
Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits.
The loss function is L =

∑m
i=1 Li and the single credit losses Li are

independent conditioned on a vector Z of economical impact factors.

Goal: Determine VaRα(L) = qα(L), CVaRα = E (L|L > qα(L)),
CVaRi,α = E (Li |L > qα(L)), for all i .

Application of Monte Carlo (MC) simulation has to deal with the
simulation of rare events!
E.g. for α = 0, 99 only 1% of the standard MC simulations will lead to a
loss L, such that L > qα(L).

The standard MC estimator is:

ĈVaR
(MC)

α (L) =
1∑n

i=1 I(qα,+∞)(L(i))

n∑
i=1

L(i)I(qα,+∞)(L
(i)) ,

where Li is the value of the loss in the i-th simulation run.

ĈVaR
(MC)

α (L) is unstable, i.e. it has a very high variance, if the number
of simulation runs is not very high.
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Basics of importance sampling

Let X be a r.v. in a probability space (Ω,F ,P) with absolutely
continuous distribution function and density function f .

Goal: Determine θ = E (h(X )) =
∫∞
−∞ h(x)f (x)dx for some given

function h.

Examples:
Set h(x) = IA(x) to compute the probability of an event A.

Set h(x) = xIx>c(x) with c = VaR(X ) to compute CVaR(X ).

Algorithm: Monte Carlo integration

(1) Simulate X1,X2,. . . , Xn independently with density f .

(2) Compute the standard MC estimator θ̂
(MC)
n = 1

n

∑n
i=1 h(Xi ).

The strong low of large numbers implies lim
n→∞

θ̂(MC)
n = θ almost surely.

In case of rare events, e.g. h(x) = IA(x) with P(A) << 1, the
convergence is very slow.
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Importance sampling (contd.)

Let g be a probability density function, such that f (x) > 0⇒ g(x) > 0.

We define the likelihood ratio as: r(x) :=

{
f (x)
g(x) g(x) > 0

0 g(x) = 0

The following equality holds:

θ =

∫ ∞
−∞

h(x)r(x)g(x)dx = Eg (h(x)r(x))

Algorithm: Importance sampling

(1) Simulate X1,X2,. . . , Xn independently with density g .

(2) Compute the IS-estimator θ̂
(IS)
n = 1

n

∑n
i=1 h(Xi )r(Xi ).

g is called importance sampling density (IS density).

Goal: choose an IS density g such that the variance of the IS estimator is
much smaller than the variance of the standard MC-estimator.

var
(
θ̂(IS)n

)
=

1

n
(Eg (h2(X )r2(X ))− θ2)

var
(
θ̂(MC)
n

)
=

1

n
(E (h2(X ))− θ2)
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Importance sampling (contd.)

Theoretically the variance of the IS estimator can be reduced to 0!

Assume h(x) ≥ 0,∀x .

For g∗(x) = f (x)h(x)/E (h(x)) we get : θ̂
(IS)
1 = h(X1)r(X1) = E (h(X )).

The IS estimator yields the correct value already after a single simulation!

Let h(x) = I{X≥c}(x) where c >> E (X ) (rare event).

We have E (h2(X )) = P(X ≥ c) and

Eg (h2(X )r2(X )) =

∫ ∞
−∞

h2(x)r2(x)g(x)dx = Eg (r2(X );X ≥ c) =

∫ ∞
−∞

h2(x)r(x)f (x)dx =

∫ ∞
−∞

h(x)r(x)f (x)dx = Ef (r(X );X ≥ c)

Goal: choose g such that Eg (h2(X )r2(X )) becomes small, i.e. such that
r(x) is small for x ≥ c . Aquivalently, the event X ≥ c should be more
probable under density g than under density f .
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Exponential tilting: Determining the IS density for light
tailed r.v.

Let Mx(t) : R→ R be the moment generating function of the r.v. X with
probability density f :

MX (t) = E (etX ) =

∫ ∞
−∞

etx f (x)dx

Consider the IS density gt(x) := etx f (x)
MX (t)

. Then

rt(x) = f (x)
gt(x)

= MX (t)e−tx .

Let µt := Egt (X ) = E (XetX )/MX (t).

How to determine a suitable t for a specific h(x)?
For example for the estimation of the tail probability?

Goal: choose t such that E (r(X );X ≥ c) = E (IX≥cMX (t)e−tX ) becomes
small.

e−tx ≤ e−tc , for x ≥ c , t ≥ 0 ⇒ E (IX≥cMX (t)e−tX ) ≤ MX (t)e−tc .

Set t = argmin{MX (t)e−tc : t ≥ 0} which imples t = t(c), where t(c) is
the solution of the equation µt = c .

(A unique solution of the above equality exists for all relevant values of c ,
see e.g. Embrechts et al. for a proof).
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IS in the case of probability measures
(useful for the estimation of the credit portfolio risk)

Let f and g be probability densities. Define probability measures P and
Q:
P(A) :=

∫
x∈A f (x)dx and Q(A) :=

∫
x∈A g(x)dx for A ⊂ R.

Goal: Estimate the expected value θ := EP(h(X )) of a given function
h : F → R in the probability space (Ω,F ,P).

We have θ := EP(h(X )) = EQ(h(X )r(X )) with r(x) := dP/dQ, thus r
is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:
Let X be a r.v. in (Ω,F ,P) such that MX (t) = EP(exp{tX}) <∞, ∀t.

Define a probability measure Qt in (Ω,F), such that

dQt/dP = exp(tX )/MX (t), i.e. Qt(A) := EP
(

exp{tX}
MX (t)

;A
)

.

We have dP
dQt

= MX (t) exp(−tX ) =: rt(X ).

The IS algorithm does not change: Simulate independent realisations of

Xi in (Ω,F ,Qt) and set θ̂
(IS)
n = (1/n)

∑n
i=1 Xi rt(Xi ).
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IS in the case of Bernoulli mixture models
(see Glasserman and Li (2003))
Consider the loss function of a credit portfolio L =

∑m
i=1 eiYi .

Yi are the loss indicators with default probability p̄i and ei = (1− λi )Li
are the positive deterministic exposures in the case that a corresponding
loss happens. λi are the recovery rates and Li are the credit nominals, for
i = 1, 2, . . . ,m.

Let Z be a vector of economical impact factors, such that Yi |Z are
independent and Yi |(Z = z) ∼ Bernoulli(pi (z)), ∀i = 1, 2, . . . ,m.

Goal: Estimation of θ = P(L ≥ c) by means of IS, for some given c with
c >> E (L).

Simplified case: Yi are independent for i = 1, 2, . . . ,m.
Let Ω = {0, 1}m be the state space of the random vector Y .
Consider the probability measure P in Ω:

P({y}) =
m∏
i=1

p̄yii (1− p̄i )
1−yi , y ∈ {0, 1}m.

The moment generating function of L is ML(t) =
∏m

i=1(etei p̄i + 1− p̄i ).
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IS in the case of Bernoulli mixture models (contd.)
Consider a probability measure Qt :

Qt({y}) =
n∏

i=1

(
exp{teiyi}

exp{tei}p̄i + 1− p̄i
p̄yii (1− p̄i )

1−yi
)
.

Let q̄t,i be new default probabilities

q̄t,i := exp{tei}p̄i/(exp{tei}p̄i + 1− p̄i ).

We have Qt({y}) =
∏m

i=1 q̄
yi
i (1− q̄i )

1−yi , for y ∈ {0, 1}m.

Thus after applying the exponential tilting the default indicators are
independent with new default probabilities q̄t,i .

limt→∞ q̄t,i = 1 and limt→−∞ q̄t,i = 0 imply that EQt (L) takes all values
in (0,

∑m
i=1 ei ) for t ∈ R.

Choose t, such that
∑m

i=1 ei q̄t,i = c .
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IS in the case of Bernoulli mixture models (contd.)
The general case: Yi are independent conditional on Z

1. Step: Estimation of the conditional excess probabilites
θ(z) := P(L ≥ c |Z = z) for a given realisation z of the economic factor
Z , by means of the IS approach for the simplified case.

Algorithm: IS for the conditional loss distribution

(1) For a given z compute the conditional default probabilities pi (z) (as
in the simplified case) and solve the equation

m∑
i=1

ei
exp{tei}pi (z)

exp{tei}pi (z) + 1− pi (z)
= c .

The solution t = t(c , z) specifies the correct degree of tilting.

(2) Generate n1 conditional realisations of the vector of default
indicators (Y1, . . . ,Ym), Yi are simulated from Bernoulli(qi ),
i = 1, 2, . . . ,m, with

qi =
exp{t(c , z)ei}pi (z)

exp{t(c , z)ei}pi (z) + 1− pi (z)
.
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The general case (contd.)

(3) Let ML(t, z) :=
∏

[exp{t(c , z)ei}pi (z) + 1− pi (z)] be the
conditional moment generating function of L. Let L(1), L(2),. . .,L(n1)

be the n1 conditional realisations of L for the n1 simulated
realisations of Y1,Y2, . . . ,Ym. Compute the IS-estimator for the tail
probability of the conditional loss distribution:

θ̂(IS)n1 (z) = ML(t(c , z), z)
1

n1

n1∑
j=1

IL(j)≥c exp{−t(c , z)L(j)}L(j).

2. Step: Estimation of the unconditional excess probability θ = P(L ≥ c).

Naive approach: Generate many realisations z of the impact factors Z

and compute θ̂
(IS)
n1 (z) for every one of them. The required estimator is

the average of θ̂
(IS)
n1 (z) over all realisations z .

This is not the most efficient approach, see Glasserman and Li (2003).

A better alternative: IS for the impact factors.
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IS for the impact factors

Assumption: Z ∼ Np(0,Σ) (e.g. probit-normal Bernoulli mixture)

Let the IS density g be the density of Np(µ,Σ) for a new expected vector
µ ∈ Rp. A good choice of µ should lead to frequent realisations of z
which imply high conditional default probabilities pi (z).

The likelihood ratio:

rµ(Z ) =
exp{− 1

2Z
tΣ−1Z}

exp{− 1
2 (Z − µ)tΣ−1(Z − µ)}

= exp{−µtΣ−1Z +
1

2
µtΣ−1µ}

Algorithm: complete IS for Bernoulli mixture models with Gaussian
factors

(1) Generate z1, z2, . . . , zn ∼ Np(µ,Σ) (n is the number of the
simulation rounds)

(2) For each zi compute θ̂
(IS)
n1 (zi ) by applying the IS algorithm for the

conditional loss.

(3) compute the IS estimator for the independent excess probability:

θ̂(IS)n =
1

n

n∑
i=1

rµ(zi )θ̂
(IS)
n1 (zi )
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The choice of µ

µ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since θ̂
(IS)
n1 (z) ≈ P(L ≥ c |Z = z), search for an appropriate IS density for

the function z 7→ P(L ≥ c |Z = z).

Approach:
a) the optimal IS denstity g∗ is proportional to
P(L ≥ c |Z = z) exp{− 1

2z
tΣ−1z}.

b) use as IS density a multivariate normal distribution with the same
mode as the optimal IS density g∗.

The mode of a multivariate normal distribution Np(µ,Σ) equals the
expected vector µ, thus determining µ leads to the following optimization
problem:
µ = argmaxz

{
P(L ≥ c |Z = z) exp{− 1

2z
tΣ−1z}

}
.

This problem is hard to solve exactly; in general P(L ≥ c |Z = z) is not
available in analytical form.

Glasserman und Li (2003) propose some numerical solution approaches.
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b) use as IS density a multivariate normal distribution with the same
mode as the optimal IS density g∗.

The mode of a multivariate normal distribution Np(µ,Σ) equals the
expected vector µ, thus determining µ leads to the following optimization
problem:
µ = argmaxz

{
P(L ≥ c |Z = z) exp{− 1

2z
tΣ−1z}

}
.

This problem is hard to solve exactly; in general P(L ≥ c |Z = z) is not
available in analytical form.

Glasserman und Li (2003) propose some numerical solution approaches.
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