Conditional Value at Risk (contd.)
Example 1:

(a) Let L ~ Exp()). Compute CVaR,(L).

(b) Let the distribution function F; of the loss function L be given as
follows : Fi(x) =1 — (14 yx)~Y/7 for x > 0 and v € (0,1).
Compute CVaR,(L).
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Example 2:

Let L ~ N(0,1). Let ¢ und ® be the density and the distribution

71
function of L, respectively. Show that CVaR, (L) = M holds.
Let L’ ~ N(u,02). Show that CVaR,(L') = u + aM holds.
Exercise:

Let the loss L be distributed according to the Student’s t-distribution
with v > 1 degrees of freedom. The density of L is

(v +1)/2) <1 s > S

8(x) = ST (v)2)

Show that CVaR, (L) = &4 () () where ¢, is the
distribution function of L.



Methods for the computation of VaR und CVaR

Consider the portfolio value Vi, = f(tm, Zm), where Z,, is the vector of
risk factors.

Let the loss function over the interval [ty, tmy1] be given as
Limy1 = fm)(Xms1), where Xy 1 is the vector of the risk factor changes,

l.e.
Xm+1 = Zm+1 —Zn.

Consider observations (historical data) of risk factor values
Zm—n+17 e Zm-
How to use these data to compute/estimate VaR(Lnt1), CVaR(Lmy1)?



The empirical VaR and the empirical CVaR

Let x1,x2,...,X, be a sample of i.i.d. random variables X1, X5, ..., X,
with distribution function F.
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The empirical VaR and the empirical CVaR
Let x1,x2,...,X, be a sample of i.i.d. random variables X1, X5, ..., X,
with distribution function F.
The empirical distribution function

1 n
Fa(x) = - D lgetoe) (X)
k=1

The empirical quantile

ga(Fn) = inf{x € R: Fy(x) > a} = Fi (a)

Assumption: x; > x2 > ... > x,. Then go(Fn) = X[p1—a))+1 holds, where
[y] :=sup{n € IN: n < y} for every y € R.

Lemma
Let §o(F) := qa(F,) and let F be a strictly increasing function. Then
limp— o0 Ga(F) = qa(F) holds Vo € (0,1), i.e. the estimator §o(F) is

consistent.
n(1—a)]+1
= Xk

_— [
The empirical estimator of CVaR is CVaR,(F) = S CE=)EsE
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A non-parametric bootstrapping approach to compute the

confidence interval of the estimator

Let X1, Xo,..., X, bei.i.d. with distribution function F and let
X1 > Xp > ... > X, be an ordered sample of F.

Goal: computation of an estimator of a certain parameter 6 depending on
F, e.g. 0 = g,(F), and the corresponding confidence interval.

Let é(xl7 ..., Xp) be an estimator of 4, e.g. 9A(X1, ooy Xn) = X[(n(1—a)]+1
0= qa(F)'

The required confidence interval is an (a, b) with a = a(xq, ..., x,) u.
b= b(x1,...,%n), such that P(a < 6 < b) = p, for a given confidence
level p.

Case |I: F is known.
(1)

Generate N samples >”<1i
(N should be large)

Let §; = 9<;1<">,;§">,...,;5">), 1<i<N.

7>~<2(i), . 7>"<r(;i), 1 < i < N, by simulation from F



Case | (cont.)

The empirical distribution function of é(xl,xz, ..., Xp) is given as

~ 1 N
0 .__ .
v =3 D .o0)
i=1

and it tends to F? for N — oc.

The required conficence interval is given as

<q12p(F£), qwzpwﬁ))

(assuming that the sample sizes N und n are large enough).



Case Il: F is not known =- Bootstrapping!
The empirical distribution function of X;, 1 < i < n, is given as

1 n
F,,(X) = ; Z I[X,',OO)(X)'
i=1

For n large F, =~ F holds.
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Case Il: F is not known =- Bootstrapping!
The empirical distribution function of X;, 1 < i < n, is given as

1 n
F,,(X) = ; Z I[X,',OO)(X)'
i=1

For n large F, =~ F holds.

Generate samples from F,, be choosing n elementes in {xi,x2,...,Xn}
and putting every element back to the set immediately after its choice
Assume N such samples are generated: xf('),xg('), . ,x,f('), 1<i<N.

Compute 0 = é(xl*(i),xg(/), .. ,X:(i)

The empirical distribution of 7 is given as Ffj (x) = % Z”V:l liox o0y (%);

it approximates the distribution function FO of HA(Xl,Xg, ooy Xn) for

N — o0.

A confidence interval (a, b) with confidence level p is given by
a=qa_p)2(FN ), b= daip)2(FN)-

Thus a = QFN(1+p)/2]+1’ b= 0?N(1—p)/2]+1’ where 67 > ... > 0 is the

sorted 0* sample.



Summary of the non-parametric bootstrapping approach to

compute confidence intervals

Input: Sample xi, x, ..., x, of the i.i.d. rand0£n variables X1, X5,..., X,
with distribution function F and an estimator 6(xq, x2, ..., x,) of an
unknown parameter 6(F), A confidence level p € (0,1).

Output: A confidence interval I, for 6 with confidence level p.
> Generate N new Samples xf(i),x;(i), oD 1<i<n, by

chosing elements in {x1, x2, ..., x,} and putting them back right
after the choice.

» Compute 0F = é<x1*(i)>xz*(i)7 o ’X:(i)> .

> Setz |, = 9?N(1+p)/2]+1,N"9[*N(1—p)/2]+1,N , Where

01y =03 = ... 0y y is obtained by sorting 67,03, ...,0} .



An approximative solution without bootstrapping

Input: A sample x1, xo, ..., x, of the random variables X;, 1 </ < n,
i.i.d. with unknown continuous distribution function F, a confidence level

p€(0,1).
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i.i.d. with unknown continuous distribution function F, a confidence level
p€(0,1).

Output: A p’ € (0,1), with p < p’ < p + ¢, for some small ¢, and a
confidence interval (a, b) for g (F), i.e. a = a(x1, %2, ..., Xn),

b = b(x1, X2, ...,X,), such that

P(a < go(F) < b) =p' and P(a > qo(F)) = P(b < ga(F) < (1—p)/2 holds.



An approximative solution without bootstrapping

Input: A sample x1, xo, ..., x, of the random variables X;, 1 </ < n,
i.i.d. with unknown continuous distribution function F, a confidence level
p€(0,1).

Output: A p’ € (0,1), with p < p’ < p + ¢, for some small ¢, and a
confidence interval (a, b) for g (F), i.e. a = a(x1, %2, ..., Xn),

b = b(x1, X2, ...,X,), such that

P(a < go(F) < b) =p' and P(a > qo(F)) = P(b < ga(F) < (1—p)/2 holds.

Assume w.l.0.g. that the sample is sorted x; > xo > ... > Xx,.
Determine i > j, i,j € {1,2,...,n}, and the smallest p’ > p, such that

P<Xi,n < qa(F) < Xj,n) = p/ (*) and

P(x,- > qa(F)> <(1-p)/2and P(x,- < qa(F)> < (1 - p)/2(x+).



An approximative solution without bootstrapping (contd.)

Let Yo == #{xx: xk > qu(F)}



An approximative solution without bootstrapping (contd.)

Let Yo == #{xx: xk > qu(F)}

| /\

We get P(x; < qa(F)) = P(x; < ga(F)) = P(Ya 1)
=1 <i

J-
P(X,' > Qa(F)) ~ P(Xi > qa(F)) - P( - 1)



An approximative solution without bootstrapping (contd.)

Let Yo == #{xx: xk > qu(F)}

II/\

We get P(x; < gu(F)) = P(x; < qu(F)) = P(Yo <j - 1)
=1- <i

PO = qulF) ~ PG = Gu(F)) =1 — P(Ya < 1— 1)

Yo ~ Bin(n,1 — ) since Prob(xx > qo(F)) = 1 — « for a sample point
Xk -



An approximative solution without bootstrapping (contd.)

Let Yo == #{xx: xk > qu(F)}

We get P(x; < ga(F)) = P(x < qa(F)) = P(Ya <Jj = 1)
P(xi = qa(F)) = P(xi > qa(F)) = 1= P(Ya <i—1)
Yo ~ Bin(n,1 — ) since Prob(xx > qo(F)) = 1 — « for a sample point

Xk -

Compute P(x; < qo(F)) and P(xi > q.(F)) for different i and j until
indices i,j € {1,2,...,n}, i > j, which fulfill (xx) are found.



An approximative solution without bootstrapping (contd.)

Let Yo == #{xx: xk > qu(F)}

We get P(x; < ga(F)) = P(x < qa(F)) = P(Ya <Jj = 1)
P(xi = qa(F)) = P(xi > qa(F)) = 1= P(Ya <i—1)
Yo ~ Bin(n,1 — ) since Prob(xx > qo(F)) = 1 — « for a sample point

Xk -

Compute P(x; < qo(F)) and P(xi > q.(F)) for different i and j until
indices i,j € {1,2,...,n}, i > j, which fulfill (xx) are found.

Set a:= x; and b := x;.



Historical simulation

Let Xp—n+1,---,Xm be historical observations of the risk factor changes
Xm—n+1, - - - Xm; the historically realized losses are given as
Ik = I[m](Xm—k+1)y k = 1, 2, ey n,
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The historically realized losses can be seen as a sample of the loss
distribution. Sort the historical losses /;, 1 < i < n, to obtain
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Empirical VaR: VaR = qa(/:_nL) = ln(1=a)]+1,n



Historical simulation

Let Xp—n+1,---,Xm be historical observations of the risk factor changes
Xm—n+1, - - - Xm; the historically realized losses are given as

/k = I[m](Xm—k-i—l)y k = 1, 2, .

Assumption: the historically realized losses are i.i.d.
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Historical simulation

Let Xp—n+1,---,Xm be historical observations of the risk factor changes

Xm—n+1, - - - Xm; the historically realized losses are given as

/k = I[m](Xm—k-i—l)y k = ].7 2, .

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss
distribution. Sort the historical losses /;, 1 < i < n, to obtain
hin>hn>...2 Inn

Empirical VaR: VaR = g (FL) = hn(1—a)+1,n

[n(1 a]+1
Empirical CVaR: CVaR = W

Analogously, we can consider the loss aggregated over a given time
interval (number of days or general time units).
VaR and CVaR of the loss aggregated over a number of days, e.g. 10

days, over the days m — n+10(k — 1)+ 1,m—n+10(k —1)+2, ...

m — n+ 10(k — 1) + 10, denoted by /,((10) is given as

/1210) = I (Zjlgl an+10(/<1)+.i> k=1,...,[n/10]

1



Historical simulation (contd.)

Advantages:
> simple implementation

» considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xp—k = (Xm—k,15- - » Xm—k,d)-



Historical simulation (contd.)

Advantages:
> simple implementation

» considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xp—k = (Xm—k,15- - » Xm—k,d)-

Disadvantages:
» lots of historical data needed to get good estimators

> the estimated loss cannot be larger than the maximal loss
experienced in the past
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Idea: use the linearised loss function under the assumption that the
vector of the risk factor changes is normally distributed.
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The variance-covariance method

Idea: use the linearised loss function under the assumption that the
vector of the risk factor changes is normally distributed.

A _ A _ d _ T
Lo = In(Ximg1) = =V iy wiXmpai = —Vw ' X,
where V = Vi, W i= Wi, w = (wq,...,wq) T,
T
Xm1 = (Xmi1,1, Xmt1,2, - -+, Xmt1,d) -

Assumption 1: Xp41 ~ Ng(p, X),
and thus —Vw ™ X1 ~ N(=Vw T, V2w T Zw)

Let Xm—n+1,---,Xm be the historically observed risk factor changes
Assumption 2: Xp_pi1,-..,Xm are i.i.d.

Estimator for pi;: fii = 2 30 Xm—ks1,i i =1,2,...,d

Estimator for ¥ = (a,j): s = (6,;) where

~ 1 ..

Gij = 25 > pq (Xm—kr1,i — 1) (Xm—kt1.5 — 1) hj=12....d

Estimator for VaR: VaR(Lmy1) = —VwT i+ VVwTSwo ()
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» analytical solution
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The variance-covariance method (contd.)

Advantages:
» analytical solution
> simple implementation

> no simulationen needed

Disadvantages:

» Linearisation is not always appropriate, only for a short time horizon
reasonable

» The normal distribution assumption could lead to underestimation
of risks and should be argued upon (e.g. in terms of historical data)



Monte-Carlo approach

historical observations of risk factor changes X,,_ 11, - - -, Xn.

assumption on a parametric model for the cumulative distribution
function of X, m—n+1< k< m;
e.g. a common distribution function F and independence

estimation of the parameters of F.

generation of N samples X, %2, ...,%y from F (N > 1) and
computation of the losses /x = /iy (%), 1< k<N

computation of the empirical distribution of the loss function L, y:

m+1 Z I[/k,

computation of estimates for the VaR and CVAR of the loss
function: \737_\)(Lm+1) = (’/'_\,\L,m“) = /[N(lfa)]+1,Nr

[v(1 a)]+1l N

CVaR(Lm+1) = Z[(]-W’

where the losses are sorted h vy > by > ... > Iyn.



Monte-Carlo approach (contd.)

Advantages:

» very flexible; can use any distribution F from which simulation is
possible

» time dependencies of the risk factor changes can be considered by
using time series



Monte-Carlo approach (contd.)

Advantages:

» very flexible; can use any distribution F from which simulation is
possible

» time dependencies of the risk factor changes can be considered by
using time series

Disadvantages:

> computationally expensive; a large number of simulations needed to
obtain good estimates



Monte-Carlo approach (contd.)
Example

The portfolio consists of one unit of asset S with price be S; at time t.
The risk factor changes

Xk+1 - ln(Stk+1) - ln(stk)’

are i.i.d. with distribution function Fy for some unknown parameter 6.
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Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S; at time t.
The risk factor changes

Xk+1 - ln(Stk+1) - ln(stk)’

are i.i.d. with distribution function Fy for some unknown parameter 6.

0 can be estimated by means of historical data (e.g. maximum likelihood
approaches)

Let the price at time ty be S 1= S,

The VaR of the portfolio over [ty, ty1] is given as

VaRa(Lyi1) = S (1 —exp{F (1 a)}) .

Depending on Fy it can be complicated or impossible to compute CVaR
analytically.
Alternative: Monte-Carlo simulation.



Monte-Carlo approach (contd.)

Example

Let the portfolio and the risk factor changes Xy1 be as in the previous
example.

A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xisr = Oky1Zk41 (1)
Tisr = a0+ aXg + biog (2)

where Zi, k € IN, are i.i.d. and standard normally distributed, and ag,a;
and by are parameters, which should be estimated.



Monte-Carlo approach (contd.)

Example

Let the portfolio and the risk factor changes Xy1 be as in the previous
example.

A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xisr = Oky1Zk41 (1)
Tisr = a0+ aXg + biog (2)

where Zi, k € IN, are i.i.d. and standard normally distributed, and ag,a;
and by are parameters, which should be estimated.

It is simple to simulate from this model.



Monte-Carlo approach (contd.)

Example

Let the portfolio and the risk factor changes Xy1 be as in the previous
example.

A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xey1 = oxp1Zk41 (1)
Tisr = a0+ aXg + biog (2)
where Zi, k € IN, are i.i.d. and standard normally distributed, and ag,a;
and by are parameters, which should be estimated.
It is simple to simulate from this model.

However analytical computation of VaR and CVaR over a certain time
interval consisting of many periods is cumbersome! Check it out!



Chapter 3: Extreme value theory

Notation:
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» F:=1— F is called the right tail of the univariate distribution
function F.
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Chapter 3: Extreme value theory

Notation:

» We will often use the same notation for the distribution of a random
variable (r.v.) and its (cumulative) distribution function!

> f(x) ~ g(x) for x = co means lim,_,o f(x)/g(x) =1

» F:=1— F is called the right tail of the univariate distribution
function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff
limy—so0 252 = 00, YA > 0.

Also a r.v. X for which 3k € IN with E(X*) = oo will be often called
heavy tailed.

These two “definitions” are not equivalent!



Regular variation

Definition
A measurable function h: (0,+00) — (0, +00) has a regular variation
with index p € IR towards 400 iff

i h(tx)
=T h(t)

=x", Vx>0 (3)

Notation: h € RV,,.



Regular variation
Definition
A measurable function h: (0,+00) — (0, +00) has a regular variation
with index p € IR towards 400 iff

i h(tx)
=T h(t)

=x", Vx>0 (3)

Notation: h € RV,,.

If p =20, we say h has a slow variation or is slowly varying towards co.



Regular variation
Definition
A measurable function h: (0,+00) — (0, +00) has a regular variation
with index p € IR towards 400 iff

i h(tx)
=T h(t)

=x", Vx>0 (3)

Notation: h € RV,,.

If p =20, we say h has a slow variation or is slowly varying towards co.
If he RV, then h(x)/x" € RVj.



Regular variation
Definition
A measurable function h: (0,+00) — (0, +00) has a regular variation
with index p € IR towards 400 iff

i h(tx)
=T h(t)

=x", Vx>0 (3)

Notation: h € RV,,.

If p =20, we say h has a slow variation or is slowly varying towards co.
If he RV, then h(x)/x" € RVj.
If h e RV, then 3L € RV} such that h(x) = L(x)x” (L(x) = h(x)/x").



Regular variation

Definition
A measurable function h: (0,+00) — (0, +00) has a regular variation
with index p € IR towards 400 iff

i h(tx)
=T h(t)

=x", Vx>0 (3)

Notation: h € RV,,.

If p =0, we say h has a slow variation or is slowly varying towards co.
If h € RV, then h(x)/x? € RV,.

If h e RV, then 3L € RV} such that h(x) = L(x)x” (L(x) = h(x)/x").
If p < 0, then the convergence in (3) uniform in every interval (b, +00)
for b > 0.

Example
Show that L € RVy holds for the functions L as below:

(a) limy_ 100 L(x) = c € (0, 400)
(b) L(x):=In(14x)
(c) L(x):=In(1+In(1+x))
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Example: Check whether f € RV} holds for f(x) = 3 + sin x,
f(x) = In(e + x) + sin x?
Notice: a function L € RV, can have an infinite variation on oco:

lim inf L(x)=0and lim sup L(x) =0
X—+00 X—$00

as for example L(x) = exp{(In(1 + x))? cos((In(1 + x))'/)}.

Definition: Let X > 0 be a r.v. with di_stribution function F. X is said
to have a regular variation on +o0, iff F € RV_, for some « > 0.

Example:

L. Pareto distribution: G,(x):=1—x"¢, for x > 1 and o > 0. Then
Go(tx)/ Go(x) = x~ holds for t > 0, i.e. G, € RV_,.

2. Fréchet distribution: ®,(x) := exp{—x"%} for x > 0 and
®,(0) = 0, for some parameter (fixed) a > 0. Then

limy o0 Pa(x)/x~% =1 holds, i.e. ®, € RV_,.

Proposition (no proof)

Let X > 0 be a r.v. with distribution function F, such that F € RV_, for
some a > 0. Then E(X?) < oo for B < a and E(X?) = o for 8 > «
hold.

The converse is not true!



