Risk theory and risk management in actuarial science Winter term 2017/18

7 th work sheet

38. Apply the Poisson mixture model involved in CreditRisk ${ }^{+}$(cf. lecture) in the case of a credit portfolio with $n=100$ credits amd m risk factors, where $m=1$ or $m=5$, and $\bar{\lambda}_{i}=\bar{\lambda}=0.15$ for $i=1,2, \ldots, n$, $\alpha_{j}=\alpha=1, \beta_{j}=\beta=1, a_{i, j}=1 / m$, for $i=1,2, \ldots, n, j=1,2, \ldots, m$.
(a) Use the probability generating function $g_{N}(t)$ for the number of losses (as derived in the lecture) to compute the probability that k creditors will default, for $k=1,2,3$, and for both cases $m=1$ and $m=5$.
(b) Show that for $k>1$ and arbitrary $m \in \mathbb{N}$ the derivatives of the probability generating function $g_{N}(t)$ cane be computed by the following recursive formula

$$
g_{N}^{(k)}(0)=\sum_{l=0}^{k-1}\binom{k-1}{l} g_{N}^{(k-1-l)}(0) \sum_{j=1}^{m} l!\alpha_{j} \delta_{j}^{l+1},
$$

where δ_{j} are as derived in the lecture, $j=1,2, \ldots, m$.
(c) Implement the above recursion in a software of your choice in order to compute the probability that k creditors will default, for $k=1,2, \ldots, 100$, and for both cases $m=1$ and $m=5$. Vizualize the computed default probabilities graphically for both cases and try to interprete the results.
39. A bank has a loan portfolio of 100 loans. Let X_{k} be the default indicator for loan k such that $X_{k}=1$ in case of default and 0 otherwise, for $k \in\{1, \ldots, 100\}$.
(a) Supoose that X_{k} are independent and identically distributed with $P\left(X_{k}=1\right)=0.01$. Compute the expected value $E(N)$ of the number N of defaults and $P(N=k)$ for $k \in\{0,1, \ldots, 100\}$.
(b) Consider the risk factor Z which reflects the state of the economy. Suppose that conditional on Z the default indicators are independent and identically distributed with $P\left(X_{k}=1 \mid Z\right)=Z$, where $P(Z=0.01)=0.9$ and $P(Z=0.11)=0.1$. Compute the expected value $E(N)$ where N is defined as in (a).
(c) Consider the risk factor Z which reflects the state of the economy. Suppose that conditional on Z the default indicators are independent and identically distributed with $P\left(X_{k}=1 \mid Z\right)=Z^{9}$, where Z is uniformly distributed on $(0,1)$. Compute the expected value $E(N)$ where N is defined as in (a).
40. (Exponential tilting for the normal distribution)

Apply the exponential tilting approach to estimate the tail probability $P(X>c)$ for a standard normally distributed random variable $X \sim N(0,1)$ and $c \gg 0$. Determine the parameter t of the tilted distribution density g_{t} in this case (cf. lecture).

