Tail dependence coefficients of elliptical copulas

Tail dependence coefficients of elliptical copulas

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a normally distributed random vector. Then $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.

Tail dependence coefficients of elliptical copulas

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a normally distributed random vector. Then $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.
Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and let $C_{\rho}^{G a}$ be a Gaussian copula, where ρ is the linear correlation coefficient of X_{1} and X_{2}. The $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.

Tail dependence coefficients of elliptical copulas

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a normally distributed random vector. Then $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.
Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and let $C_{\rho}^{G a}$ be a Gaussian copula, where ρ is the linear correlation coefficient of X_{1} and X_{2}. The $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T} \sim t_{2}(0, \nu, R)$ be a random vector with a t-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix R. For $R_{12}>-1$ we have

$$
\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)
$$

Tail dependence coefficients of elliptical copulas

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a normally distributed random vector. Then $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.
Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and let $C_{\rho}^{G a}$ be a Gaussian copula, where ρ is the linear correlation coefficient of X_{1} and X_{2}. The $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T} \sim t_{2}(0, \nu, R)$ be a random vector with a t-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix R. For $R_{12}>-1$ we have

$$
\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)
$$

The proof is similar to the proof of the analogous theorem about the Gaussian copulas.
Hint:

$$
X_{2} \left\lvert\, X_{1}=x \sim\left(\frac{\nu+1}{\nu+x^{2}}\right)^{1 / 2} \frac{X_{2}-\rho x}{\sqrt{1-\rho^{2}}} \sim t_{\nu+1}\right.
$$

Tail dependence (contd.) and rank correlation of elliptical copulas

Tail dependence (contd.) and rank correlation of elliptical copulas

Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu, R}^{t}$ with ν degrees of freedom and and correlation matrix R. Then we have $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.

Tail dependence (contd.) and rank correlation of elliptical copulas

Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu, R}^{t}$ with ν degrees of freedom and and correlation matrix R. Then we have $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a Gaussian copula $C_{\rho}^{G a}$, where ρ is the linear correlation coefficient of X_{1} and X_{2}. Then we have $\rho_{\tau}\left(X_{1}, X_{2}\right)=\frac{2}{\pi} \arcsin \rho$ und $\rho_{S}\left(X_{1}, X_{2}\right)=\frac{6}{\pi} \arcsin \frac{\rho}{2}$.

Tail dependence (contd.) and rank correlation of elliptical copulas

Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu, R}^{t}$ with ν degrees of freedom and and correlation matrix R. Then we have $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a Gaussian copula $C_{\rho}^{G a}$, where ρ is the linear correlation coefficient of X_{1} and X_{2}. Then we have $\rho_{\tau}\left(X_{1}, X_{2}\right)=\frac{2}{\pi} \arcsin \rho$ und $\rho_{S}\left(X_{1}, X_{2}\right)=\frac{6}{\pi} \arcsin \frac{\rho}{2}$.
Theorem: Let $X \sim E_{d}(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}\left(X_{i}, X_{j}\right)=\frac{2}{\pi} \arcsin R_{i j}$, with $R_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i i} \Sigma_{j j}}}$ for $i, j=1,2, \ldots, d$.

Tail dependence (contd.) and rank correlation of elliptical copulas

Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu, R}^{t}$ with ν degrees of freedom and and correlation matrix R. Then we have $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a Gaussian copula $C_{\rho}^{G a}$, where ρ is the linear correlation coefficient of X_{1} and X_{2}. Then we have $\rho_{\tau}\left(X_{1}, X_{2}\right)=\frac{2}{\pi} \arcsin \rho$ und $\rho_{S}\left(X_{1}, X_{2}\right)=\frac{6}{\pi} \arcsin \frac{\rho}{2}$.
Theorem: Let $X \sim E_{d}(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}\left(X_{i}, X_{j}\right)=\frac{2}{\pi} \arcsin R_{i j}$, with $R_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i j} \Sigma_{j j}}}$ for $i, j=1,2, \ldots, d$.
Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an elliptical copula copula $C_{\mu, \Sigma, \psi}^{E}$. Then we have $\rho_{\tau}\left(X_{1}, X_{2}\right)=\frac{2}{\pi} \arcsin R_{12}$, with $R_{12}=\frac{\Sigma_{12}}{\sqrt{\Sigma_{11} \Sigma_{22}}}$.

Tail dependence (contd.) and rank correlation of elliptical copulas

Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu, R}^{t}$ with ν degrees of freedom and and correlation matrix R. Then we have
$\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a Gaussian copula $C_{\rho}^{G a}$, where ρ is the linear correlation coefficient of X_{1} and X_{2}. Then we have $\rho_{\tau}\left(X_{1}, X_{2}\right)=\frac{2}{\pi} \arcsin \rho$ und $\rho_{S}\left(X_{1}, X_{2}\right)=\frac{6}{\pi} \arcsin \frac{\rho}{2}$.
Theorem: Let $X \sim E_{d}(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}\left(X_{i}, X_{j}\right)=\frac{2}{\pi} \arcsin R_{i j}$, with $R_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i j} \Sigma_{j j}}}$ for $i, j=1,2, \ldots, d$.
Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an elliptical copula copula $C_{\mu, \Sigma, \psi}^{E}$. Then we have $\rho_{\tau}\left(X_{1}, X_{2}\right)=\frac{2}{\pi} \arcsin R_{12}$, with $R_{12}=\frac{\Sigma_{12}}{\sqrt{\Sigma_{11} \Sigma_{22}}}$.
See McNeil et al. (2005) for a proof of the three last results.

Archimedian copulas

Archimedian copulas

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Archimedian copulas

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$. The pseudo-inverse function $\phi^{[-1]}:[0, \infty] \rightarrow[0,1]$ of ϕ is defined by

$$
\phi^{[-1]}(t)= \begin{cases}\phi^{-1}(t) & 0 \leq t \leq \phi(0) \\ 0 & \phi(0) \leq t \leq \infty\end{cases}
$$

Archimedian copulas

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$. The pseudo-inverse function $\phi^{[-1]}:[0, \infty] \rightarrow[0,1]$ of ϕ is defined by

$$
\phi^{[-1]}(t)= \begin{cases}\phi^{-1}(t) & 0 \leq t \leq \phi(0) \\ 0 & \phi(0) \leq t \leq \infty\end{cases}
$$

$\phi^{[-1]}$ is continuous and monotone decreasing on $[0, \infty]$, strictly monotone decreasing on $[0, \phi(0)]$ and $\phi^{[-1]}(\phi(u))=u$ for $u \in[0,1]$ holds. Moreover

$$
\phi\left(\phi^{[-1]}(t)= \begin{cases}t & 0 \leq t \leq \phi(0) \\ \phi(0) & \phi(0) \leq t \leq+\infty\end{cases}\right.
$$

Archimedian copulas

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$. The pseudo-inverse function $\phi^{[-1]}:[0, \infty] \rightarrow[0,1]$ of ϕ is defined by

$$
\phi^{[-1]}(t)= \begin{cases}\phi^{-1}(t) & 0 \leq t \leq \phi(0) \\ 0 & \phi(0) \leq t \leq \infty\end{cases}
$$

$\phi^{[-1]}$ is continuous and monotone decreasing on $[0, \infty]$, strictly monotone decreasing on $[0, \phi(0)]$ and $\phi^{[-1]}(\phi(u))=u$ for $u \in[0,1]$ holds. Moreover

$$
\phi\left(\phi^{[-1]}(t)= \begin{cases}t & 0 \leq t \leq \phi(0) \\ \phi(0) & \phi(0) \leq t \leq+\infty\end{cases}\right.
$$

If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$.

Archimedian copulas (contd.)

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex. A copula C generated as above is called an Archimedian copula with generator ϕ.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex. A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex. A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex. A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex. A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.
For $\theta=1: \quad C_{1}^{G u}=u_{1} u_{2}$.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.
A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.
For $\theta=1: C_{1}^{G u}=u_{1} u_{2} \cdot \lim _{\theta \rightarrow \infty} C_{\theta}^{G u}=M\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}$.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex. A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.
For $\theta=1: C_{1}^{G u}=u_{1} u_{2} \cdot \lim _{\theta \rightarrow \infty} C_{\theta}^{G u}=M\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}$.
The Gumbel Copulas have an upper tail dependence.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.
A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.
For $\theta=1: C_{1}^{G u}=u_{1} u_{2} \cdot \lim _{\theta \rightarrow \infty} C_{\theta}^{G u}=M\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}$.
The Gumbel Copulas have an upper tail dependence.
Clayton Copulas: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$. Then
$C_{\theta}^{C l}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\left(u_{1}^{-\theta}+u_{2}^{-\theta}-1\right)^{-1 / \theta}$ is the
Clayton copula with parameter θ.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.
A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.
For $\theta=1: C_{1}^{G u}=u_{1} u_{2} \cdot \lim _{\theta \rightarrow \infty} C_{\theta}^{G u}=M\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}$.
The Gumbel Copulas have an upper tail dependence.
Clayton Copulas: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$. Then
$C_{\theta}^{C l}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\left(u_{1}^{-\theta}+u_{2}^{-\theta}-1\right)^{-1 / \theta}$ is the
Clayton copula with parameter θ.
$\lim _{\theta \rightarrow 0} C_{\theta}^{C l}=u_{1} u_{2}$ and $\lim _{\theta \rightarrow \infty} C_{\theta}^{C l}=M=\min \left\{u_{1}, u_{2}\right\}$.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.
A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then
$C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$
is the Gumbel copula with parameter θ.
For $\theta=1: C_{1}^{G u}=u_{1} u_{2} \cdot \lim _{\theta \rightarrow \infty} C_{\theta}^{G u}=M\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}$.
The Gumbel Copulas have an upper tail dependence.
Clayton Copulas: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$. Then
$C_{\theta}^{C l}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\left(u_{1}^{-\theta}+u_{2}^{-\theta}-1\right)^{-1 / \theta}$ is the
Clayton copula with parameter θ.
$\lim _{\theta \rightarrow 0} C_{\theta}^{C l}=u_{1} u_{2}$ and $\lim _{\theta \rightarrow \infty} C_{\theta}^{C l}=M=\min \left\{u_{1}, u_{2}\right\}$.
The Clayton copulas have a lower tail depencence.

Archimedian copulas (contd.)

Archimedian copulas (contd.)

Example:
Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.

Archimedian copulas (contd.)

Example:
Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.

Archimedian copulas (contd.)

Example:
Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.

Archimedian copulas (contd.)

Example:

Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.
Example Kendalls Tau for the Gumbel copula and the Clayton copula

Archimedian copulas (contd.)

Example:

Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.
Example Kendalls Tau for the Gumbel copula and the Clayton copula Gumbel: $\phi(t)=(\ln t)^{\theta}, \theta \geq 1$.

Archimedian copulas (contd.)

Example:

Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.
Example Kendalls Tau for the Gumbel copula and the Clayton copula Gumbel: $\phi(t)=(\ln t)^{\theta}, \theta \geq 1$.
$\rho_{\tau}(\theta)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t=1-\frac{1}{\theta}$.

Archimedian copulas (contd.)

Example:

Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.
Example Kendalls Tau for the Gumbel copula and the Clayton copula Gumbel: $\phi(t)=(\ln t)^{\theta}, \theta \geq 1$.
$\rho_{\tau}(\theta)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t=1-\frac{1}{\theta}$.
Clayton: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$.

Archimedian copulas (contd.)

Example:

Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.
Example Kendalls Tau for the Gumbel copula and the Clayton copula Gumbel: $\phi(t)=(\ln t)^{\theta}, \theta \geq 1$.
$\rho_{\tau}(\theta)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t=1-\frac{1}{\theta}$.
Clayton: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$.
$\rho_{\tau}(\theta)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t=\frac{\theta}{\theta+2}$.

Multivariate Archimedian copulas

Multivariate Archimedian copulas

Definition: A function g : $[0, \infty) \rightarrow[0, \infty)$ is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for $k \in \mathbb{N}_{*}:\left.(-1)^{k}\left(\frac{d^{k}}{d s^{k}} g(s)\right)\right|_{s=t} \geq 0, \forall t \in(0, \infty)$.

Multivariate Archimedian copulas

Definition: A function g : $[0, \infty) \rightarrow[0, \infty)$ is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for $k \in \mathbb{N}_{*}:\left.(-1)^{k}\left(\frac{d^{k}}{d s^{k}} g(s)\right)\right|_{s=t} \geq 0, \forall t \in(0, \infty)$.
Theorem: (Kimberling 1974)
Let $\phi:[0,1] \rightarrow[0, \infty]$ be a continuous, strictly monotone decreasing function with $\phi(0)=\infty$ and $\phi(1)=0$. The function $C:[0,1]^{d} \rightarrow[0,1]$, $C(u):=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)+\ldots+\phi\left(u_{d}\right)\right)$ is a copula for $d \geq 2$ iff ϕ^{-1} is completely monotone on $[0, \infty)$.

Multivariate Archimedian copulas

Definition: A function g : $[0, \infty) \rightarrow[0, \infty)$ is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for $k \in \mathbb{N}_{*}:\left.(-1)^{k}\left(\frac{d^{k}}{d s^{k}} g(s)\right)\right|_{s=t} \geq 0, \forall t \in(0, \infty)$.
Theorem: (Kimberling 1974)
Let $\phi:[0,1] \rightarrow[0, \infty]$ be a continuous, strictly monotone decreasing function with $\phi(0)=\infty$ and $\phi(1)=0$. The function $C:[0,1]^{d} \rightarrow[0,1]$, $C(u):=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)+\ldots+\phi\left(u_{d}\right)\right)$ is a copula for $d \geq 2$ iff ϕ^{-1} is completely monotone on $[0, \infty)$.
Lemma: A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is completely monotone with $\psi(0)=1$ iff ψ is the Laplace-Stieltjes transform of some distribution function G on $[0, \infty)$, i.e. $\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x), s \geq 0$.

Multivariate Archimedian copulas (contd.)

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e. $\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e.
$\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.
Then
$\operatorname{Prob}\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{d} \leq u_{d}\right)=\psi\left(\psi^{-1}\left(u_{1}\right)+\psi^{-1}\left(u_{2}\right)+\ldots+\psi^{-1}\left(u_{d}\right)\right)$
and the distribution function of $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is an Archimedian copula with generator ψ^{-1}.

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e.
$\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution
function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.
Then
$\operatorname{Prob}\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{d} \leq u_{d}\right)=\psi\left(\psi^{-1}\left(u_{1}\right)+\psi^{-1}\left(u_{2}\right)+\ldots+\psi^{-1}\left(u_{d}\right)\right)$
and the distribution function of $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is an Archimedian copula with generator ψ^{-1}.
Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e.
$\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution
function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.
Then
$\operatorname{Prob}\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{d} \leq u_{d}\right)=\psi\left(\psi^{-1}\left(u_{1}\right)+\psi^{-1}\left(u_{2}\right)+\ldots+\psi^{-1}\left(u_{d}\right)\right)$
and the distribution function of $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is an Archimedian copula with generator ψ^{-1}.
Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e.
$\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution
function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.
Then
$\operatorname{Prob}\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{d} \leq u_{d}\right)=\psi\left(\psi^{-1}\left(u_{1}\right)+\psi^{-1}\left(u_{2}\right)+\ldots+\psi^{-1}\left(u_{d}\right)\right)$
and the distribution function of $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is an Archimedian copula with generator ψ^{-1}.

Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation
- depend on a small number of parameters in general

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e.
$\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution
function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.
Then
$\operatorname{Prob}\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{d} \leq u_{d}\right)=\psi\left(\psi^{-1}\left(u_{1}\right)+\psi^{-1}\left(u_{2}\right)+\ldots+\psi^{-1}\left(u_{d}\right)\right)$
and the distribution function of $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is an Archimedian copula with generator ψ^{-1}.

Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation
- depend on a small number of parameters in general
- the generator function needs to fulfill quite restrictive technical assumptions

