha}(F) < b) = p'$$
 and $P(a \ge q_{\alpha}(F)) = P(b \le q_{\alpha}(F) \le (1-p)/2$ holds.

Input: A sample x_1, x_2, \ldots, x_n of the random variables X_i , $1 \le i \le n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in (0,1)$.

Output: A $p' \in (0,1)$, with $p \leq p' \leq p + \epsilon$, for some small ϵ , and a confidence interval (a,b) for $q_{\alpha}(F)$, i.e. $a = a(x_1,x_2,\ldots,x_n)$, $b = b(x_1,x_2,\ldots,x_n)$, such that

$$P(a < q_{\alpha}(F) < b) = p'$$
 and $P(a \ge q_{\alpha}(F)) = P(b \le q_{\alpha}(F) \le (1-p)/2$ holds.

Assume w.l.o.g. that the sample is sorted $x_1 \ge x_2 \ge ... \ge x_n$. Determine i > j, $i, j \in \{1, 2, ..., n\}$, and the smallest p' > p, such that

$$P\left(x_{i,n} < q_{\alpha}(F) < x_{j,n}\right) = p'$$
 (*) and

$$P\bigg(x_i \geq q_{lpha}(F)\bigg) \leq (1-p)/2 \text{ and } P\bigg(x_j \leq q_{lpha}(F)\bigg) \leq (1-p)/2(**).$$

Let $Y_{\alpha} := \#\{x_k \colon x_k > q_{\alpha}(F)\}$

Let
$$Y_{\alpha} := \#\{x_k \colon x_k > q_{\alpha}(F)\}$$

We get $P(x_j \le q_{\alpha}(F)) \approx P(x_j < q_{\alpha}(F)) = P(Y_{\alpha} \le j - 1)$
 $P(x_i \ge q_{\alpha}(F)) \approx P(x_i > q_{\alpha}(F)) = 1 - P(Y_{\alpha} \le i - 1)$

Let
$$Y_{\alpha} := \#\{x_k \colon x_k > q_{\alpha}(F)\}$$

We get
$$P(x_j \le q_\alpha(F)) \approx P(x_j < q_\alpha(F)) = P(Y_\alpha \le j - 1)$$

 $P(x_i \ge q_\alpha(F)) \approx P(x_i > q_\alpha(F)) = 1 - P(Y_\alpha \le i - 1)$

 $Y_{\alpha} \sim Bin(n, 1 - \alpha)$ since $Prob(x_k \ge q_{\alpha}(F)) \approx 1 - \alpha$ for a sample point x_k .

Let
$$Y_{\alpha} := \#\{x_k \colon x_k > q_{\alpha}(F)\}$$

We get
$$P(x_j \le q_\alpha(F)) \approx P(x_j < q_\alpha(F)) = P(Y_\alpha \le j - 1)$$

 $P(x_i \ge q_\alpha(F)) \approx P(x_i > q_\alpha(F)) = 1 - P(Y_\alpha \le i - 1)$

 $Y_{\alpha} \sim Bin(n, 1 - \alpha)$ since $Prob(x_k \ge q_{\alpha}(F)) \approx 1 - \alpha$ for a sample point x_k .

Compute $P(x_j \le q_\alpha(F))$ and $P(x_i \ge q_\alpha(F))$ for different i and j until indices $i, j \in \{1, 2, ..., n\}$, i > j, which fulfill (**) are found.

Let
$$Y_{\alpha} := \#\{x_k \colon x_k > q_{\alpha}(F)\}$$

We get
$$P(x_j \le q_\alpha(F)) \approx P(x_j < q_\alpha(F)) = P(Y_\alpha \le j - 1)$$

 $P(x_i \ge q_\alpha(F)) \approx P(x_i > q_\alpha(F)) = 1 - P(Y_\alpha \le i - 1)$

 $Y_{\alpha} \sim Bin(n, 1 - \alpha)$ since $Prob(x_k \ge q_{\alpha}(F)) \approx 1 - \alpha$ for a sample point x_k .

Compute $P(x_j \le q_\alpha(F))$ and $P(x_i \ge q_\alpha(F))$ for different i and j until indices $i, j \in \{1, 2, ..., n\}$, i > j, which fulfill (**) are found.

Set $a := x_i$ and $b := x_i$.

Let x_{m-n+1},\ldots,x_m be historical observations of the risk factor changes X_{m-n+1},\ldots,X_m ; the historically realized losses are given as $I_k=I_{[m]}(x_{m-k+1}),\ k=1,2,\ldots,n$,

Let x_{m-n+1},\ldots,x_m be historical observations of the risk factor changes X_{m-n+1},\ldots,X_m ; the historically realized losses are given as $I_k=I_{[m]}(x_{m-k+1}),\ k=1,2,\ldots,n$,

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses l_i , $1 \le i \le n$, to obtain $l_{1,n} \ge l_{2,n} \ge \dots \ge l_{n,n}$.

Let x_{m-n+1},\ldots,x_m be historical observations of the risk factor changes X_{m-n+1},\ldots,X_m ; the historically realized losses are given as $I_k=I_{[m]}(x_{m-k+1}),\ k=1,2,\ldots,n$,

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses l_i , $1 \le i \le n$, to obtain $l_{1,n} \ge l_{2,n} \ge \dots \ge l_{n,n}$.

Empirical VaR: $\widehat{VaR} = q_{\alpha}(\hat{F}_n^L) = I_{[n(1-\alpha)]+1,n}$

Let x_{m-n+1},\ldots,x_m be historical observations of the risk factor changes X_{m-n+1},\ldots,X_m ; the historically realized losses are given as $I_k=I_{[m]}(x_{m-k+1}),\ k=1,2,\ldots,n$,

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses l_i , $1 \le i \le n$, to obtain $l_1, l_2, l_3, l_4, l_5, l_6, l_6$.

Empirical VaR:
$$\widehat{VaR} = q_{\alpha}(\hat{F}_n^L) = I_{[n(1-\alpha)]+1,n}$$

Empirical CVaR:
$$\widehat{CVaR} = \frac{\sum_{i=1}^{[n(1-\alpha)]+1} l_{i,n}}{[n(1-\alpha)]+1}$$
.

Let x_{m-n+1},\ldots,x_m be historical observations of the risk factor changes X_{m-n+1},\ldots,X_m ; the historically realized losses are given as $I_k=I_{[m]}(x_{m-k+1}),\ k=1,2,\ldots,n$,

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses l_i , $1 \le i \le n$, to obtain $l_1, p > l_2, p > \ldots > l_{n,n}$.

Empirical VaR:
$$\widehat{VaR} = q_{\alpha}(\hat{F}_n^L) = I_{[n(1-\alpha)]+1,n}$$

Empirical CVaR:
$$\widehat{CVaR} = \frac{\sum_{i=1}^{[n(1-\alpha)]+1} l_{i,n}}{[n(1-\alpha)]+1}$$
.

Analogously, we can consider the loss aggregated over a given time interval (number of days or general time units).

VaR and CVaR of the loss aggregated over a number of days, e.g. 10 days, over the days $m-n+10(k-1)+1, m-n+10(k-1)+2, \ldots, m-n+10(k-1)+10$, denoted by $I_k^{(10)}$ is given as

$$I_k^{(10)} = I_{[m]} \left(\sum_{j=1}^{10} x_{m-n+10(k-1)+j} \right)$$
 $k = 1, \dots, [n/10]$

Historical simulation (contd.)

Advantages:

- simple implementation
- ▶ considers intrinsically the dependencies between the elements of the vector of the risk factors changes $X_{m-k} = (X_{m-k,1}, \dots, X_{m-k,d})$.

Historical simulation (contd.)

Advantages:

- simple implementation
- ▶ considers intrinsically the dependencies between the elements of the vector of the risk factors changes $X_{m-k} = (X_{m-k,1}, \dots, X_{m-k,d})$.

Disadvantages:

- ▶ lots of historical data needed to get good estimators
- the estimated loss cannot be larger than the maximal loss experienced in the past

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^d w_i X_{m+1,i} = -V w^T X_{m+1}, \\ \text{where } V &:= V_m, \ w_i := w_{m,i}, \ w = (w_1, \dots, w_d)^T, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T. \end{split}$$

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_{m}^{\Delta}(X_{m+1}) = -V \sum_{i=1}^{d} w_{i} X_{m+1,i} = -V w^{T} X_{m+1}, \\ \text{where } V &:= V_{m}, \ w_{i} := w_{m,i}, \ w = \left(w_{1}, \ldots, w_{d}\right)^{T}, \\ X_{m+1} &= \left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1,d}\right)^{T}. \\ \text{Assumption 1: } X_{m+1} &\sim N_{d}(\mu, \Sigma), \\ \text{and thus } &-V w^{T} X_{m+1} &\sim N(-V w^{T} \mu, V^{2} w^{T} \Sigma w) \end{split}$$

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_{m}^{\Delta}(X_{m+1}) = -V \sum_{i=1}^{d} w_{i} X_{m+1,i} = -V w^{T} X_{m+1}, \\ \text{where } V := V_{m}, \ w_{i} := w_{m,i}, \ w = (w_{1}, \ldots, w_{d})^{T}, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1,d})^{T}. \\ \text{Assumption 1: } X_{m+1} \sim N_{d}(\mu, \Sigma), \\ \text{and thus } -V w^{T} X_{m+1} \sim N(-V w^{T} \mu, V^{2} w^{T} \Sigma w) \end{split}$$

Let x_{m-n+1}, \ldots, x_m be the historically observed risk factor changes

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_{m}^{\Delta}(X_{m+1}) = -V \sum_{i=1}^{d} w_{i} X_{m+1,i} = -V w^{T} X_{m+1}, \\ \text{where } V &:= V_{m}, \ w_{i} := w_{m,i}, \ w = (w_{1}, \dots, w_{d})^{T}, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^{T}. \end{split}$$

Assumption 1: $X_{m+1} \sim N_d(\mu, \Sigma)$, and thus $-Vw^TX_{m+1} \sim N(-Vw^T\mu, V^2w^T\Sigma w)$

Let x_{m-n+1}, \ldots, x_m be the historically observed risk factor changes Assumption 2: x_{m-n+1}, \ldots, x_m are i.i.d.

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_{m}^{\Delta}(X_{m+1}) = -V \sum_{i=1}^{d} w_{i} X_{m+1,i} = -V w^{T} X_{m+1}, \\ \text{where } V &:= V_{m}, \ w_{i} := w_{m,i}, \ w = \left(w_{1}, \ldots, w_{d}\right)^{T}, \\ X_{m+1} &= \left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1,d}\right)^{T}. \end{split}$$

Assumption 1:
$$X_{m+1} \sim N_d(\mu, \Sigma)$$
, and thus $-Vw^T X_{m+1} \sim N(-Vw^T \mu, V^2 w^T \Sigma w)$

Let x_{m-n+1}, \ldots, x_m be the historically observed risk factor changes

Assumption 2: x_{m-n+1}, \ldots, x_m are i.i.d.

Estimator for
$$\mu_i$$
: $\hat{\mu}_i = \frac{1}{n} \sum_{k=1}^n x_{m-k+1,i}$, $i = 1, 2, \dots, d$

Estimator for
$$\Sigma = \left(\sigma_{ij}\right)$$
: $\hat{\Sigma} = \left(\hat{\sigma}_{ij}\right)$ where
$$\hat{\sigma}_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{m-k+1,i} - \mu_i)(x_{m-k+1,j} - \mu_j) \qquad i, j = 1, 2, \dots, d$$

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_{m}^{\Delta}(X_{m+1}) = -V \sum_{i=1}^{d} w_{i} X_{m+1,i} = -V w^{T} X_{m+1}, \\ \text{where } V &:= V_{m}, \ w_{i} := w_{m,i}, \ w = \left(w_{1}, \ldots, w_{d}\right)^{T}, \\ X_{m+1} &= \left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1,d}\right)^{T}. \end{split}$$

Assumption 1:
$$X_{m+1} \sim N_d(\mu, \Sigma)$$
, and thus $-Vw^TX_{m+1} \sim N(-Vw^T\mu, V^2w^T\Sigma w)$

Let x_{m-n+1}, \ldots, x_m be the historically observed risk factor changes

Assumption 2: x_{m-n+1}, \ldots, x_m are i.i.d.

Estimator for
$$\mu_i$$
: $\hat{\mu}_i = \frac{1}{n} \sum_{k=1}^n x_{m-k+1,i}$, $i = 1, 2, \dots, d$

Estimator for
$$\Sigma = \left(\sigma_{ij}\right)$$
: $\hat{\Sigma} = \left(\hat{\sigma}_{ij}\right)$ where
$$\hat{\sigma}_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{m-k+1,i} - \mu_i)(x_{m-k+1,j} - \mu_j) \qquad i, j = 1, 2, \dots, d$$

Estimator for VaR:
$$\widehat{VaR}(L_{m+1}) = -Vw^T\hat{\mu} + V\sqrt{w^T\hat{\Sigma}w}\phi^{-1}(\alpha)$$

The variance-covariance method (contd.)

Advantages:

- analytical solution
- simple implementation
- no simulationen needed

The variance-covariance method (contd.)

Advantages:

- analytical solution
- simple implementation
- no simulationen needed

Disadvantages:

- Linearisation is not always appropriate, only for a short time horizon reasonable
- ► The normal distribution assumption could lead to underestimation of risks and should be argued upon (e.g. in terms of historical data)

Monte-Carlo approach

- (1) historical observations of risk factor changes X_{m-n+1}, \ldots, X_m .
- (2) assumption on a parametric model for the cumulative distribution function of X_k , $m-n+1 \leq k \leq m$; e.g. a common distribution function F and independence
- (3) estimation of the parameters of F.
- (4) generation of N samples $\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_N$ from $F(N \gg 1)$ and computation of the losses $I_k = I_{[m]}(\tilde{x}_k), 1 \le k \le N$
- (5) computation of the empirical distribution of the loss function L_{m+1} :

$$\hat{F}_{N}^{L_{m+1}}(x) = \frac{1}{N} \sum_{k=1}^{N} I_{[I_{k},\infty)}(x).$$

(5) computation of estimates for the VaR and CVAR of the loss

function:
$$\widehat{VaR}(L_{m+1}) = (\hat{F}_N^{L_{m+1}}) = I_{[N(1-\alpha)]+1,N},$$

$$\widehat{CVaR}(L_{m+1}) = \frac{\sum_{\substack{k=1 \ N(1-\alpha)]+1}}^{[N(1-\alpha)]+1} I_{k,N}}{[N(1-\alpha)]+1},$$

where the losses are sorted $I_{1,N} \ge I_{2,N} \ge ... \ge I_{N,N}$.

Advantages:

- very flexible; can use any distribution F from which simulation is possible
- time dependencies of the risk factor changes can be considered by using time series

Advantages:

- very flexible; can use any distribution F from which simulation is possible
- time dependencies of the risk factor changes can be considered by using time series

Disadvantages:

 computationally expensive; a large number of simulations needed to obtain good estimates

Example

The portfolio consists of one unit of asset S with price be S_t at time t. The risk factor changes

$$X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k}),$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ .

Example

The portfolio consists of one unit of asset S with price be S_t at time t. The risk factor changes

$$X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k}),$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ . θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Example

The portfolio consists of one unit of asset S with price be S_t at time t. The risk factor changes

$$X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k}),$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ . θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Let the price at time t_k be $S := S_{t_k}$

Example

The portfolio consists of one unit of asset S with price be S_t at time t. The risk factor changes

$$X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k}),$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ . θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Let the price at time t_k be $S := S_{t_k}$ The VaR of the portfolio over $[t_k, t_{k+1}]$ is given as

$$VaR_{lpha}(L_{t_k+1}) = S\bigg(1 - \exp\{F_{ heta}^{\leftarrow}(1-lpha)\}\bigg).$$

Example

The portfolio consists of one unit of asset S with price be S_t at time t. The risk factor changes

$$X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k}),$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ . θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Let the price at time t_k be $S := S_{t_k}$ The VaR of the portfolio over $[t_k, t_{k+1}]$ is given as

$$VaR_{\alpha}(L_{t_k+1}) = S\bigg(1 - \exp\{F_{\theta}^{\leftarrow}(1-\alpha)\}\bigg).$$

Depending on F_{θ} it can be complicated or impossible to compute CVaR analytically.

Alternative: Monte-Carlo simulation.

Example

Let the portfolio and the risk factor changes X_{k+1} be as in the previous example.

A popular model for the logarithmic returns of assets is GARCH(1,1)(see e.g. Alexander 2002):

$$X_{k+1} = \sigma_{k+1} Z_{k+1}$$
 (1)

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2$$
 (2)

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2 \tag{2}$$

where Z_k , $k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_0, a_1 and b_1 are parameters, which should be estimated.

Example

Let the portfolio and the risk factor changes X_{k+1} be as in the previous example.

A popular model for the logarithmic returns of assets is GARCH(1,1)(see e.g. Alexander 2002):

$$X_{k+1} = \sigma_{k+1} Z_{k+1}$$
 (1)

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2$$
 (2)

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2 \tag{2}$$

where Z_k , $k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_0, a_1 and b_1 are parameters, which should be estimated.

It is simple to simulate from this model.

Example

Let the portfolio and the risk factor changes X_{k+1} be as in the previous example.

A popular model for the logarithmic returns of assets is GARCH(1,1)(see e.g. Alexander 2002):

$$X_{k+1} = \sigma_{k+1} Z_{k+1}$$
 (1)

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2$$
 (2)

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2 \tag{2}$$

where Z_k , $k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_0, a_1 and b_1 are parameters, which should be estimated.

It is simple to simulate from this model.

However analytical computation of VaR and CVaR over a certain time interval consisting of many periods is cumbersome! Check it out!

Notation:

- ▶ We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x \to \infty} f(x)/g(x) = 1$
- $ar{F} := 1 F$ is called the *right tail* of the univariate distribution function F.

Notation:

- ► We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x \to \infty} f(x)/g(x) = 1$
- ightharpoonup ar F := 1 F is called the *right tail* of the univariate distribution function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim_{x\to\infty}\frac{\bar{F}(x)}{e^{-\lambda x}}=\infty$, $\forall \lambda>0$.

Notation:

- ► We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x \to \infty} f(x)/g(x) = 1$
- ightharpoonup ar F := 1 F is called the *right tail* of the univariate distribution function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim_{x\to\infty}\frac{\bar{F}(x)}{e^{-\lambda x}}=\infty$, $\forall \lambda>0$.

Also a r.v. X for which $\exists k \in \mathbb{N}$ with $E(X^k) = \infty$ will be often called heavy tailed.

Notation:

- ► We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x \to \infty} f(x)/g(x) = 1$
- $ightharpoonup ar{F} := 1 F$ is called the *right tail* of the univariate distribution function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim_{x\to\infty}\frac{\bar{F}(x)}{e^{-\lambda x}}=\infty$, $\forall \lambda>0$.

Also a r.v. X for which $\exists k \in \mathbb{N}$ with $E(X^k) = \infty$ will be often called heavy tailed.

These two "definitions" are not equivalent!

Definition

A measurable function $h:(0,+\infty)\to(0,+\infty)$ has a regular variation with index $\rho\in\mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
 (3)

Notation: $h \in RV_{\rho}$.

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
 (3)

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ .

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
 (3)

Notation: $h \in RV_{\rho}$.

If $\rho=0$, we say h has a slow variation or is slowly varying towards ∞ . If $h\in RV_{\rho}$, then $h(x)/x^{\rho}\in RV_{0}$.

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
 (3)

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ . If $h \in RV_o$, then $h(x)/x^\rho \in RV_0$.

If $h \in RV_{\rho}$, then $\exists L \in RV_0$ such that $h(x) = L(x)x^{\rho}$ $(L(x) = h(x)/x^{\rho})$.

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
 (3)

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ . If $h \in RV_{\rho}$, then $h(x)/x^{\rho} \in RV_{0}$.

If $h \in RV_{\rho}$, then $\exists L \in RV_0$ such that $h(x) = L(x)x^{\rho}$ ($L(x) = h(x)/x^{\rho}$). If $\rho < 0$, then the convergence in (3) uniform in every interval $(b, +\infty)$ for b > 0.

Example

Show that $L \in RV_0$ holds for the functions L as below:

- (a) $\lim_{x\to+\infty} L(x) = c \in (0,+\infty)$
- (b) $L(x) := \ln(1+x)$
- (c) $L(x) := \ln(1 + \ln(1 + x))$

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ :

$$\lim\inf_{x\to\infty} L(x) = 0$$
 and $\lim\sup_{x\to\infty} L(x) = \infty$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ :

$$\lim\inf_{x\to\infty}L(x)=0$$
 and $\lim\sup_{x\to\infty}L(x)=\infty$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: Let X > 0 be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\bar{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ :

$$\lim \inf_{x \to \infty} L(x) = 0$$
 and $\lim \sup_{x \to \infty} L(x) = \infty$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: Let X>0 be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\bar{F} \in RV_{-\alpha}$ for some $\alpha>0$.

Example:

1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for x>1 and $\alpha>0$. Then $\bar{G}_{\alpha}(tx)/\bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for t>0, i.e. $\bar{G}_{\alpha}\in RV_{-\alpha}$.

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ :

$$\lim \inf_{x \to \infty} L(x) = 0$$
 and $\lim \sup_{x \to \infty} L(x) = \infty$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: Let X>0 be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\bar{F} \in RV_{-\alpha}$ for some $\alpha>0$.

Example:

- 1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for x>1 and $\alpha>0$. Then $\bar{G}_{\alpha}(tx)/\bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for t>0, i.e. $\bar{G}_{\alpha}\in RV_{-\alpha}$.
- 2. Fréchet distribution: $\Phi_{\alpha}(x) := \exp\{-x^{-\alpha}\}$ for x > 0 and $\Phi_{\alpha}(0) = 0$, for some parameter (fixed) $\alpha > 0$. Then $\lim_{x \to \infty} \bar{\Phi}_{\alpha}(x)/x^{-\alpha} = 1$ holds, i.e. $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$.

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ :

$$\lim \inf_{x \to \infty} L(x) = 0$$
 and $\lim \sup_{x \to \infty} L(x) = \infty$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: Let X>0 be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\bar{F} \in RV_{-\alpha}$ for some $\alpha>0$.

Example:

- 1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for x>1 and $\alpha>0$. Then $\bar{G}_{\alpha}(tx)/\bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for t>0, i.e. $\bar{G}_{\alpha}\in RV_{-\alpha}$.
- 2. Fréchet distribution: $\Phi_{\alpha}(x) := \exp\{-x^{-\alpha}\}$ for x>0 and $\Phi_{\alpha}(0)=0$, for some parameter (fixed) $\alpha>0$. Then $\lim_{x\to\infty}\bar{\Phi}_{\alpha}(x)/x^{-\alpha}=1$ holds, i.e. $\bar{\Phi}_{\alpha}\in RV_{-\alpha}$.

Proposition (no proof)

Let X>0 be a r.v. with distribution function F, such that $\bar{F}\in RV_{-\alpha}$ for some $\alpha>0$. Then $E(X^{\beta})<\infty$ for $\beta<\alpha$ and $E(X^{\beta})=\infty$ for $\beta>\alpha$ hold.

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ :

$$\lim \inf_{x \to \infty} L(x) = 0$$
 and $\lim \sup_{x \to \infty} L(x) = \infty$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: Let X > 0 be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\bar{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

Example:

- 1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for x>1 and $\alpha>0$. Then $\bar{G}_{\alpha}(tx)/\bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for t>0, i.e. $\bar{G}_{\alpha}\in RV_{-\alpha}$.
- 2. Fréchet distribution: $\Phi_{\alpha}(x) := \exp\{-x^{-\alpha}\}$ for x > 0 and $\Phi_{\alpha}(0) = 0$, for some parameter (fixed) $\alpha > 0$. Then $\lim_{x \to \infty} \bar{\Phi}_{\alpha}(x)/x^{-\alpha} = 1$ holds, i.e. $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$.

Proposition (no proof)

Let X>0 be a r.v. with distribution function F, such that $\bar{F}\in RV_{-\alpha}$ for some $\alpha>0$. Then $E(X^{\beta})<\infty$ for $\beta<\alpha$ and $E(X^{\beta})=\infty$ for $\beta>\alpha$ hold.

The converse is not true!

