Conditional Value at Risk (contd.)

Example 1:

(a) Let $L \sim \operatorname{Exp}(\lambda)$. Compute $C V a R_{\alpha}(L)$.
(b) Let the distribution function F_{L} of the loss function L be given as follows : $F_{L}(x)=1-(1+\gamma x)^{-1 / \gamma}$ for $x \geq 0$ and $\gamma \in(0,1)$. Compute $\mathrm{CVa}_{\alpha}(\mathrm{L})$.

Conditional Value at Risk (contd.)

Example 1:

(a) Let $L \sim \operatorname{Exp}(\lambda)$. Compute $C V a R_{\alpha}(L)$.
(b) Let the distribution function F_{L} of the loss function L be given as follows : $F_{L}(x)=1-(1+\gamma x)^{-1 / \gamma}$ for $x \geq 0$ and $\gamma \in(0,1)$. Compute $\mathrm{CVa}_{\alpha}(\mathrm{L})$.

Example 2:

Let $L \sim N(0,1)$. Let ϕ und Φ be the density and the distribution function of L, respectively. Show that $C V a R_{\alpha}(L)=\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{1-\alpha}$ holds.
Let $L^{\prime} \sim N\left(\mu, \sigma^{2}\right)$. Show that $C \operatorname{Va} R_{\alpha}\left(L^{\prime}\right)=\mu+\sigma \frac{\phi\left(\Phi^{-1}(\alpha)\right)}{1-\alpha}$ holds.

Conditional Value at Risk (contd.)

Example 1:

(a) Let $L \sim \operatorname{Exp}(\lambda)$. Compute $C V a R_{\alpha}(L)$.
(b) Let the distribution function F_{L} of the loss function L be given as follows : $F_{L}(x)=1-(1+\gamma x)^{-1 / \gamma}$ for $x \geq 0$ and $\gamma \in(0,1)$. Compute $\mathrm{CVaR}_{\alpha}(\mathrm{L})$.

Example 2:

Let $L \sim N(0,1)$. Let ϕ und Φ be the density and the distribution function of L, respectively. Show that $C V_{a} R_{\alpha}(L)=\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{1-\alpha}$ holds.
Let $L^{\prime} \sim N\left(\mu, \sigma^{2}\right)$. Show that $C V_{a} R_{\alpha}\left(L^{\prime}\right)=\mu+\sigma \frac{\phi\left(\Phi^{-1}(\alpha)\right)}{1-\alpha}$ holds.

Exercise:

Let the loss L be distributed according to the Student's t-distribution with $\nu>1$ degrees of freedom. The density of L is

$$
g_{\nu}(x)=\frac{\Gamma((\nu+1) / 2)}{\sqrt{\nu \pi} \Gamma(\nu / 2)}\left(1+\frac{x^{2}}{\nu}\right)^{-(\nu+1) / 2}
$$

Show that $C V_{a} R_{\alpha}(L)=\frac{g_{\nu}\left(t_{\nu}^{-1}(\alpha)\right)}{1-\alpha}\left(\frac{\nu+\left(t_{\nu}^{-1}(a)\right)^{2}}{\nu-1}\right)$, where t_{ν} is the distribution function of L.

Methods for the computation of VaR und CVaR

Consider the portfolio value $V_{m}=f\left(t_{m}, Z_{m}\right)$, where Z_{m} is the vector of risk factors.

Let the loss function over the interval $\left[t_{m}, t_{m+1}\right]$ be given as $L_{m+1}={ }_{[m]}\left(X_{m+1}\right)$, where X_{m+1} is the vector of the risk factor changes, i.e.

$$
X_{m+1}=Z_{m+1}-Z_{m}
$$

Consider observations (historical data) of risk factor values Z_{m-n+1}, \ldots, Z_{m}.
How to use these data to compute/estimate $\operatorname{VaR}\left(L_{m+1}\right), C V a R\left(L_{m+1}\right)$?

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.
The empirical distribution function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{\left[x_{k},+\infty\right)}(x)
$$

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.
The empirical distribution function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{\left[x_{k},+\infty\right)}(x)
$$

The empirical quantile

$$
q_{\alpha}\left(F_{n}\right)=\inf \left\{x \in \mathbb{R}: F_{n}(x) \geq \alpha\right\}=F_{n}^{\leftarrow}(\alpha)
$$

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.
The empirical distribution function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{\left[x_{k},+\infty\right)}(x)
$$

The empirical quantile

$$
q_{\alpha}\left(F_{n}\right)=\inf \left\{x \in \mathbb{R}: F_{n}(x) \geq \alpha\right\}=F_{n}^{\leftarrow}(\alpha)
$$

Assumption: $x_{1}>x_{2}>\ldots>x_{n}$. Then $q_{\alpha}\left(F_{n}\right)=x_{[n(1-\alpha)]+1}$ holds, where $[y]:=\sup \{n \in \mathbb{N}: n \leq y\}$ for every $y \in \mathbb{R}$.

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.
The empirical distribution function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{\left[x_{k},+\infty\right)}(x)
$$

The empirical quantile

$$
q_{\alpha}\left(F_{n}\right)=\inf \left\{x \in \mathbb{R}: F_{n}(x) \geq \alpha\right\}=F_{n}^{\leftarrow}(\alpha)
$$

Assumption: $x_{1}>x_{2}>\ldots>x_{n}$. Then $q_{\alpha}\left(F_{n}\right)=x_{[n(1-\alpha)]+1}$ holds, where $[y]:=\sup \{n \in \mathbb{N}: n \leq y\}$ for every $y \in \mathbb{R}$.

Lemma

Let $\hat{q}_{\alpha}(F):=q_{\alpha}\left(F_{n}\right)$ and let F be a strictly increasing function. Then $\lim _{n \rightarrow \infty} \hat{q}_{\alpha}(F)=q_{\alpha}(F)$ holds $\forall \alpha \in(0,1)$, i.e. the estimator $\hat{q}_{\alpha}(F)$ is consistent.

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.
The empirical distribution function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{\left[x_{k},+\infty\right)}(x)
$$

The empirical quantile

$$
q_{\alpha}\left(F_{n}\right)=\inf \left\{x \in \mathbb{R}: F_{n}(x) \geq \alpha\right\}=F_{n}^{\leftarrow}(\alpha)
$$

Assumption: $x_{1}>x_{2}>\ldots>x_{n}$. Then $q_{\alpha}\left(F_{n}\right)=x_{[n(1-\alpha)]+1}$ holds, where $[y]:=\sup \{n \in \mathbb{N}: n \leq y\}$ for every $y \in \mathbb{R}$.

Lemma

Let $\hat{q}_{\alpha}(F):=q_{\alpha}\left(F_{n}\right)$ and let F be a strictly increasing function. Then $\lim _{n \rightarrow \infty} \hat{q}_{\alpha}(F)=q_{\alpha}(F)$ holds $\forall \alpha \in(0,1)$, i.e. the estimator $\hat{q}_{\alpha}(F)$ is consistent.
The empirical estimator of CVaR is $\widehat{\mathrm{CVaR}}_{\alpha}(F)=\frac{\sum_{k=1}^{[n(1-\alpha)]+1} x_{k}}{[(n(1-\alpha)]+1}$

A non-parametric bootstrapping approach to compute the confidence interval of the estimator

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. with distribution function F and let $x_{1}>x_{2}>\ldots>x_{n}$ be an ordered sample of F.

A non-parametric bootstrapping approach to compute the confidence interval of the estimator

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. with distribution function F and let $x_{1}>x_{2}>\ldots>x_{n}$ be an ordered sample of F.
Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta=q_{\alpha}(F)$, and the corresponding confidence interval.

A non-parametric bootstrapping approach to compute the confidence interval of the estimator

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. with distribution function F and let $x_{1}>x_{2}>\ldots>x_{n}$ be an ordered sample of F.
Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta=q_{\alpha}(F)$, and the corresponding confidence interval.
Let $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$ be an estimator of θ, e.g. $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)=x_{[(n(1-\alpha)]+1}$ $\theta=q_{\alpha}(F)$.
The required confidence interval is an (a, b) with $a=a\left(x_{1}, \ldots, x_{n}\right)$ u. $b=b\left(x_{1}, \ldots, x_{n}\right)$, such that $P(a<\theta<b)=p$, for a given confidence level p.

A non-parametric bootstrapping approach to compute the confidence interval of the estimator

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. with distribution function F and let $x_{1}>x_{2}>\ldots>x_{n}$ be an ordered sample of F.
Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta=q_{\alpha}(F)$, and the corresponding confidence interval.
Let $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$ be an estimator of θ, e.g. $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)=x_{[(n(1-\alpha)]+1}$ $\theta=q_{\alpha}(F)$.
The required confidence interval is an (a, b) with $a=a\left(x_{1}, \ldots, x_{n}\right)$ u. $b=b\left(x_{1}, \ldots, x_{n}\right)$, such that $P(a<\theta<b)=p$, for a given confidence level p.
Case I: F is known.
Generate N samples $\tilde{x}_{1}^{(i)}, \tilde{x}_{2}^{(i)}, \ldots, \tilde{x}_{n}^{(i)}, 1 \leq i \leq N$, by simulation from F (N should be large)
Let $\tilde{\theta}_{i}=\hat{\theta}\left(\tilde{x}_{1}^{(i)}, \tilde{x}_{2}^{(i)}, \ldots, \tilde{x}_{n}^{(i)}\right), 1 \leq i \leq N$.

Case I (cont.)

The empirical distribution function of $\hat{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is given as

$$
F_{N}^{\hat{\theta}}:=\frac{1}{N} \sum_{i=1}^{N} I_{\left[\tilde{\theta}_{i}, \infty\right)}
$$

and it tends to $F^{\hat{\theta}}$ for $N \rightarrow \infty$.
The required conficence interval is given as

$$
\left(q_{\frac{1-p}{2}}\left(F_{N}^{\hat{\theta}}\right), q_{\frac{1+p}{2}}\left(F_{N}^{\hat{\theta}}\right)\right)
$$

(assuming that the sample sizes N und n are large enough).

Case II: F is not known \Rightarrow Bootstrapping!
The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x) .
$$

For n large $F_{n} \approx F$ holds.

Case II: F is not known \Rightarrow Bootstrapping!

The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x)
$$

For n large $F_{n} \approx F$ holds.
Generate samples from F_{n} be choosing n elementes in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$.

Case II: F is not known \Rightarrow Bootstrapping!

The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x)
$$

For n large $F_{n} \approx F$ holds.
Generate samples from F_{n} be choosing n elementes in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$. Compute $\theta_{i}^{*}=\hat{\theta}\left(x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}\right)$.

Case II: F is not known \Rightarrow Bootstrapping!

The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x)
$$

For n large $F_{n} \approx F$ holds.
Generate samples from F_{n} be choosing n elementes in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$. Compute $\theta_{i}^{*}=\hat{\theta}\left(x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}\right)$.
The empirical distribution of θ_{i}^{*} is given as $F_{N}^{\theta^{*}}(x)=\frac{1}{N} \sum_{i=1}^{N} I_{\left[\theta_{i}^{*}, \infty\right)}(x)$; it approximates the distribution function $F^{\hat{\theta}}$ of $\hat{\theta}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ for $N \rightarrow \infty$.

Case II: F is not known \Rightarrow Bootstrapping!

The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x)
$$

For n large $F_{n} \approx F$ holds.
Generate samples from F_{n} be choosing n elementes in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$. Compute $\theta_{i}^{*}=\hat{\theta}\left(x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}\right)$.
The empirical distribution of θ_{i}^{*} is given as $F_{N}^{\theta^{*}}(x)=\frac{1}{N} \sum_{i=1}^{N} I_{\left[\theta_{i}^{*}, \infty\right)}(x)$; it approximates the distribution function $F^{\hat{\theta}}$ of $\hat{\theta}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ for $N \rightarrow \infty$.

A confidence interval (a, b) with confidence level p is given by

$$
a=q_{(1-p) / 2}\left(F_{N}^{\theta^{*}}\right), b=q_{(1+p) / 2}\left(F_{N}^{\theta^{*}}\right)
$$

Case II: F is not known \Rightarrow Bootstrapping!

The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x)
$$

For n large $F_{n} \approx F$ holds.
Generate samples from F_{n} be choosing n elementes in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$. Compute $\theta_{i}^{*}=\hat{\theta}\left(x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}\right)$.
The empirical distribution of θ_{i}^{*} is given as $F_{N}^{\theta^{*}}(x)=\frac{1}{N} \sum_{i=1}^{N} I_{\left[\theta_{i}^{*}, \infty\right)}(x)$; it approximates the distribution function $F^{\hat{\theta}}$ of $\hat{\theta}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ for $N \rightarrow \infty$.

A confidence interval (a, b) with confidence level p is given by

$$
a=q_{(1-p) / 2}\left(F_{N}^{\theta^{*}}\right), b=q_{(1+p) / 2}\left(F_{N}^{\theta^{*}}\right)
$$

Thus $a=\theta_{[N(1+p) / 2]+1}^{*}, b=\theta_{[N(1-p) / 2]+1}^{*}$, where $\theta_{1}^{*} \geq \ldots \geq \theta_{N}^{*}$ is the sorted θ^{*} sample.

Summary of the non-parametric bootstrapping approach to compute confidence intervals

Input: Sample $x_{1}, x_{2}, \ldots, x_{n}$ of the i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F and an estimator $\hat{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of an unknown parameter $\theta(F)$, A confidence level $p \in(0,1)$.
Output: A confidence interval I_{p} for θ with confidence level p.

- Generate N new Samples $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$, by chosing elements in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting them back right after the choice.
- Compute $\theta_{i}^{*}=\hat{\theta}\left(x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}\right)$.
- Setz $I_{p}:=\left(\theta_{[N(1+p) / 2]+1, N}^{*}, \theta_{[N(1-p) / 2]+1, N}^{*}\right)$, where $\theta_{1, N}^{*} \geq \theta_{2, N}^{*} \geq \ldots \theta_{N, N}^{*}$ is obtained by sorting $\theta_{1}^{*}, \theta_{2}^{*}, \ldots, \theta_{N}^{*}$.

An approximative solution without bootstrapping

Input: A sample $x_{1}, x_{2}, \ldots, x_{n}$ of the random variables $X_{i}, 1 \leq i \leq n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in(0,1)$.

An approximative solution without bootstrapping

Input: A sample $x_{1}, x_{2}, \ldots, x_{n}$ of the random variables $X_{i}, 1 \leq i \leq n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in(0,1)$.
Output: A $p^{\prime} \in(0,1)$, with $p \leq p^{\prime} \leq p+\epsilon$, for some small ϵ, and a confidence interval (a, b) for $q_{\alpha}(F)$, i.e. $a=a\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, $b=b\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, such that
$P\left(a<q_{\alpha}(F)<b\right)=p^{\prime}$ and $P\left(a \geq q_{\alpha}(F)\right)=P\left(b \leq q_{\alpha}(F) \leq(1-p) / 2\right.$ holds.

An approximative solution without bootstrapping

Input: A sample $x_{1}, x_{2}, \ldots, x_{n}$ of the random variables $X_{i}, 1 \leq i \leq n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in(0,1)$.
Output: A $p^{\prime} \in(0,1)$, with $p \leq p^{\prime} \leq p+\epsilon$, for some small ϵ, and a confidence interval (a, b) for $q_{\alpha}(F)$, i.e. $a=a\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, $b=b\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, such that
$P\left(a<q_{\alpha}(F)<b\right)=p^{\prime}$ and $P\left(a \geq q_{\alpha}(F)\right)=P\left(b \leq q_{\alpha}(F) \leq(1-p) / 2\right.$ holds.

Assume w.l.o.g. that the sample is sorted $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$. Determine $i>j, i, j \in\{1,2, \ldots, n\}$, and the smallest $p^{\prime}>p$, such that

$$
\begin{gathered}
P\left(x_{i, n}<q_{\alpha}(F)<x_{j, n}\right)=p^{\prime} \quad(*) \quad \text { and } \\
P\left(x_{i} \geq q_{\alpha}(F)\right) \leq(1-p) / 2 \text { and } P\left(x_{j} \leq q_{\alpha}(F)\right) \leq(1-p) / 2(* *) .
\end{gathered}
$$

An approximative solution without bootstrapping (contd.)

Let $Y_{\alpha}:=\#\left\{x_{k}: x_{k}>q_{\alpha}(F)\right\}$

An approximative solution without bootstrapping (contd.)

Let $Y_{\alpha}:=\#\left\{x_{k}: x_{k}>q_{\alpha}(F)\right\}$
We get $P\left(x_{j} \leq q_{\alpha}(F)\right) \approx P\left(x_{j}<q_{\alpha}(F)\right)=P\left(Y_{\alpha} \leq j-1\right)$
$P\left(x_{i} \geq q_{\alpha}(F)\right) \approx P\left(x_{i}>q_{\alpha}(F)\right)=1-P\left(Y_{\alpha} \leq i-1\right)$

An approximative solution without bootstrapping (contd.)

Let $Y_{\alpha}:=\#\left\{x_{k}: x_{k}>q_{\alpha}(F)\right\}$
We get $P\left(x_{j} \leq q_{\alpha}(F)\right) \approx P\left(x_{j}<q_{\alpha}(F)\right)=P\left(Y_{\alpha} \leq j-1\right)$
$P\left(x_{i} \geq q_{\alpha}(F)\right) \approx P\left(x_{i}>q_{\alpha}(F)\right)=1-P\left(Y_{\alpha} \leq i-1\right)$
$Y_{\alpha} \sim \operatorname{Bin}(n, 1-\alpha)$ since $\operatorname{Prob}\left(x_{k} \geq q_{\alpha}(F)\right) \approx 1-\alpha$ for a sample point x_{k}.

An approximative solution without bootstrapping (contd.)

Let $Y_{\alpha}:=\#\left\{x_{k}: x_{k}>q_{\alpha}(F)\right\}$
We get $P\left(x_{j} \leq q_{\alpha}(F)\right) \approx P\left(x_{j}<q_{\alpha}(F)\right)=P\left(Y_{\alpha} \leq j-1\right)$
$P\left(x_{i} \geq q_{\alpha}(F)\right) \approx P\left(x_{i}>q_{\alpha}(F)\right)=1-P\left(Y_{\alpha} \leq i-1\right)$
$Y_{\alpha} \sim \operatorname{Bin}(n, 1-\alpha)$ since $\operatorname{Prob}\left(x_{k} \geq q_{\alpha}(F)\right) \approx 1-\alpha$ for a sample point x_{k}.

Compute $P\left(x_{j} \leq q_{\alpha}(F)\right)$ and $P\left(x_{i} \geq q_{\alpha}(F)\right)$ for different i and j until indices $i, j \in\{1,2, \ldots, n\}, i>j$, which fulfill $(* *)$ are found.

An approximative solution without bootstrapping (contd.)

Let $Y_{\alpha}:=\#\left\{x_{k}: x_{k}>q_{\alpha}(F)\right\}$
We get $P\left(x_{j} \leq q_{\alpha}(F)\right) \approx P\left(x_{j}<q_{\alpha}(F)\right)=P\left(Y_{\alpha} \leq j-1\right)$
$P\left(x_{i} \geq q_{\alpha}(F)\right) \approx P\left(x_{i}>q_{\alpha}(F)\right)=1-P\left(Y_{\alpha} \leq i-1\right)$
$Y_{\alpha} \sim \operatorname{Bin}(n, 1-\alpha)$ since $\operatorname{Prob}\left(x_{k} \geq q_{\alpha}(F)\right) \approx 1-\alpha$ for a sample point x_{k}.

Compute $P\left(x_{j} \leq q_{\alpha}(F)\right)$ and $P\left(x_{i} \geq q_{\alpha}(F)\right)$ for different i and j until indices $i, j \in\{1,2, \ldots, n\}, i>j$, which fulfill $(* *)$ are found.

Set $a:=x_{j}$ and $b:=x_{i}$.

Historical simulation

Let x_{m-n+1}, \ldots, x_{m} be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_{m}; the historically realized losses are given as $I_{k}=I_{[m]}\left(x_{m-k+1}\right), k=1,2, \ldots, n$,

Historical simulation

Let x_{m-n+1}, \ldots, x_{m} be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_{m}; the historically realized losses are given as $I_{k}=I_{[m]}\left(x_{m-k+1}\right), k=1,2, \ldots, n$,
Assumption: the historically realized losses are i.i.d. The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses $I_{i}, 1 \leq i \leq n$, to obtain $I_{1, n} \geq I_{2, n} \geq \ldots \geq I_{n, n}$.

Historical simulation

Let x_{m-n+1}, \ldots, x_{m} be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_{m}; the historically realized losses are given as $I_{k}=I_{[m]}\left(x_{m-k+1}\right), k=1,2, \ldots, n$,
Assumption: the historically realized losses are i.i.d. The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses $I_{i}, 1 \leq i \leq n$, to obtain $I_{1, n} \geq I_{2, n} \geq \ldots \geq I_{n, n}$.
Empirical VaR: $\widehat{\operatorname{VaR}}=q_{\alpha}\left(\hat{F}_{n}^{L}\right)=I_{[n(1-\alpha)]+1, n}$

Historical simulation

Let x_{m-n+1}, \ldots, x_{m} be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_{m}; the historically realized losses are given as $I_{k}=I_{[m]}\left(x_{m-k+1}\right), k=1,2, \ldots, n$,
Assumption: the historically realized losses are i.i.d. The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses $I_{i}, 1 \leq i \leq n$, to obtain $I_{1, n} \geq I_{2, n} \geq \ldots \geq I_{n, n}$.
Empirical VaR: $\widehat{\operatorname{VaR}}=q_{\alpha}\left(\hat{F}_{n}^{L}\right)=I_{[n(1-\alpha)]+1, n}$
Empirical CVaR: $\widehat{C V a R}=\frac{\sum_{i=1}^{[n(1-\alpha)]+1} l_{i, n}}{[n(1-\alpha)]+1}$.

Historical simulation

Let x_{m-n+1}, \ldots, x_{m} be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_{m}; the historically realized losses are given as $I_{k}=I_{[m]}\left(x_{m-k+1}\right), k=1,2, \ldots, n$,
Assumption: the historically realized losses are i.i.d.
The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses $l_{i}, 1 \leq i \leq n$, to obtain $I_{1, n} \geq I_{2, n} \geq \ldots \geq I_{n, n}$.
Empirical VaR: $\widehat{\operatorname{VaR}}=q_{\alpha}\left(\hat{F}_{n}^{L}\right)=I_{[n(1-\alpha)]+1, n}$
Empirical CVaR: $\widehat{C V a R}=\frac{\sum_{i=1}^{[n(1-\alpha)]+1} l_{i, n}}{[n(1-\alpha)]+1}$.
Analogously, we can consider the loss aggregated over a given time interval (number of days or general time units).
VaR and CVaR of the loss aggregated over a number of days, e.g. 10 days, over the days $m-n+10(k-1)+1, m-n+10(k-1)+2, \ldots$, $m-n+10(k-1)+10$, denoted by $I_{k}^{(10)}$ is given as
$I_{k}^{(10)}=I_{[m]}\left(\sum_{j=1}^{10} x_{m-n+10(k-1)+j}\right) \quad k=1, \ldots,[n / 10]$

Historical simulation (contd.)

Advantages:

- simple implementation
- considers intrinsically the dependencies between the elements of the vector of the risk factors changes $X_{m-k}=\left(X_{m-k, 1}, \ldots, X_{m-k, d}\right)$.

Historical simulation (contd.)

Advantages:

- simple implementation
- considers intrinsically the dependencies between the elements of the vector of the risk factors changes $X_{m-k}=\left(X_{m-k, 1}, \ldots, X_{m-k, d}\right)$.

Disadvantages:

- lots of historical data needed to get good estimators
- the estimated loss cannot be larger than the maximal loss experienced in the past

The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$
\begin{aligned}
& L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V^{\top} w^{\top} X_{m+1}, \\
& w h e r e V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}, \\
& X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T} .
\end{aligned}
$$

The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
$L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{\top} X_{m+1}$,
where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
and thus $-V w^{\top} X_{m+1} \sim N\left(-V w^{T} \mu, V^{2} w^{T} \Sigma w\right)$

The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
$L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{T} X_{m+1}$,
where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
and thus $-V w^{T} X_{m+1} \sim N\left(-V w^{T} \mu, V^{2} w^{T} \Sigma w\right)$
Let x_{m-n+1}, \ldots, x_{m} be the historically observed risk factor changes

The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
$L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{\top} X_{m+1}$,
where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{\top}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
and thus $-V w^{\top} X_{m+1} \sim N\left(-V w^{T} \mu, V^{2} w^{T} \Sigma w\right)$
Let x_{m-n+1}, \ldots, x_{m} be the historically observed risk factor changes Assumption 2: x_{m-n+1}, \ldots, x_{m} are i.i.d.

The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
$L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{\top} X_{m+1}$,
where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{\top}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
and thus $-V w^{\top} X_{m+1} \sim N\left(-V w^{T} \mu, V^{2} w^{T} \Sigma w\right)$
Let x_{m-n+1}, \ldots, x_{m} be the historically observed risk factor changes
Assumption 2: x_{m-n+1}, \ldots, x_{m} are i.i.d.
Estimator for $\mu_{i}: \hat{\mu}_{i}=\frac{1}{n} \sum_{k=1}^{n} x_{m-k+1, i}, i=1,2, \ldots, d$
Estimator for $\Sigma=\left(\sigma_{i j}\right): \hat{\Sigma}=\left(\hat{\sigma}_{i j}\right)$ where
$\hat{\sigma}_{i j}=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{m-k+1, i}-\mu_{i}\right)\left(x_{m-k+1, j}-\mu_{j}\right) \quad i, j=1,2, \ldots, d$

The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
$L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{\top} X_{m+1}$, where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
and thus $-V w^{T} X_{m+1} \sim N\left(-V w^{T} \mu, V^{2} w^{\top} \Sigma w\right)$
Let x_{m-n+1}, \ldots, x_{m} be the historically observed risk factor changes
Assumption 2: x_{m-n+1}, \ldots, x_{m} are i.i.d.
Estimator for $\mu_{i}: \hat{\mu}_{i}=\frac{1}{n} \sum_{k=1}^{n} x_{m-k+1, i}, i=1,2, \ldots, d$
Estimator for $\Sigma=\left(\sigma_{i j}\right): \hat{\Sigma}=\left(\hat{\sigma}_{i j}\right)$ where
$\hat{\sigma}_{i j}=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{m-k+1, i}-\mu_{i}\right)\left(x_{m-k+1, j}-\mu_{j}\right) \quad i, j=1,2, \ldots, d$
Estimator for VaR: $\widehat{\operatorname{VaR}}\left(L_{m+1}\right)=-V w^{\top} \hat{\mu}+V \sqrt{w^{T} \hat{\Sigma} w} \phi^{-1}(\alpha)$

The variance-covariance method (contd.)

Advantages:

- analytical solution
- simple implementation
- no simulationen needed

The variance-covariance method (contd.)

Advantages:

- analytical solution
- simple implementation
- no simulationen needed

Disadvantages:

- Linearisation is not always appropriate, only for a short time horizon reasonable
- The normal distribution assumption could lead to underestimation of risks and should be argued upon (e.g. in terms of historical data)

Monte-Carlo approach

(1) historical observations of risk factor changes X_{m-n+1}, \ldots, X_{m}.
(2) assumption on a parametric model for the cumulative distribution function of $X_{k}, m-n+1 \leq k \leq m$;
e.g. a common distribution function F and independence
(3) estimation of the parameters of F.
(4) generation of N samples $\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{N}$ from $F(N \gg 1)$ and computation of the losses $I_{k}=I_{[m]}\left(\tilde{x}_{k}\right), 1 \leq k \leq N$
(5) computation of the empirical distribution of the loss function L_{m+1} :

$$
\hat{F}_{N}^{L_{m+1}}(x)=\frac{1}{N} \sum_{k=1}^{N} I_{[\mid k, \infty)}(x)
$$

(5) computation of estimates for the VaR and CVAR of the loss function: $\widehat{\operatorname{VaR}}\left(L_{m+1}\right)=\left(\hat{F}_{N}^{L_{m+1}}\right)=I_{[N(1-\alpha)]+1, N}$,
$\widehat{C V a R}\left(L_{m+1}\right)=\frac{\sum_{k=1}^{[N(1-\alpha)]+1} l_{k, N}}{[N(1-\alpha)]+1}$,
where the losses are sorted $I_{1, N} \geq I_{2, N} \geq \ldots \geq I_{N . N}$.

Monte-Carlo approach (contd.)

Advantages:

- very flexible; can use any distribution F from which simulation is possible
- time dependencies of the risk factor changes can be considered by using time series

Monte-Carlo approach (contd.)

Advantages:

- very flexible; can use any distribution F from which simulation is possible
- time dependencies of the risk factor changes can be considered by using time series

Disadvantages:

- computationally expensive; a large number of simulations needed to obtain good estimates

Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S_{t} at time t. The risk factor changes

$$
X_{k+1}=\ln \left(S_{t_{k+1}}\right)-\ln \left(S_{t_{k}}\right),
$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ.

Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S_{t} at time t. The risk factor changes

$$
X_{k+1}=\ln \left(S_{t_{k+1}}\right)-\ln \left(S_{t_{k}}\right),
$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ. θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S_{t} at time t. The risk factor changes

$$
X_{k+1}=\ln \left(S_{t_{k+1}}\right)-\ln \left(S_{t_{k}}\right),
$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ. θ can be estimated by means of historical data (e.g. maximum likelihood approaches)
Let the price at time t_{k} be $S:=S_{t_{k}}$

Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S_{t} at time t.
The risk factor changes

$$
X_{k+1}=\ln \left(S_{t_{k+1}}\right)-\ln \left(S_{t_{k}}\right),
$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ. θ can be estimated by means of historical data (e.g. maximum likelihood approaches)
Let the price at time t_{k} be $S:=S_{t_{k}}$ The VaR of the portfolio over $\left[t_{k}, t_{k+1}\right]$ is given as

$$
\operatorname{Va}_{a}\left(L_{t_{k}+1}\right)=S\left(1-\exp \left\{F_{\theta}^{\leftarrow}(1-\alpha)\right\}\right)
$$

Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S_{t} at time t.
The risk factor changes

$$
X_{k+1}=\ln \left(S_{t_{k+1}}\right)-\ln \left(S_{t_{k}}\right),
$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ. θ can be estimated by means of historical data (e.g. maximum likelihood approaches)
Let the price at time t_{k} be $S:=S_{t_{k}}$
The VaR of the portfolio over $\left[t_{k}, t_{k+1}\right]$ is given as

$$
\operatorname{Va}_{a}\left(L_{t_{k}+1}\right)=S\left(1-\exp \left\{F_{\theta}^{\leftarrow}(1-\alpha)\right\}\right)
$$

Depending on F_{θ} it can be complicated or impossible to compute CVaR analytically.
Alternative: Monte-Carlo simulation.

Monte-Carlo approach (contd.)

Example

Let the portfolio and the risk factor changes X_{k+1} be as in the previous example.
A popular model for the logarithmic returns of assets is $\operatorname{GARCH}(1,1)$ (see e.g. Alexander 2002):

$$
\begin{align*}
X_{k+1} & =\sigma_{k+1} Z_{k+1} \tag{1}\\
\sigma_{k+1}^{2} & =a_{0}+a_{1} X_{k}^{2}+b_{1} \sigma_{k}^{2} \tag{2}
\end{align*}
$$

where $Z_{k}, k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_{0}, a_{1} and b_{1} are parameters, which should be estimated.

Monte-Carlo approach (contd.)

Example

Let the portfolio and the risk factor changes X_{k+1} be as in the previous example.
A popular model for the logarithmic returns of assets is $\operatorname{GARCH}(1,1)$ (see e.g. Alexander 2002):

$$
\begin{align*}
X_{k+1} & =\sigma_{k+1} Z_{k+1} \tag{1}\\
\sigma_{k+1}^{2} & =a_{0}+a_{1} X_{k}^{2}+b_{1} \sigma_{k}^{2} \tag{2}
\end{align*}
$$

where $Z_{k}, k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_{0}, a_{1} and b_{1} are parameters, which should be estimated.
It is simple to simulate from this model.

Monte-Carlo approach (contd.)

Example

Let the portfolio and the risk factor changes X_{k+1} be as in the previous example.
A popular model for the logarithmic returns of assets is $\operatorname{GARCH}(1,1)$ (see e.g. Alexander 2002):

$$
\begin{align*}
X_{k+1} & =\sigma_{k+1} Z_{k+1} \tag{1}\\
\sigma_{k+1}^{2} & =a_{0}+a_{1} X_{k}^{2}+b_{1} \sigma_{k}^{2} \tag{2}
\end{align*}
$$

where $Z_{k}, k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_{0}, a_{1} and b_{1} are parameters, which should be estimated.
It is simple to simulate from this model.
However analytical computation of VaR and CVaR over a certain time interval consisting of many periods is cumbersome! Check it out!

Chapter 3: Extreme value theory

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \rightarrow \infty$ means $\lim _{x \rightarrow \infty} f(x) / g(x)=1$
- $\bar{F}:=1-F$ is called the right tail of the univariate distribution function F.

Chapter 3: Extreme value theory

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \rightarrow \infty$ means $\lim _{x \rightarrow \infty} f(x) / g(x)=1$
- $\bar{F}:=1-F$ is called the right tail of the univariate distribution function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim _{x \rightarrow \infty} \frac{\bar{F}(x)}{e^{-\lambda x}}=\infty, \forall \lambda>0$.

Chapter 3: Extreme value theory

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \rightarrow \infty$ means $\lim _{x \rightarrow \infty} f(x) / g(x)=1$
- $\bar{F}:=1-F$ is called the right tail of the univariate distribution function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim _{x \rightarrow \infty} \frac{\bar{F}(x)}{e^{-\lambda x}}=\infty, \forall \lambda>0$.
Also a r.v. X for which $\exists k \in \mathbb{N}$ with $E\left(X^{k}\right)=\infty$ will be often called heavy tailed.

Chapter 3: Extreme value theory

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \rightarrow \infty$ means $\lim _{x \rightarrow \infty} f(x) / g(x)=1$
- $\bar{F}:=1-F$ is called the right tail of the univariate distribution function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim _{x \rightarrow \infty} \frac{\bar{F}(x)}{e^{-\lambda \lambda}}=\infty, \forall \lambda>0$.
Also a r.v. X for which $\exists k \in \mathbb{N}$ with $E\left(X^{k}\right)=\infty$ will be often called heavy tailed.
These two "definitions" are not equivalent!

Regular variation

Definition

A measurable function $h:(0,+\infty) \rightarrow(0,+\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{h(t x)}{h(t)}=x^{\rho}, \forall x>0 \tag{3}
\end{equation*}
$$

Notation: $h \in R V_{\rho}$.

Regular variation

Definition

A measurable function $h:(0,+\infty) \rightarrow(0,+\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{h(t x)}{h(t)}=x^{\rho}, \forall x>0 \tag{3}
\end{equation*}
$$

Notation: $h \in R V_{\rho}$.
If $\rho=0$, we say h has a slow variation or is slowly varying towards ∞.

Regular variation

Definition

A measurable function $h:(0,+\infty) \rightarrow(0,+\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{h(t x)}{h(t)}=x^{\rho}, \forall x>0 \tag{3}
\end{equation*}
$$

Notation: $h \in R V_{\rho}$.
If $\rho=0$, we say h has a slow variation or is slowly varying towards ∞. If $h \in R V_{\rho}$, then $h(x) / x^{\rho} \in R V_{0}$.

Regular variation

Definition

A measurable function $h:(0,+\infty) \rightarrow(0,+\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{h(t x)}{h(t)}=x^{\rho}, \forall x>0 \tag{3}
\end{equation*}
$$

Notation: $h \in R V_{\rho}$.
If $\rho=0$, we say h has a slow variation or is slowly varying towards ∞. If $h \in R V_{\rho}$, then $h(x) / x^{\rho} \in R V_{0}$.
If $h \in R V_{\rho}$, then $\exists L \in R V_{0}$ such that $h(x)=L(x) x^{\rho}\left(L(x)=h(x) / x^{\rho}\right)$.

Regular variation

Definition

A measurable function $h:(0,+\infty) \rightarrow(0,+\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{h(t x)}{h(t)}=x^{\rho}, \forall x>0 \tag{3}
\end{equation*}
$$

Notation: $h \in R V_{\rho}$.
If $\rho=0$, we say h has a slow variation or is slowly varying towards ∞. If $h \in R V_{\rho}$, then $h(x) / x^{\rho} \in R V_{0}$.
If $h \in R V_{\rho}$, then $\exists L \in R V_{0}$ such that $h(x)=L(x) x^{\rho}\left(L(x)=h(x) / x^{\rho}\right)$. If $\rho<0$, then the convergence in (3) uniform in every interval $(b,+\infty)$ for $b>0$.
Example
Show that $L \in R V_{0}$ holds for the functions L as below:
(a) $\lim _{x \rightarrow+\infty} L(x)=c \in(0,+\infty)$
(b) $L(x):=\ln (1+x)$
(c) $L(x):=\ln (1+\ln (1+x))$

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x$?

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x$?
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞ :

$$
\lim _{x \rightarrow \infty} \inf _{x} L(x)=0 \text { and } \lim \sup _{x \rightarrow \infty} L(x)=\infty
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x$?
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞ :

$$
\lim _{x \rightarrow \infty} \inf _{x \rightarrow \infty} L(x)=0 \text { and } \lim \sup _{x \rightarrow \infty} L(x)=\infty
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.
Definition: Let $X>0$ be a r.v. with distribution function $F . X$ is said to have a regular variation on $+\infty$, iff $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$.

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x ?$
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞ :

$$
\lim _{x \rightarrow \infty} \inf _{x \rightarrow \infty} L(x)=0 \text { and } \lim _{x \rightarrow \infty} \sup _{x \rightarrow \infty} L(x)=\infty
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.
Definition: Let $X>0$ be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$.

Example:

1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for $x>1$ and $\alpha>0$. Then $\bar{G}_{\alpha}(t x) / \bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for $t>0$, i.e. $\bar{G}_{\alpha} \in R V_{-\alpha}$.

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x ?$
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞ :

$$
\lim _{x \rightarrow \infty} \inf _{x \rightarrow \infty} L(x)=0 \text { and } \lim _{x \rightarrow \infty} \sup _{x \rightarrow \infty} L(x)=\infty
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.
Definition: Let $X>0$ be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$.

Example:

1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for $x>1$ and $\alpha>0$. Then $\bar{G}_{\alpha}(t x) / \bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for $t>0$, i.e. $\bar{G}_{\alpha} \in R V_{-\alpha}$.
2. Fréchet distribution: $\Phi_{\alpha}(x):=\exp \left\{-x^{-\alpha}\right\}$ for $x>0$ and $\Phi_{\alpha}(0)=0$, for some parameter (fixed) $\alpha>0$. Then $\lim _{x \rightarrow \infty} \bar{\Phi}_{\alpha}(x) / x^{-\alpha}=1$ holds, i.e. $\bar{\Phi}_{\alpha} \in R V_{-\alpha}$.

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x ?$
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞ :

$$
\lim _{x \rightarrow \infty} \inf _{x \rightarrow \infty} L(x)=0 \text { and } \lim _{x \rightarrow \infty} L(x)=\infty
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.
Definition: Let $X>0$ be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$.

Example:

1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for $x>1$ and $\alpha>0$. Then $\bar{G}_{\alpha}(t x) / \bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for $t>0$, i.e. $\bar{G}_{\alpha} \in R V_{-\alpha}$.
2. Fréchet distribution: $\Phi_{\alpha}(x):=\exp \left\{-x^{-\alpha}\right\}$ for $x>0$ and $\Phi_{\alpha}(0)=0$, for some parameter (fixed) $\alpha>0$. Then $\lim _{x \rightarrow \infty} \bar{\Phi}_{\alpha}(x) / x^{-\alpha}=1$ holds, i.e. $\bar{\Phi}_{\alpha} \in R V_{-\alpha}$.

Proposition (no proof)
Let $X>0$ be a r.v. with distribution function F, such that $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$. Then $E\left(X^{\beta}\right)<\infty$ for $\beta<\alpha$ and $E\left(X^{\beta}\right)=\infty$ for $\beta>\alpha$ hold.

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x ?$
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞ :

$$
\lim _{x \rightarrow \infty} \inf _{x \rightarrow \infty} L(x)=0 \text { and } \lim _{x \rightarrow \infty} L(x)=\infty
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.
Definition: Let $X>0$ be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$.

Example:

1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for $x>1$ and $\alpha>0$. Then $\bar{G}_{\alpha}(t x) / \bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for $t>0$, i.e. $\bar{G}_{\alpha} \in R V_{-\alpha}$.
2. Fréchet distribution: $\Phi_{\alpha}(x):=\exp \left\{-x^{-\alpha}\right\}$ for $x>0$ and $\Phi_{\alpha}(0)=0$, for some parameter (fixed) $\alpha>0$. Then $\lim _{x \rightarrow \infty} \bar{\Phi}_{\alpha}(x) / x^{-\alpha}=1$ holds, i.e. $\bar{\Phi}_{\alpha} \in R V_{-\alpha}$.

Proposition (no proof)
Let $X>0$ be a r.v. with distribution function F, such that $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$. Then $E\left(X^{\beta}\right)<\infty$ for $\beta<\alpha$ and $E\left(X^{\beta}\right)=\infty$ for $\beta>\alpha$ hold.
The converse is not true!

