Risk theory and risk management in actuarial science Winter term 2017/186th work sheet

33. Archimedian Copulas

(a) Show that for every $\theta \in \mathbb{R} \setminus \{0\}$ the function $\phi_{\theta}^{Fr}(t) = -\ln\left(\frac{e^{-\theta t}-1}{e^{-\theta}-1}\right)$ generates an Archmedian copula, the so-called Frank copula $C_{\theta}^{Fr}: [0,1]^2 \to [0,1]$. Check that the following equality holds $\forall u_1, u_2 \in [0, 1]$:

$$C_{\theta}^{Fr}(u_1, u_2) = -\frac{1}{\theta} \ln \left(1 + \frac{(\exp(-\theta u_1) - 1)(\exp(-\theta u_2) - 1)}{\exp(-\theta) - 1} \right), \theta \in \mathbb{R} \setminus \{0\}.$$

(b) Show that for every $\theta > 0$ and for every $\delta \ge 1$ the function $\phi_{\theta,\delta}^{GC}(t) = \theta^{-\delta}(t^{-\theta}-1)^{\delta}$ generates an Archmedian copula, the so-called generalized Clayton copula $C_{\theta,\delta}^{GC}: [0,1]^2 \to [0,1]$. Check that the following equality holds $\forall u_1, u_2 \in [0, 1]$:

$$C_{\theta,\delta}^{GC}(u_1, u_2) = \{ [(u_1^{-\theta} - 1)^{\delta} + (u_2^{-\theta} - 1)^{\delta}]^{1/\delta} + 1 \}^{-1/\theta}, \ \theta \ge 0, \delta \ge 1.$$

- (c) Compute Kendall's tau ρ_{τ} as well as the coefficients λ_U , λ_L of the upper and lower tail dependency for the copulas C_{θ}^{Fr} and $C_{\theta,\delta}^{GC}$, respectively.
- 34. (a) Let $(X_1, X_2)^T$ be a t-distributed random vektor with ν degrees of freedom, expected value (0, 0)and linear correlation coefficient matrix $\rho \in (-1, 1]$, i.e. $(X_1, X_2)^T \sim t_2(\vec{0}, \nu, R)$ where R is 2×2 matrix with 1 on the diagonal and ρ outside the diagonal. Show that the following equality holds for $\rho > -1$:

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu + 1} \frac{\sqrt{1 - \rho}}{\sqrt{1 + \rho}} \right)$$

Hint: Use the fact (no need to prove it!) that conditional on $X_1 = x$ the following holds

$$\left(\frac{\nu+1}{\nu+x^2}\right)^{1/2} \frac{X_2 - \rho x}{\sqrt{1-\rho^2}} \sim t_{\nu+1} \,.$$

Recall the stochatic representation of the bivariate t-distribution as $\mu + \sqrt{W}AZ$, where Z is bivariate standard normally distributed and W is such that $\frac{\nu}{W} \sim \chi^2_{\nu}$ while being independent on Z (cf. lecture).

(b) Apply (a) to conclude that for a random vector with continuous marginal distributions $(X_1, X_2)^T$ and a t-copula $C_{\nu,R}^t$ with ν degrees of freedom and a correlation matrix R as in (a) the following equalities holds:

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2t_{\nu+1} \left(\sqrt{\nu+1} \frac{\sqrt{1-\rho}}{\sqrt{1+\rho}}\right) \,.$$

35. Asymmetric bivariate copulas

Let C_{θ} be any exchangeable bivariate copula. Then a parametric family of asymmetric copulas $C_{\theta,\alpha,\beta}$ is obtained by setting

$$C_{\theta,\alpha,\beta}(u_1, u_2) = u_1^{1-\alpha} u_2^{1-\beta} C_{\theta}(u_1^{\alpha}, u_2^{\beta}), \ 0 \le u_1, u_2 \le 1,$$
(1)

where $0 \le \alpha, \beta \le 1$. When C_{θ} is an Archimedian copula we refer to the copulas constructed by (1) as asymmetric bivariate Archimedian copulas.

Check that $C_{\theta,\alpha,\beta}$ defined as above is a copula by constructing a random vector with distribution function $C_{\theta,\alpha,\beta}$ and observing that its margins are standard uniform on [0,1]. Show that such a random vector (U_1, U_2) can be generated as follows:

- (a) Generate a random pair (V_1, V_2) with distribution function C_{θ} .
- (b) Generate, independently of V_1 , V_2 , two independent standard uniform variables \overline{U}_1 and \overline{U}_2 .
- (c) Set $U_1 = \max\{V_1^{1/\alpha}, \bar{U}_1^{1/(1-\alpha)} \text{ and } U_2 = \max\{V_2^{1/\beta}, \bar{U}_2^{1/(1-\beta)}\}$

Show that $C_{\theta,\alpha,\beta}$ is not exchangeable in general. What conditions should fulfill its parameters so as to obtain an exchangeable $C_{\theta,\alpha,\beta}$? Which copula results from $C_{\theta,\alpha,\beta}$ if $\alpha = \beta = 0$? Which copula results from $C_{\theta,\alpha,\beta}$ if $\alpha = \beta = 1$?

36. Three-dimensional non-exchangeable Archimedian copulas

Suppose that ϕ_1 and ϕ_2 are two *strict* generators of Archimedian copulas, i.e. ϕ_1 and ϕ_2 are completely monotonic decreasing functions for which the pseudo-inverse function coincides with the ordinary inverse function. Consider

$$C(u_1, u_2, u_3) = \phi_2^{-1}(\phi_2 \circ \phi_1^{-1}(\phi_1(u_1) + \phi_1(u_2)) + \phi_2(u_3)).$$
(2)

If ϕ_1^{-1} , ϕ_2^{-1} and $\phi_2 \circ \phi_1^{-1}$ are completely monotonic decreasing functions mapping $[0, \infty]$ to $[0, \infty]$, then C defined by (2) is a copula.

Let (U_1, U_2, U_3) be a random vector with distribution function C as defined by (2).

- (a) Show that if $\phi_1 \neq \phi_2$, then only U_1 and U_2 are exchangeable, i.e. $(U_1, U_2, U_3) \stackrel{d}{=} (U_2, U_1, U_3)$, but no other swapping of subscritps is possible. Show moreoever that if $\phi_1 = \phi_2$, than C is an exchangeable copula.
- (b) Show that all bivariate margins of C defined by (2) are themselves Archimedian copulas; the margins C_{13} (obtained by components 1 and 3) and C_{23} (obtained by components 2 and 3) have generator ϕ_2 , whereas the margin C_{12} (obtained by components 1 and 2) has generator ϕ_1 .

37. Equivalent threshold models

Let $X = (X_1, X_2, \ldots, X_m)'$ be an *m*-dimensional random vector and let $D \in \mathbb{R}^{m \times n}$ be a deterministic matrix with elements d_{ij} such that for every $i, 1 \leq i \leq m$, the elements of the *i*-th row form a set of increasing thresholds satisfying $d_{i,1} < d_{i2} \ldots < d_{in}$. Introduce additionally $d_{i0} = -\infty, d_{i,n+1} = +\infty$ and set

$$S_i = j \iff d_{ij} < X_i \le d_{i,j+1}, \text{ for } j \in \{0, \dots, n\}, i \in \{1, \dots, m\}.$$

Then (X, D) is said to define a threshold model for the state vector $S = (S_1, \ldots, S_m)'$. We refere to X as the vector of critical variables and denote its marginal distribution functions by $F_i(x) = P(X_i \leq x)$, for $i \in \{1, 2, \ldots, m\}$. The *i*-th row of D contains the critical thresholds for firm *i*. By definition, default (corresponding to event $S_i = 0$) occurs iff $X_i \leq d_{i1}$, thus the default probability of company *i* is given by $\bar{p}_i := F_i(d_{i1})$. Let Y_i be the default indicator of company *i*, i.e. $Y_i \in \{0, 1\}$ with $Y_i = 1$ iff company 1 defaults, hence $Prob(Y_i = 1) = \bar{p}_i$ and $Prob(Y_i = 0) = 1 - \bar{p}_i$, for $1 \leq i \leq m$. We denote by $\rho(Y_i, Y_j)$ the default correlation of two firms $i \neq j$; this quantity depends on $E(Y_i, Y_j)$ (how?) which in turn depends on the joint distribution of (X_i, X_j) , and hence on the copula of $(X_1, X_2, \ldots, X_m)'$. (Notice that in general the latter is not fully determined by the asset correlation $\rho(X_i, X_j)$.)

Two threshold models (X, D) and (\tilde{X}, \tilde{D}) for the state vectors S and \tilde{S} , respectively, are called equivalent, iff S and \tilde{S} have the same probability distribution.

Show that two threshod models (X, D) and (\tilde{X}, \tilde{D}) with state vectors S and \tilde{S} , respectively, are equivalent if the following conditions hold:

- (a) The marginal distributions of the random vectors S and \tilde{S} coincide, i.e. $P(S_i = j) = P(\tilde{S}_i = j)$, for all $j \in \{1, \ldots, n\}, i \in \{1, \ldots, m\}$.
- (b) X and \tilde{X} admit the same copula C.