Risk theory and risk management in actuarial science Winter term 2017/18

5th work sheet

- 28. Construct two random vectors $(X_1, X_2)^T$ and $(Y_1, Y_2)^T$ with different joint distributions $F_{(X_1, X_2)}$, $F_{(Y_1, Y_2)}$, respectively, such that
 - (a) the variables X_1, X_2, Y_1, Y_2 are standard normally distributed, i.e. $X_1, X_2, Y_1, Y_2 \sim N(0, 1)$,
 - (b) the two X-variables and the two Y-variables are uncorrelated, respectively, i.e. $\rho_L(X_1, X_2) = 0$, $\rho_L(Y_1, Y_2) = 0$, and
 - (c) the α -quantiles of the corresponding sums are different, i.e. $F_{X_1+X_2}^{\leftarrow}(\alpha) \neq F_{Y_1+Y_2}^{\leftarrow}(\alpha)$ holds for some $\alpha \in (0, 1)$, where $F_{X_1+X_2}$, $F_{Y_1+Y_2}$ are the distributions of X_1+X_2 and Y_1+Y_2 , respectively.

Conclude that in general it is not possible to draw conclusions about the loss of a portfolio if the loss distributions of the single assets in portfolio and their mutual linear correlation coefficients are known.

Hint: Choose (X_1, X_2) to be bivariate standard normally distributed, i.e. $(X_1, X_2) \sim N_2(0, I_2)$, where 0 denotes the zero vector in \mathbb{R}^2 and I_2 denotes the identity matrix in $\mathbb{R}^{2\times 2}$. Choose Y_1 to be standard normally distributed, $Y_1 \sim N(0, 1)$, and set $Y_2 := VY_1$, where V is a discrete random variable independent on Y_1 with values 1 and -1 taken with probability 1/2 each.

- 29. (Co-monotonicity and anti-monotonicity)
 - (a) Let Z be a random variable with continuous cumulative distribution function $F, Z \sim F$. Let f_1, f_2 be to monotone increasing functions on \mathbb{R} and let f_3 be a monotone decreasing function on \mathbb{R} . Let $X_i = f_i(Z)$, for i = 1, 2, 3. Show that the Fréchet upper bound M is the copula of (X_1, X_2) and the Fréchet lower bound W is the copula of (X_1, X_3) .
 - (b) Let W be the copula of the random vector (X_1, X_2) with continuous marginal distributions F_1 and F_2 , respectively. Show that $X_2 \stackrel{a.s.}{=} T(X_1)$ with $T = F_2^{\leftarrow} \circ (1 F_1)$.
 - (c) Let M be the copula of the random vector (X_1, X_2) with continuous marginal distributions F_1 and F_2 , respectively. Show that $X_2 \stackrel{a.s.}{=} T(X_1)$ with $T = F_2 \stackrel{\leftarrow}{\to} \circ F_1$.
- 30. Prove the following equalities for the rank correlations of a random vector $(X_1, X_2)^T$ with continuous marginal distributions and unique copula C:

$$\rho_{\tau}(X_1, X_2) = 4 \int_0^1 \int_0^1 C(u_1, u_2) dC(u_1, u_2) - 1,$$

$$\rho_S(X_1, X_2) = 12 \int_0^1 \int_0^1 (C(u_1, u_2) - u_1 u_2) du_1 du_2 = 12 \int_0^1 \int_0^1 C(u_1, u_2) du_1 du_2 - 3.$$

31. Consider the coefficients of the tail dependence of a random vector $(X_1, X_2)^T$ with continuous marginal distributions and unique copula C. Show that the following equalities hold, provided that the corresponding limits exits:

$$\lambda_U(X_1, X_2) = \lim_{u \to 1^-} \frac{1 - 2u + C(u, u)}{1 - u} \text{ and } \lambda_L(X_1, X_2) = \lim_{u \to 0^+} \frac{C(u, u)}{u}.$$

32. The Gumbel family C_{θ}^{Gu} and the Clayton family C_{θ}^{Cl} are two one-parametric families of copulas given as

$$C_{\theta}^{\text{Gu}}(u_1, u_2) := \exp\left(-\left[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}\right]^{1/\theta}\right), \ \theta \ge 1, \text{ and}$$
$$C_{\theta}^{\text{Cl}}(u_1, u_2) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}, \ \theta > 0.$$

(a) Compute Kendall's tau ρ_{τ} as well as the coefficients λ_U , λ_L of the upper and lower tail dependence for the copulas C_{θ}^{Gu} , C_{θ}^{Cl} , respectively.

(b) The independence copula Π is given by $\Pi(u_1, u_2) := u_1 u_2$, for $(u_1, u_2) \in [0, 1]^2$. Show that C_{θ}^{Gu} tends to the independence copula Π if θ tends to 1 and to the upper Fréchet bound M if θ tends to infinity. In this case we say that the lower limit of the Gumbel copula is the independence copula Π and its upper limit is the Fréchet upper bound M. Analogously show that the lower limit of the Clayton copula is the independence copula Π for $\theta \to 0^+$ and its upper limit is the independence copula Π for $\theta \to 0^+$ and its upper limit is the Fréchet upper bound M for $\theta \to +\infty$. Now considerer an extension of the Clayton copula C_{θ}^{Cl} for $\theta \in [-1, 0)$, defined as an Archimedian copula with generator $\phi_{\theta}(t) = \frac{1}{\theta}(t^{-\theta} - 1)$ for $t \in (0, 1]$ and $\phi_{\theta}(0) = +\infty$. Show that for $\theta = -1$ the Clayton copula C_{-1}^{Cl} coincides with the Fréchet lower bound W.