
What is credit risk?

Citation from McNeil, Frey und Embrechts (2005):

Credit risk is the risk that the value of a portfolio changes due to
unexpected changes in the credit quality of issuers or trading partners.
This subsumes both losses due to defaults and losses caused by changes
in credit quality such as the downgrading of a counterparty in an internal
or external rating system.

Examples of finance instruments affected by credit risk

I bond portfolios

I OTC (“over the counter”) transactions

I trades with credit derivatives

I ...
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A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value Li , i = 1, 2, . . . , n,
respectively, set up at time T0.

pi : the probability that (the issuer of) bond i defaults until time T ,
T > T0

λi ∈ [0, 1]: “recovery rate” of bond i
1− λi : percentage of lost value of bond i in case of default until time T

The loss given default for bond i at time T : LGDi = (1− λi )Li
Model the default of bond i until time T by a Bernoulli distributed r.v. Xi

with with pi = P(Xi = 1):

Xi =

{
1 bond i defaults
0 otherwise

Total loss at time T : L =
∑n

i=1 Xi · LGDi =
∑n

i=1 Xi (1− λi )Li .

L is a r.v. and its distribution depends from the c.d.f. of
(X1, . . . ,Xn, λ1, . . . , λn)T ab.
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The simplest model

I Li = L1, ∀i
I recovery rates are deterministic and λi = λ1, ∀i
I Xi are i.i.d. with pi = p for all i , for some p ∈ (0, 1).

Then we have L = LGD1 · N with N =
∑n

i=1 Xi ∼ Binomial(n, p).

Models with latent variables
The obligors (bonds) are partitioned into m + 1 homogeneous categories
such that all obligors of a group have the same default probability.

Historical data about the number of defaulting obligors of a certain
category are used to obtain an estimator for the default probability of
that category.

S = (S1,S2, . . . ,Sn), Si ∈ {0, 1, . . . ,m}, is a status vector representing
the category assignment; Si = j ∈ {1, 2, . . . ,m} means that obligor i
belongs to category j (e.g. categories could be the rating classes).

Si = 0 corresponds to default.

Then we have Xi =

{
0 Si 6= 0
1 Si = 0
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Models with latent variables (contd.)

S = (S1,S2, . . . ,Sn)T is modelled by means of latent variables
Y = (Y1,Y2, . . . ,Yn)T , e.g. Yi could be the value of the assets of obligor
i (firm value models).

Let dij , i = 1, 2, . . . , n, j = 0, 1, . . . ,m + 1 be threshold values such that
di,0 = −∞ und di,m+1 =∞ and Si = j ⇐⇒ Yi ∈ (di,j , di,j+1].

Let Fi be the distribution function of Yi . The probability of default for
obligor i is pi = Fi (di,1).

The probability that the fisrt k obligors default:

p1,2,...,k := P(Y1 ≤ d1,1,Y2 ≤ d2,1, . . . ,Yk ≤ dk,1)

= C (F1(d1,1),F2(d2,1), . . . ,Fk(dk,1), 1, 1, . . . , 1) = C (p1, p2, . . . , pk , 1, . . . , 1)

Thus the totalt defalut probability depends essentially on the copula C of
(Y1,Y2, . . . ,Yn).
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The KMV model (see www.moodysanalytics.com)

The status variables S = (S1,S2, . . . ,Sn) can only take two values 0 or 1,
i.e. m = 1.

The latent variables Y = (Y1,Y2, . . . ,Yn)T depend on the value of the
assets of the obligors as follows.

Merton’s model
The balance sheet of each firm consists of assets and liabilities. The
latter are devided in debt and equities.

Notations:

VA,i (T ): value of assets of firm i at time point T

Ki := Ki (T ): value of the debt of firm i at time point T

VE ,i (T ): value of equity of firm i at time point T

Assumption: future asset value is modelled by a geometric Brownian
motion
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Assumption: future asset value is modelled by a geometric Brownian
motion



The KMV model (contd.)

VA,i (T ) = VA,i (t) exp
{(
µA,i −

σ2
A,i

2

)
(T − t) + σA,i (Wi (T )−Wi (t))

}
,

where

µA,i is the drift, σA,i is the volatility and (Wi (t) : 0 ≤ t ≤ T ) is a
standard Brownian motion (or equivalently a Wiener process).

Hence (Wi (T )−Wi (t)) ∼ N(0,T − t) and lnVA,i (T ) ∼ N(µ, σ2) with

µ = lnVA,i (t) +
(
µA,i −

σ2
A,i

2

)
(T − t) and σ2 = σ2

A,i (T − t).

Further Xi = I(−∞,Ki )(VA,i (T )) holds.

Set Yi = Wi (T )−Wi (t)√
T−t ∼ N(0, 1).

Then we get: Xi = I(−∞,Ki )(VA,i (T )) = I(−∞,−DDi )(Yi ) where

DDi =
ln VA,i (t)−ln Ki+(µA,i−

σ2
A,i
2 )(T−t)

σA,i

√
T−t

DDi is called distance-to-default.
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The KMV model (contd.)

Computation of the “distance to default”
VA, i(t), µA,i and σA,i are needed.
Difficulty: VA,i (t) can not be observed directly.

However VE ,i (t) can be observed by looking at the market stock prices.

KMVs viewpoint: the equity holders have the right, but not the
obligation, to pay off the holders of the other liabilities and take over the
remaining assets of the firm.

This can be seen as a call option on the firms assets with a strike price
equal to the book value of the firms liabilities.

Thus VE ,i (T ) = max{VA,i (T )− Ki , 0}.

The Black-Scholes formula implies (option price theory):

VE ,i (t) = C (VA,i (t), r , σA,i ) = VA,i (t)φ(e1)− Kie
−r(T−t)φ(e2), where

e1 =
ln(VA,i (t)−ln Ki+(r+σ2

A,i/2)(T−t)

σA,i (T−t) , e2 = e1 − σA,i (T − t),

φ is the the standard normal distribution function and r is the risk free
interest rate.
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Computation of the “distance to default” (contd.)

The KMV model also postulates
σE ,i = g(VA,i (t), σA,i , r), where g is some suitably selected proprietary
function.

VE ,i (t) and σE ,i are estimated based on historical data and the system of
equalities below is solved w.r.t. VA,i (t) and σA,i :

VE ,i (t) = C (VA,i (t), r , σA,i )
σE ,i = g(VA,i (t), σA,i , r)

The values obtained for VA,i (t) and σA,i are used to compute DDi :

DDi =
ln VA,i (t)−ln Ki+(µA,i−

σ2
A,i
2 )(T−t)

σA,i

√
T−t .

Then P(VA,i (T ) < Ki ) = P(Yi < −DDi ) and in the general setup of the
latent variable model with m = 1 we have di1 = −DDi .
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The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting
pi := P(Yi < −DDi ).

Alternative: historical data are used to identify companies which at some
stage in their history had the same distance to default DDi .

Then the observed default frequency is used as an estimator for the
default probability pi . This estimator is called expected default frequency,
(EDF).

Summary of the univariate KMV model to compute the default
probability of a company:

I Estimate the asset value VA,i and the volatilty σA,i by using
observations of the market value and the volatility of equity VE ,i ,
σE ,i , the book of liabilities Ki , and by solving the system of
equations above.

I Compute the distance-to-default DDi by means of the
corresponding formula.

I Estimate the default probability pi in terms of the empirical
distribution which relates the distance to default with the expected
default frequency.
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The multivariate KMV model: computation of
multivariate default probabilities

Let Wj(t) be independent standard Brownian motions for 0 ≤ t ≤ T ,
j = 1, 2, . . . ,m.

Basic model:VA,i (T ) =

VA,i (t) exp

{(
µA,i −

σ2
A,i

2

)
(T − t) +

∑m
j=1 σA,i,j

(
Wj(T )−Wj(t)

)}
,

where

µA,i is the drift, σ2
A,i =

∑m
j=1 σ

2
A,i,j is the volatility, and σA,i,j quantifies

the impact of the jth Brownian motion on the asset value of firm i .

Set Yi :=
∑m

j=1 σA,i,j (Wj (T )−Wj (t))

σA,i

√
T−t . Then Y = (Y1,Y2, . . . ,Yn) ∼ N(0,Σ),

where Σij =
∑m

k=1 σA,i,kσA,j,k

σA,iσA,j
.

We get VA,i (T ) < Ki ⇐⇒ Yi < −DDi with

DDi =

ln VA,i (t)−ln Ki+

(
−σ2

A,i
2 +µA,i

)
(T−t)

σA,i

√
T−t .
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The multivariate KMV model (contd.)

The probability that the k first firms default:

P(X1 = 1,X2 = 1, . . . ,Xk = 1) = P(Y1 < −DD1, . . . ,Yk < −DDk)
= CGa

Σ (φ(−DD1), . . . , φ(−DDk), 1, . . . , 1),

where CGa
Σ is the copula of a multivariate normal distribution with

covariance matrix Σ.

Joint default frequency:

JDF1,2,...,k = CGa
Σ (EDF1,EDF2, . . . ,EDFk , 1, . . . , 1),

where EDFi is the default frequency for firm i , i = 1, 2, . . . , k .
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Estimation of covariances/correlations σA,i ,j

Difficulties:

I n is typically quite large

I relatively few historical data available

I if n is large, then the pairwise estimated correlations coefficients do
not build a positive correlation matrix, in general.

Possible approach:
Factor model for the latent variables in which the asset value of a
company depends on certain common factors (macro-economical, global,
regional, sector-based or country-based factors) and a company specific
factor.

Y = (Y1,Y2, . . . ,Yn)T = AZ + BU where

Z = (Z1, . . . ,Zk)T ∼ Nk(0,Λ) are the k common factors,
U = (U1, . . . ,Un)T ∼ Nn(0, I ) are the company specific factors such that
Z and U are independent, and the constant matrices A = (aij) ∈ Rn×k ,
B = diag(b1, . . . , bn) ∈ Rn×n are model parameters.

Then we have cov(Y ) = AΛAT +D where D = diag(b2
1, . . . , b

2
n) ∈ Rn×n.
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Migration based models: Credit Metrics

It was developed by J.P.Morgan, see also MSCI
(https://www.msci.com/)

It is primarily used fo the evaluation of bond portfolios (Siehe Crouhy et
al. (2000)) and is based on a rating system (eg. Moody’s or Standard
and Poor’s).

It considers the changes of the portfolio value due to changes on the
corresponding rating categories of the assets.

Let P be a portfolio consisting of n credits with a fixed holding duration
(eg. 1 year). Let Si be the status variable for debtor i , where the states
are 0, 1, . . . ,m and Si = 0 corresponds to default.

Example: Rating system of Standard and Poor’s
m = 7; Si = 0 means default; Si = 1 or CCC ; Si = 2 or B; Si = 3 or BB;
Si = 4 or BBB; Si = 5 or A; Si = 6 or AA; Si = 7 or AAA.
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Migration based models: Credit Metrics (contd.)

For each debtor the dynamics of the status variable is modelled by means
of a Markov chain with status set {0, 1, . . . ,m} and transition matrix P.

The transition probabilities are computed based on historical data: e.g.

Original state category at the end of the year
state category AAA AA A BBB BB B CCC default

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0
AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0
A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18
BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06
B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20

CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79

Recovery rates
In case of default the recovery rate depends on the status category of the
defaulting debtor (prior to default). The mean and the standard
deviation of the recovery rate are computed based on the historical data
observed over time within each state category.
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Evaluation of bonds if the status category changes

Example: Consider a BBB bond with maturity 5 years, a nominal value
of 100 units and a coupon of 6% each year.
The forward forward yield curves for each status category are given as
follows (in %):

Status Year 1 Year 2 Year 3 Year 4
AAA 3.60 4.17 4.73 5.12
AA 3.65 4.22 4.78 5.17
A 3.73 4.32 4.93 5.32

BBB 4.10 4.67 5.25 5.63
BB 6.05 7.02 8.03 8.52

CCC 15.05 15.02 14.03 13.52

The bond pays 6 units at the end of the 4 years 1, 2, 3, 4 and 106 unit at
the end of year 5.

Assumption: At the end of the first year the bond is rated as an A bond.
The value at the end of the first year:

V = 6+
6

1 + 3, 73%
+

6

(1 + 4, 32%)2
+

6

(1 + 4, 93%)3
+

106

(1 + 5, 32%)4
= 108.64
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Evaluation of bonds if the status category changes
(contd.)

Example (contd.)
Analogous evaluation of the bond for other status category changes.

Assumption: recovery rate in case of default is 51.13%.

Status category at the end of the first year value
AAA 109.35
AA 109.17
A 108.64

BBB 107.53
BB 102.01
B 98.09

CCC 83.63
Default 51.13

Use the transition probabilities of the Markov chain (estimated in terms
of historical data) to compute the expected value of the bond at the end
of the first year.
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Value and risk of a bond portfolio in Credit Metrics

The return of bond i is modelled by a normal distribution Yi .

Let dDef , dCCC , . . ., dAAA = +∞ be thresholds which define the
transitions probabilities of debtor i at the end of the current period as
follows:

P(Si = 0) = φ(dDef ), P(Si = CCC ) = φ(dCCC )− φ(dDef ), . . .,
P(Si = AAA) = 1− φ(AA).

The return of a vector of bonds is modelled as a multivariate normal
distribution with correlation matrix R estimated by means of factor
models.

Joint probabilities of status category changes, e.g.

P(S1 = 0, . . . ,Sn = 3) = P(Y1 ≤ dDef , . . . , dB < Yn ≤ dBB)

can be then computed by using the Gaussian copula CGa
n,R of

(Y1,Y2, . . . ,Yn).

Use simulation to compute the risk measures (VaR, CVaR) of the bond
portfolio, e.g. by generating a large number of scenarios and then
computing the empirical estimators of VaR, CVaR.
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Approaches based on mixture models

Assumptions:

(1) The default of each debtor depends on a number of
(macro-economical) factors which are modelled stochastically.

(2) For a given realisation of these factors the defaults of different
debtors are independent on each other.

Definition: The Bernoulli mixture distribution
The 0-1 random vector X = (X1, . . . ,Xn)T has a Bernoulli mixture
distribution (BMD) iff there exists a random vector
Z = (Z1,Z2, . . . ,Zm)T , m < n, and the functions fi : Rm → [0, 1],
i = 1, 2, . . . , n, such that X conditioned on Z has independent
components with Xi |Z ∼ Bern(fi (Z )).

Then P(X = x |Z ) =
∏n

i=1 fi (Z )xi (1− fi (Z ))1−xi ,
∀x = (x1, . . . , xn)T ∈ {0, 1}n

The unconditional distribution:

P(X = x) = E (P(X = x |Z )) = E

(∏n
i=1 fi (Z )xi (1− fi (Z ))1−xi

)
If all function fi coincide, i.e. fi = f , ∀i , we get N|Z ∼ Bin(n, f (Z )) for
the number N =

∑n
i=1 Xi of defaults.
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The Poisson mixture distribution

Definition: The discrete random vector X = (X1, . . . ,Xn)T has a
Poisson mixture distribution (PMD) iff there exists a random vector
Z = (Z1,Z2, . . . ,Zm)T , m < n, and the functions λi : Rm → (0,∞),
i = 1, 2, . . . , n, such that X conditioned on Z has independent
components with Xi |Z ∼ Poi(λi (Z )).

Then P(X = x |Z ) =
∏n

i=1
λi (Z)xi

xi !
e−λi (Z)

∀x = (x1, . . . , xn)T ∈ (N ∪ {0})n.

The unconditional distribution:

P(X = x) = E (P(X = x |Z )) = E

(∏n
i=1

λi (Z)xi

xi !
e−λi (Z)

)
Let X̄i = I[1,∞)(Xi ).

Then X̄ = (X̄1, . . . , X̄n) is BMD with fi (Z ) = 1− e−λi (Z)

If λi (Z ) << 1 we get for the number Ñ =
∑n

i=1 X̄i ≈
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i=1 Xi of
defaults:

Ñ|Z ∼ Poisson(λ̄(Z )), where λ̄ =
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Examples of Bernoulli mixture distributions

Assumptions :

I Z is univariate (i.e. there is only one risk factor)

I fi = f , for all i ∈ {1, 2, . . . , n}

We have P(Xi = 1|Z ) = f (Z ), ∀i ; N|Z =
∑n

i=1 Xi ∼ Bin(n, f (Z )).

The unconditional probability of default of the first k debtors is
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =
E (P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0|Z )) =
E (f (Z )k(1− f (Z ))n−k)

Let G be the distribution function of Z . Then
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =∫∞
−∞ f (z)k(1− f (z))n−kd(G (z))

The distribution of the number N of defaults:

P(N = k) =

(
n

k

)∫ ∞
−∞

f (z)k(1− f (z))n−kd(G (z))
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The beta-mixture distribution

Let Z ∼ Beta(a, b) and f (z) = z .

The d.f. g of Z is given as g(z) = 1
β(a,b)z

a−1(1− z)b−1, for a, b > 0,

z ∈ (0, 1), where β(a, b) =
∫ 1

0
za−1(1− z)b−1dz is the Euler beta

function.

The distribution of the number of defaults:

P(N = k) =

(
n

k

)∫ 1

0

zk(1−z)n−kg(z)dz =

(
n

k

)
1

β(a, b)

∫ 1

0

za+k−1(1−z)n−k+b−1dz

=

(
n

k

)
β(a + k, b + n − k)

β(a, b)
is the beta-binomial distribution

The probit-normal mixture
is obtained with Z ∼ N(0, 1), f (z) = φ(µ+ σz), µ ∈ R, σ > 0, where φ
is the standard normal distribution.

The logit-normal mixture
is with Z ∼ N(0, 1), f (z) = (1 + exp{µ+ σz})−1, µ ∈ R, σ > 0.
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CreditRisk+ - a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit suisse.com/investment banking/research/en/credit risk.jsp

Consider m independent risik factors Z1,Z2, . . . ,Zm, Zj ∼ Γ(αj , βj),
j = 1, 2, . . . ,m, with parameter αj , βj generally choosen such that such
that E (Zj) = 1.

Let λi (Z ) = λ̄i
∑m

j=1 aijZj ,
∑m

j=1 aij = 1 for i = 1, 2, . . . , n for some

parameters λ̄i > 0. Then E (λi (Z )) = λ̄i > 0) holds.

The density function of Zj is given as fj(z) =
zαj−1 exp{−z/βj}

β
αj
j Γ(αj )

The loss given default for debtor i is LGDi = (1− λi )Li , 1 ≤ i ≤ n,
where λi is the expected deterministic recovery rate and Li is the amount
of credit i .

The goal: approximate the loss disribution by a discrete distribution
durch and derive the generator function for the latter.
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The probability generating function and its properties

Let Y be a discrete r.v. taking values on {y1, . . . , ym} (a continuous r.v.
with density function f (y) in R). The probability generating function
(pgf) gY of Y is a mapping of [0, 1] to the reals defined as

gY (t) := E (tY ) =
∑m

i=1 t
yiP(Y = yi ) (gY (t) :=

∫∞
−∞ ty f (y)dy).

Some properties of probability generating functions:

(i) If Y ∼ Bernoulli(p), then gY (t) = 1 + p(t − 1).

(ii) If Y ∼ Poisson(λ), then gY (t) = exp{λ(t − 1)}.

(iii) If the r.v. X1, . . . ,Xn are independent, then
gX1+...+Xn(t) =

∏n
i=1 gXi (t).

(iv) Let Y be a r.v. with density function f and let gX |Y=y (t) be the pgf

of X |Y = y . Then gX (t) =
∫∞
−∞ gX |Y=y (t)f (y)dy .

(v) Let gX (t) be the pgf of X . Then P(X = k) = 1
k!g

(k)
X (0), where

g
(k)
X (t) = dkgX (t)

dtk
.
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The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss
unit L0 (e.g. Lo = 106 Euro):

LGDi = (1− λi )Li ≈
[

(1−λi )Li

L0

]
L0 = viL0 with vi :=

[
(1−λi )Li

L0

]
,

where [x ] = arg mint{|t − x | : t ∈ Z, t − x ∈ (−1/2, 1/2]}.

The loss function is then given by L =
∑n

i=1 X̄iviL0 ≈
∑n

i=1 XiviL0,
where X̄i is the loss indicator and (X1, . . . ,Xn) has a PMD with factor
vector (Z1,Z2, . . . ,Zm) as described above.

Step 1 Determine the pgf of (the approximative) number of losses
N = X1 + . . .+ Xn

Xi |Z ∼ Poi(λi (Z )), ∀i =⇒ gXi |Z (t) = exp{λi (Z )(t − 1)}, ∀i =⇒
gN|Z (t) =

∏n
i=1 gXi |Z (t) =

∏n
i=1 exp{λi (Z )(t−1)} = exp{µ(t−1)},

with µ :=
∑n

i=1 λi (Z ) =
∑n

i=1

(
λ̄i
∑m

j=1 aijZj

)
.
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The pgf of the loss distribution (contd.)
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. . .
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0
gN|Z=(z1,z2,...,zm)f1(z1) . . . fm(zm)dz1 . . . dzm =∫ ∞

0

. . .

∫ ∞
0

exp

{
n∑

i=1

(
λ̄i

m∑
j=1

aijzj

)
(t − 1)
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f1(z1) . . . fm(zm)dz1 . . . dzm =

∫ ∞
0

. . .

∫ ∞
0

exp

{
(t−1)

m∑
j=1

(
n∑

i=1

λ̄iaij︸ ︷︷ ︸
µj

)
zj)

}
f1(z1) . . . fm(zm)dz1 . . . dzm =

∫ ∞
0

. . .

∫ ∞
0

exp{(t− 1)µ1z1}f1(z1)dz1 . . . exp{(t− 1)µmzm}fm(zm)dzm =

m∏
j=1

∫ ∞
0

exp{zjµj(t − 1)} 1

β
αj

j Γ(αj)
z
αj−1
j exp{−zj/βj}dzj

The computation of each integral in the product obove yields∫∞
0

1

Γ(αj )β
αj
j

exp{zjµj(t − 1)}zαj−1
j exp{−zj/βj}dzj =

(
1−δj
1−δj t

)αj

with

δj = βjµj/(1 + βjµj).
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The pgf of the loss distribution (contd.)

Thus we have gN(t) =
m∏
j=1

(
1− δj
1− δj t

)αj

.

Step 2 Determine the pgf of the (approximated) loss distribution
L =

∑n
i=1 XiviL0.

The conditional loss due to default of debtor i is Li |Z = vi (Xi |Z )

Li |Z are independent for i = 1, 2, . . . , n =⇒
gLi |Z (t) = E (tLi |Z ) = E (tviXi |Z ) = gXi |Z (tvi ) = exp{λi (Z )(tvi−1)}.
The pgf od the conditional overall loss is

gL|Z (t) = gL1+L2+...+Ln|Z (t) =
∏n

i=1 gLi |Z (t) =∏n
i=1 gXi |Z (tvi ) =exp

{∑m
j=1 Zj

(∑n
i=1 λ̄iaij(t

vi − 1)
)}

.

Analogous computations as in the case of gN(t) yield:

gL(t) =
m∏
j=1

(
1− δj

1− δjΛj(t)

)αj

wobei Λj(t) =
1

µj

n∑
i=1

λ̄iaij t
vi .
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The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with n = 100 credits, and m risk
factors, where m = 1 or m = 5.
Assume that λ̄i = λ̄ = 0.15, for i = 1, 2, . . . , n, αj = α = 1, βj = β = 1,
ai,j = 1/m, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

The probability that k creditors will default is given as follows for any
k ∈ N ∪ {0}:
P(N = k) = 1

k!g
(k)
N (0) = 1

k!
dkgN
dtk

.

For the computation of P(N = k), k = 0, 1, . . . , 100, we can use the
following recursive formula

g
(k)
N (0) =

∑k−1
l=0

(
k−1
l

)
g

(k−1−l)
N (0)

∑m
j=1 l!αjδ

l+1
j , where k > 1.



The pgf of the loss distribution (contd.)
Example: Consider a credit portfolio with n = 100 credits, and m risk
factors, where m = 1 or m = 5.

Assume that λ̄i = λ̄ = 0.15, for i = 1, 2, . . . , n, αj = α = 1, βj = β = 1,
ai,j = 1/m, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

The probability that k creditors will default is given as follows for any
k ∈ N ∪ {0}:
P(N = k) = 1

k!g
(k)
N (0) = 1

k!
dkgN
dtk

.

For the computation of P(N = k), k = 0, 1, . . . , 100, we can use the
following recursive formula

g
(k)
N (0) =

∑k−1
l=0

(
k−1
l

)
g

(k−1−l)
N (0)

∑m
j=1 l!αjδ

l+1
j , where k > 1.



The pgf of the loss distribution (contd.)
Example: Consider a credit portfolio with n = 100 credits, and m risk
factors, where m = 1 or m = 5.
Assume that λ̄i = λ̄ = 0.15, for i = 1, 2, . . . , n, αj = α = 1, βj = β = 1,
ai,j = 1/m, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

The probability that k creditors will default is given as follows for any
k ∈ N ∪ {0}:
P(N = k) = 1

k!g
(k)
N (0) = 1

k!
dkgN
dtk

.

For the computation of P(N = k), k = 0, 1, . . . , 100, we can use the
following recursive formula

g
(k)
N (0) =

∑k−1
l=0

(
k−1
l

)
g

(k−1−l)
N (0)

∑m
j=1 l!αjδ

l+1
j , where k > 1.



The pgf of the loss distribution (contd.)
Example: Consider a credit portfolio with n = 100 credits, and m risk
factors, where m = 1 or m = 5.
Assume that λ̄i = λ̄ = 0.15, for i = 1, 2, . . . , n, αj = α = 1, βj = β = 1,
ai,j = 1/m, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

The probability that k creditors will default is given as follows for any
k ∈ N ∪ {0}:

P(N = k) = 1
k!g

(k)
N (0) = 1

k!
dkgN
dtk

.

For the computation of P(N = k), k = 0, 1, . . . , 100, we can use the
following recursive formula

g
(k)
N (0) =

∑k−1
l=0

(
k−1
l

)
g

(k−1−l)
N (0)

∑m
j=1 l!αjδ

l+1
j , where k > 1.



The pgf of the loss distribution (contd.)
Example: Consider a credit portfolio with n = 100 credits, and m risk
factors, where m = 1 or m = 5.
Assume that λ̄i = λ̄ = 0.15, for i = 1, 2, . . . , n, αj = α = 1, βj = β = 1,
ai,j = 1/m, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

The probability that k creditors will default is given as follows for any
k ∈ N ∪ {0}:
P(N = k) = 1

k!g
(k)
N (0) = 1

k!
dkgN
dtk

.

For the computation of P(N = k), k = 0, 1, . . . , 100, we can use the
following recursive formula

g
(k)
N (0) =

∑k−1
l=0

(
k−1
l

)
g

(k−1−l)
N (0)

∑m
j=1 l!αjδ

l+1
j , where k > 1.



The pgf of the loss distribution (contd.)
Example: Consider a credit portfolio with n = 100 credits, and m risk
factors, where m = 1 or m = 5.
Assume that λ̄i = λ̄ = 0.15, for i = 1, 2, . . . , n, αj = α = 1, βj = β = 1,
ai,j = 1/m, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

The probability that k creditors will default is given as follows for any
k ∈ N ∪ {0}:
P(N = k) = 1

k!g
(k)
N (0) = 1

k!
dkgN
dtk

.

For the computation of P(N = k), k = 0, 1, . . . , 100, we can use the
following recursive formula

g
(k)
N (0) =

∑k−1
l=0

(
k−1
l

)
g

(k−1−l)
N (0)

∑m
j=1 l!αjδ

l+1
j , where k > 1.



The pgf of the loss distribution (contd.)
Example: Consider a credit portfolio with n = 100 credits, and m risk
factors, where m = 1 or m = 5.
Assume that λ̄i = λ̄ = 0.15, for i = 1, 2, . . . , n, αj = α = 1, βj = β = 1,
ai,j = 1/m, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

The probability that k creditors will default is given as follows for any
k ∈ N ∪ {0}:
P(N = k) = 1

k!g
(k)
N (0) = 1

k!
dkgN
dtk

.

For the computation of P(N = k), k = 0, 1, . . . , 100, we can use the
following recursive formula

g
(k)
N (0) =

∑k−1
l=0

(
k−1
l

)
g

(k−1−l)
N (0)

∑m
j=1 l!αjδ

l+1
j , where k > 1.



Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits.
The loss function is L =

∑m
i=1 Li and the single credit losses Li are

independent conditioned on a vector Z of economical impact factors.

Goal: Determine VaRα(L) = qα(L), CVaRα = E (L|L > qα(L)),
CVaRi,α = E (Li |L > qα(L)), for all i .

Application of Monte Carlo (MC) simulation has to deal with the
simulation of rare events!
E.g. for α = 0, 99 only 1% of the standard MC simulations will lead to a
loss L, such that L > qα(L).

The standard MC estimator is:

ĈVaR
(MC)

α (L) =
1∑n

i=1 I(qα,+∞)(L(i))

n∑
i=1

L(i)I(qα,+∞)(L
(i)) ,

where Li is the value of the loss in the ith simulation run.

ĈVaR
(MC)

α (L) is unstable, i.e. it has a very high variance, if the number
of simulation runs ist not very high.
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ĈVaR
(MC)

α (L) =
1∑n

i=1 I(qα,+∞)(L(i))

n∑
i=1

L(i)I(qα,+∞)(L
(i)) ,

where Li is the value of the loss in the ith simulation run.
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Basics of importance sampling

Let X be a r.v. in a probability space (Ω,F ,P) with absolutely
continuous distribution function and density function f .

Goal: Determine θ = E (h(X )) =
∫∞
−∞ h(x)f (x)dx for some given

function h.

Examples:
Set h(x) = IA(x) to compute the probability of an event A.

Set h(x) = xIx>c(x) with c = VaR(X ) to compute CVaR(X ).

Algorithm: Monte Carlo integration

(1) Simulate X1,X2,. . . , Xn independently with density f .

(2) Compute the standard MC estimator θ̂
(MC)
n = 1

n

∑n
i=1 h(Xi ).

The strong low of large numbers implies lim
n→∞

θ̂(MC)
n = θ almost surely.

In case of rare events, e.g. h(x) = IA(x) with P(A) << 1, the
convergence is very slow.
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Importance sampling (contd.)

Let g be a probability density function, such that f (x) > 0⇒ g(x) > 0.

We define the likelihood ratio as: r(x) :=

{
f (x)
g(x) g(x) > 0

0 g(x) = 0

The following equality holds:

θ =

∫ ∞
−∞

h(x)r(x)g(x)dx = Eg (h(x)r(x))

Algorithm: Importance sampling

(1) Simulate X1,X2,. . . , Xn independently with density g .

(2) Compute the IS-estimator θ̂
(IS)
n = 1

n

∑n
i=1 h(Xi )r(Xi ).

g is called importance sampling density (IS density).

Goal: choose an IS density g such that the variance of the IS estimator is
much smaller than the variance of the standard MC-estimator.

var
(
θ̂(IS)
n

)
=

1

n2
(Eg (h2(X )r2(X ))− θ2)

var
(
θ̂(MC)
n

)
=

1

n2
(E (h2(X ))− θ2)
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Importance sampling (contd.)

Theoretically the variance of the IS estimator can be reduced to 0!

Assume h(x) ≥ 0,∀x .

For g∗(x) = f (x)h(x)/E (h(x)) we get : θ̂
(IS)
1 = h(X1)r(X1) = E (h(X )).

The IS estimator yields the correct value already after a single simulation!

Let h(x) = I{X≥c}(x) where c >> E (X ) (rare event).

We have E (h2(X )) = P(X ≥ c) and

Eg (h2(X )r2(X )) =

∫ ∞
−∞

h2(x)r2(x)g(x)dx = Eg (r2(X );X ≥ c) =

∫ ∞
−∞

h2(x)r(x)f (x)dx =

∫ ∞
−∞

h(x)r(x)f (x)dx = Ef (r(X );X ≥ c)

Goal: choose g such that Eg (h2(X )r2(X )) becomes small, i.e. such that
r(x) is small for x ≥ c . Aquivalently, the event X ≥ c should be more
probable under density g than under density f .
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Exponential tilting: Determining the IS density for light
tailed r.v.

Let Mx(t) : R→ R be the moment generating function of the r.v. X with
probability density f :

MX (t) = E (etX ) =

∫ ∞
−∞

etx f (x)dx

Consider the IS density gt(x) := etx f (x)
MX (t) . Then

rt(x) = f (x)
gt(x) = MX (t)e−tx .

Let µt := Egt (X ) = E (XetX )/MX (t).

How to determine a suitable t for a specific h(x)?
For example for the estimation of the tail probability?

Goal: choose t such that E (r(X );X ≥ c) = E (IX≥cMX (t)e−tX ) becomes
small.

e−tx ≤ e−tc , for x ≥ c , t ≥ 0 ⇒ E (IX≥cMX (t)e−tX ) ≤ MX (t)e−tc .

Set t = argmin{MX (t)e−tc : t ≥ 0} which imples t = t(c), where t(c) is
the solution of the equation µt = c .

(A unique solution of the above equality exists for all relevant values of c ,
see e.g. Embrechts et al. for a proof).
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IS in the case of probability measures
(useful for the estimation of the credit portfolio risk)

Let f and g be probability densities. Define probability measures P and
Q:
P(A) :=

∫
x∈A f (x)dx and Q(A) :=

∫
x∈A g(x)dx for A ⊂ R.

Goal: Estimate the expected value θ := EP(h(X )) of a given function
h : F → R in the probability space (Ω,F ,P).

We have θ := EP(h(X )) = EQ(h(X )r(X )) with r(x) := dP/dQ, thus r
is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:
Let X be a r.v. in (Ω,F ,P) such that MX (t) = EP(exp{tX}) <∞, ∀t.

Define a probability measure Qt in (Ω,F), such that

dQt/dP = exp(tX )/MX (t), i.e. Qt(A) := EP
(

exp{tX}
MX (t) ;A

)
.

We have dP
dQt

= MX (t) exp(−tX ) =: rt(X ).

The IS algorithm does not change: Simulate independent realisations of

Xi in (Ω,F ,Qt) and set θ̂
(IS)
n = (1/n)

∑n
i=1 Xi rt(Xi ).
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IS in the case of Bernoulli mixture models
(see Glasserman and Li (2003))
Consider the loss function of a credit portfolio L =

∑m
i=1 eiYi .

Yi are the loss indicators with default probability p̄i and ei = (1− λi )Li
are the positive deterministic exposures in the case that a corresponding
loss happens. λi are the recovery rates and Li are the credit nominals, for
i = 1, 2, . . . ,m.

Let Z be a vector of economical impact factors, such that Yi |Z are
independent and Yi |(Z = z) ∼ Bernoulli(pi (z)), ∀i = 1, 2, . . . ,m.

Goal: Estimation of θ = P(L ≥ c) by means of IS, for some given c with
c >> E (L).

Simplified case: Yi are independent for i = 1, 2, . . . ,m.
Let Ω = {0, 1}m be the state space of the random vector Y .
Consider the probability measure P in Ω:

P({y}) =
m∏
i=1

p̄yii (1− p̄i )
1−yi , y ∈ {0, 1}m.

The moment generating function of L is ML(t) =
∏m

i=1(etei p̄i + 1− p̄i ).
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IS in the case of Bernoulli mixture models (contd.)
Consider a probability measure Qt :

Qt({y}) =
n∏

i=1

(
exp{teiyi}

exp{tei}p̄i + 1− p̄i
p̄yii (1− p̄i )

1−yi
)
.

Let q̄t,i be new default probabilities

q̄t,i := exp{tei}p̄i/(exp{tei}p̄i + 1− p̄i ).

We have Qt({y}) =
∏m

i=1 q̄
yi
i (1− q̄i )

1−yi , for y ∈ {0, 1}m.

Thus after applying the exponential tilting the default indicators are
independent with new default probabilities q̄t,i .

limt→∞ q̄t,i = 1 and limt→−∞ q̄t,i = 0 imply that EQt (L) takes all values
in (0,

∑m
i=1 ei ) for t ∈ R.

Choose t, such that
∑m

i=1 ei q̄t,i = c .
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IS in the case of Bernoulli mixture models (contd.)
The general case: Yi are independent conditional on Z

1. Step: Estimation of the conditional excess probabilites
θ(z) := P(L ≥ c |Z = z) for a given realisation z of the economic factor
Z , by means of the IS approach for the simplified case.

Algorithm: IS for the conditional loss distribution

(1) For a given z compute the conditional default probabilities pi (z) (as
in the simplified case) and solve the equation

m∑
i=1

ei
exp{tei}pi (z)

exp{tei}pi (z) + 1− pi (z)
= c .

The solution t = t(c , z) specifies the correct degree of tilting.

(2) Generate n1 conditional realisations of the vector of default
indicators (Y1, . . . ,Ym), Yi are simulated from Bernoulli(qi ),
i = 1, 2, . . . ,m, with

qi =
exp{t(c , z)ei}pi (z)

exp{t(c , z)ei}pi (z) + 1− pi (z)
.
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The general case (contd.)

(3) Let ML(t, z) :=
∏

[exp{t(c , z)ei}pi (z) + 1− pi (z)] be the
conditional moment generating function of L. Let L(1), L(2),. . .,L(n1)

be the n1 conditional realisations of L for the n1 simulated
realisations of Y1,Y2, . . . ,Ym. Compute the IS-estimator for the tail
probability of the conditional loss distribution:

θ̂(IS)
n1

(z) = ML(t(c , z), z)
1

n1

n1∑
j=1

IL(j)≥c exp{−t(c , z)L(j)}L(j).

2. Step: Estimation of the unconditional excess probability θ = P(L ≥ c).

Naive approach: Generate many realisations z of the impact factors Z

and compute θ̂
(IS)
n1 (z) for every one of them. The required estimator is

the average of θ̂
(IS)
n1 (z) over all realisations z .

This is not the most efficient approach, see Glasserman and Li (2003).

A better alternative: IS for the impact factors.
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IS for the impact factors

Assumption: Z ∼ Np(0,Σ) (e.g. probit-normal Bernoulli mixture)

Let the IS density g be the density of Np(µ,Σ) for a new expected vector
µ ∈ Rp. A good choice of µ should lead to frequent realisations of z
which imply high conditional default probabilities pi (z).

The likelihood ratio:

rµ(Z ) =
exp{− 1

2Z
tΣ−1Z}

exp{− 1
2 (Z − µ)tΣ−1(Z − µ)}

= exp{−µtΣ−1Z +
1

2
µtΣ1µ}

Algorithm: complete IS for Bernoulli mixture models with Gaussian
factors

(1) Generate z1, z2, . . . , zn ∼ Np(µ,Σ) (n is the number of the
simulation rounds)

(2) For each zi compute θ̂
(IS)
n1 (zi ) by applying the IS algorithm for the

conditional loss.

(3) compute the IS estimator for the independent excess probability:

θ̂(IS)
n =

1

n

n∑
i=1

rµ(zi )θ̂
(IS)
n1

(zi )
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The choice of µ

µ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since θ̂
(IS)
n1 (z) ≈ P(L ≥ c |Z = z), search for an appropriate IS density for

the function z 7→ P(L ≥ c |Z = z).

Approach:
a) the optimal IS denstity g∗ is proportional to
P(L ≥ c |Z = z) exp{− 1

2z
tΣ−1z}.

b) use as IS density a multivariate normal distribution with the same
mode as the optimal IS density g∗.

The mode of a multivariate normal distribution Np(µ,Σ) equals the
expected vector µ, thus determining µ leads to the following optimization
problem:
µ = argmaxz

{
P(L ≥ c |Z = z) exp{− 1

2z
tΣ−1z}

}
.

This problem is hard to solve exactly; in general P(L ≥ c |Z = z) is not
available in analytical form.

Glasserman und Li (2003) propose some solution approaches.
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