Theorem: Let G be a d.f. in \mathbb{R} . The following statements holds

1. Quantile transformation:

If $U \sim U(0,1)$, then $P(G^{\leftarrow}(U) \leq x) = G(x)$.

Theorem: Let G be a d.f. in \mathbb{R} . The following statements holds

- 1. Quantile transformation: If $U \sim U(0, 1)$, then $P(G^{\leftarrow}(U) \leq x) = G(x)$.
- 2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0, 1)$.

Theorem: Let G be a d.f. in \mathbb{R} . The following statements holds

- 1. Quantile transformation: If $U \sim U(0,1)$, then $P(G^{\leftarrow}(U) \leq x) = G(x)$.
- 2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0, 1)$.

Theorem: (Sklar, 1959) Let $F : \mathbb{R}^d \to [0,1]$ a c.d.f. with marginal d.f. F_1, \ldots, F_d . There exists a copula *C*, such that for all $x_1, x_2, \ldots, x_d \in \overline{\mathbb{R}} = [-\infty, \infty]$ the equality

$$F(x_1, x_2, \ldots, x_d) = C(F_1(x_1), F_2(x_2), \ldots, F_d(x_d))$$
 holds.

If F_1, \ldots, F_d are continuous, then C is unique.

Theorem: Let G be a d.f. in \mathbb{R} . The following statements holds

- 1. Quantile transformation: If $U \sim U(0,1)$, then $P(G^{\leftarrow}(U) \leq x) = G(x)$.
- 2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0, 1)$.

Theorem: (Sklar, 1959) Let $F : \mathbb{R}^d \to [0,1]$ a c.d.f. with marginal d.f. F_1, \ldots, F_d . There exists a copula *C*, such that for all $x_1, x_2, \ldots, x_d \in \mathbb{R} = [-\infty, \infty]$ the equality

$$F(x_1, x_2, \ldots, x_d) = C(F_1(x_1), F_2(x_2), \ldots, F_d(x_d))$$
 holds.

If F_1, \ldots, F_d are continuous, then *C* is unique. Vice-versa, if *C* is a copula and F_1, \ldots, F_d are d.f., then the function *F* defined by the equality above is a c.d.f. with marginal d.f. F_1, \ldots, F_d .

Theorem: Let G be a d.f. in \mathbb{R} . The following statements holds

- 1. Quantile transformation: If $U \sim U(0,1)$, then $P(G^{\leftarrow}(U) \leq x) = G(x)$.
- 2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0, 1)$.

Theorem: (Sklar, 1959) Let $F : \mathbb{R}^d \to [0,1]$ a c.d.f. with marginal d.f. F_1, \ldots, F_d . There exists a copula *C*, such that for all $x_1, x_2, \ldots, x_d \in \mathbb{R} = [-\infty, \infty]$ the equality

$$F(x_1, x_2, \ldots, x_d) = C(F_1(x_1), F_2(x_2), \ldots, F_d(x_d))$$
 holds.

If F_1, \ldots, F_d are continuous, then *C* is unique. Vice-versa, if *C* is a copula and F_1, \ldots, F_d are d.f., then the function *F* defined by the equality above is a c.d.f. with marginal d.f. F_1, \ldots, F_d . *C* as above is called *the copula of F*. For a random vector $X \in \mathbb{R}^d$ with c.d.f. *F* we say that *C* is *the copula of X*.

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q ()

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_1, \ldots, F_d . The unique copula C of F is given as :

$$C(u_1, u_2, \ldots, u_d) = F(F_1^{\leftarrow}(u_1), F_2^{\leftarrow}(u_2), \ldots, F_d^{\leftarrow}(u_d)).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_1, \ldots, F_d . The unique copula C of F is given as :

$$C(u_1, u_2, \ldots, u_d) = F(F_1^{\leftarrow}(u_1), F_2^{\leftarrow}(u_2), \ldots, F_d^{\leftarrow}(u_d)).$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X = (X_1, X_2, ..., X_d)^T$ be a random vector with continuous marginal d.f. $F_1, F_2, ..., F_d$ and copula C. Let $T_1, T_2, ..., T_d$ be strictly monotone increasing functions in \mathbb{R} . Then C is also the copula of $(T_1(X_1), T_2(X_2), ..., T_d(X_d))^T$.

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_1, \ldots, F_d . The unique copula C of F is given as :

$$C(u_1, u_2, \ldots, u_d) = F(F_1^{\leftarrow}(u_1), F_2^{\leftarrow}(u_2), \ldots, F_d^{\leftarrow}(u_d)).$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X = (X_1, X_2, ..., X_d)^T$ be a random vector with continuous marginal d.f. $F_1, F_2, ..., F_d$ and copula C. Let $T_1, T_2, ..., T_d$ be strictly monotone increasing functions in \mathbb{R} . Then C is also the copula of $(T_1(X_1), T_2(X_2), ..., T_d(X_d))^T$.

Example: Let $X = (X_1, ..., X_d) \sim N_d(0, \Sigma)$ with $\Sigma = R$ being the correlation matrix of X. Let ϕ_R and ϕ be the c.d.f of X and X_1 , resp.. The copula of X is called a *Gaussian copula* and is denoted by C_R^{Ga} :

$$C_R^{Ga}(u_1, u_2, \ldots, u_d) = \phi_R(\phi^{-1}(u_1), \phi^{-1}(u_2), \ldots, \phi^{-1}(u_d)).$$

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_1, \ldots, F_d . The unique copula C of F is given as :

$$C(u_1, u_2, \ldots, u_d) = F(F_1^{\leftarrow}(u_1), F_2^{\leftarrow}(u_2), \ldots, F_d^{\leftarrow}(u_d)).$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X = (X_1, X_2, ..., X_d)^T$ be a random vector with continuous marginal d.f. $F_1, F_2, ..., F_d$ and copula C. Let $T_1, T_2, ..., T_d$ be strictly monotone increasing functions in \mathbb{R} . Then C is also the copula of $(T_1(X_1), T_2(X_2), ..., T_d(X_d))^T$.

Example: Let $X = (X_1, ..., X_d) \sim N_d(0, \Sigma)$ with $\Sigma = R$ being the correlation matrix of X. Let ϕ_R and ϕ be the c.d.f of X and X_1 , resp.. The copula of X is called a *Gaussian copula* and is denoted by C_R^{Ga} :

$$C_R^{Ga}(u_1, u_2, \ldots, u_d) = \phi_R(\phi^{-1}(u_1), \phi^{-1}(u_2), \ldots, \phi^{-1}(u_d)).$$

 C_R^{Ga} is the copula of any non-degenerate normal distribution $N_d(\mu, \Sigma)$ with correlation matrix R.

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_1, \ldots, F_d . The unique copula C of F is given as :

$$C(u_1, u_2, \ldots, u_d) = F(F_1^{\leftarrow}(u_1), F_2^{\leftarrow}(u_2), \ldots, F_d^{\leftarrow}(u_d)).$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X = (X_1, X_2, ..., X_d)^T$ be a random vector with continuous marginal d.f. $F_1, F_2, ..., F_d$ and copula C. Let $T_1, T_2, ..., T_d$ be strictly monotone increasing functions in \mathbb{R} . Then C is also the copula of $(T_1(X_1), T_2(X_2), ..., T_d(X_d))^T$.

Example: Let $X = (X_1, ..., X_d) \sim N_d(0, \Sigma)$ with $\Sigma = R$ being the correlation matrix of X. Let ϕ_R and ϕ be the c.d.f of X and X_1 , resp.. The copula of X is called a *Gaussian copula* and is denoted by C_R^{Ga} :

$$C_R^{Ga}(u_1, u_2, \ldots, u_d) = \phi_R(\phi^{-1}(u_1), \phi^{-1}(u_2), \ldots, \phi^{-1}(u_d)).$$

 C_R^{Ga} is the copula of any non-degenerate normal distribution $N_d(\mu, \Sigma)$ with correlation matrix R.

For d=2 and $ho=\textit{R}_{12}\in(-1,1)$ we have :

$$C_{R}^{Ga}(u_{1}, u_{2}) = \int_{-\infty}^{\phi^{-1}(u_{1})} \int_{-\infty}^{\phi^{-1}(u_{2})} \frac{1}{2\pi\sqrt{1-\rho^{2}}} \exp\left\{\frac{-(x_{1}^{2}-2\rho x_{1}x_{2}+x_{2}^{2})}{2(1-\rho^{2})}\right\} dx_{1} dx_{2}$$

(日) (個) (三) (三) (三) (○) (○)

Theorem: (Fréchet bounds)

The following inequalities hold for any *d*-dimensional copula *C* and any $(u_1, u_2, \ldots, u_d) \in [0, 1]^d$, where $d \in \mathbb{N}$:

$$\max\left\{\sum_{k=1}^{d} u_{k} - d + 1, 0\right\} \leq C(u_{1}, u_{2}, \dots, u_{d}) \leq \min\{u_{1}, u_{2}, \dots, u_{d}\}.$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Theorem: (Fréchet bounds)

The following inequalities hold for any *d*-dimensional copula *C* and any $(u_1, u_2, \ldots, u_d) \in [0, 1]^d$, where $d \in \mathbb{N}$:

$$\max\left\{\sum_{k=1}^{d} u_{k} - d + 1, 0\right\} \leq C(u_{1}, u_{2}, \dots, u_{d}) \leq \min\{u_{1}, u_{2}, \dots, u_{d}\}.$$

Notation: Lower bound =: W_d , upper bound =: M_d , for $d \ge 2$. For d = 2 we write $M := M_2$, $W := W_2$.

Theorem: (Fréchet bounds)

The following inequalities hold for any *d*-dimensional copula *C* and any $(u_1, u_2, \ldots, u_d) \in [0, 1]^d$, where $d \in \mathbb{N}$:

$$\max\left\{\sum_{k=1}^{d} u_k - d + 1, 0\right\} \le C(u_1, u_2, \dots, u_d) \le \min\{u_1, u_2, \dots, u_d\}.$$

Notation: Lower bound =: W_d , upper bound =: M_d , for $d \ge 2$. For d = 2 we write $M := M_2$, $W := W_2$.

Remark: Analogous inequalities hold for any general c.d.f. *F* with marginal d.f. F_i , $1 \le i \le d$:

$$\max\left\{\sum_{k=1}^{d} F_k(x_k) - d + 1, 0\right\} \le F(x_1, x_2, \dots, x_d) \le \min\{F_1(x_1), F_2(x_2), \dots, F_d(x_d)\}$$

Theorem: (Fréchet bounds)

The following inequalities hold for any *d*-dimensional copula *C* and any $(u_1, u_2, \ldots, u_d) \in [0, 1]^d$, where $d \in \mathbb{N}$:

$$\max\left\{\sum_{k=1}^{d} u_{k} - d + 1, 0\right\} \leq C(u_{1}, u_{2}, \dots, u_{d}) \leq \min\{u_{1}, u_{2}, \dots, u_{d}\}.$$

Notation: Lower bound =: W_d , upper bound =: M_d , for $d \ge 2$. For d = 2 we write $M := M_2$, $W := W_2$.

Remark: Analogous inequalities hold for any general c.d.f. *F* with marginal d.f. F_i , $1 \le i \le d$:

$$\max\left\{\sum_{k=1}^{d} F_k(x_k) - d + 1, 0\right\} \leq F(x_1, x_2, \dots, x_d) \leq \min\{F_1(x_1), F_2(x_2), \dots, F_d(x_d)\}.$$

Exercise: The Fréchet lower bound W_d is not a copula for $d \ge 3$.

Hint: Check that the rectangle inequality

$$\sum_{k_1=1}^2 \sum_{k_2=1}^2 \dots \sum_{k_d=1}^2 (-1)^{k_1+k_2+\dots+k_d} W_d(u_{1k_1}, u_{2k_2}, \dots, u_{dk_d}) \ge 0 \text{ with } u_{j1} = a_j \text{ and } u_{j2} = b_j \text{ for } j \in \{1, 2, \dots, d\}, \text{ is not fulfilled for } d \ge 3 \text{ and } a_i = \frac{1}{2}, b_i = 1, \text{ for } i = 1, 2, \dots, d.$$

Theorem: (for a proof see Nelsen 1999) For any $d \in \mathbb{N}$, $d \geq 3$, and any $u \in [0, 1]^d$, there exists a copula $C_{d,u}$ such that $C_{d,u}(u) = W_d(u)$.

Theorem: (for a proof see Nelsen 1999) For any $d \in \mathbb{N}$, $d \geq 3$, and any $u \in [0, 1]^d$, there exists a copula $C_{d,u}$ such that $C_{d,u}(u) = W_d(u)$.

Remark 1: The Fréchet upper bound M_d is a copula for any $d \in \mathbb{N}$, $d \ge 2$.

Theorem: (for a proof see Nelsen 1999) For any $d \in \mathbb{N}$, $d \geq 3$, and any $u \in [0, 1]^d$, there exists a copula $C_{d,u}$ such that $C_{d,u}(u) = W_d(u)$.

Remark 1: The Fréchet upper bound M_d is a copula for any $d \in \mathbb{N}$, $d \ge 2$.

The fulfillment of the three copula axioms is simple to check.

Theorem: (for a proof see Nelsen 1999) For any $d \in \mathbb{N}$, $d \geq 3$, and any $u \in [0, 1]^d$, there exists a copula $C_{d,u}$ such that $C_{d,u}(u) = W_d(u)$.

Remark 1: The Fréchet upper bound M_d is a copula for any $d \in \mathbb{N}$, $d \ge 2$.

The fulfillment of the three copula axioms is simple to check.

Remark 2: *M* and *W* are copulas.

Theorem: (for a proof see Nelsen 1999) For any $d \in \mathbb{N}$, $d \geq 3$, and any $u \in [0, 1]^d$, there exists a copula $C_{d,u}$ such that $C_{d,u}(u) = W_d(u)$.

Remark 1: The Fréchet upper bound M_d is a copula for any $d \in \mathbb{N}$, $d \ge 2$.

The fulfillment of the three copula axioms is simple to check.

Remark 2: *M* and *W* are copulas.

Hint: Let X be a r.v. eine with d.f. F_X , let T be a strictly monotone increasing function, and let S be a strictly monotone decreasing function. Consider the r.v. Y := T(X) and Z := S(X).

Theorem: (for a proof see Nelsen 1999) For any $d \in \mathbb{N}$, $d \geq 3$, and any $u \in [0, 1]^d$, there exists a copula $C_{d,u}$ such that $C_{d,u}(u) = W_d(u)$.

Remark 1: The Fréchet upper bound M_d is a copula for any $d \in \mathbb{N}$, $d \ge 2$.

The fulfillment of the three copula axioms is simple to check.

Remark 2: *M* and *W* are copulas.

Hint: Let X be a r.v. eine with d.f. F_X , let T be a strictly monotone increasing function, and let S be a strictly monotone decreasing function. Consider the r.v. Y := T(X) and Z := S(X).

Then M is the copula of $(X, T(X))^T$ and W is the copula of $(X, S(X))^T$.

<□ > < @ > < E > < E > E - のQ @

Definition: X_1 and X_2 are colled co-monotone if M is a copula of $(X_1, X_2)^T$. X_1 snd X_2 are called anti-monotone if W is a copula of $(X_1, X_2)^T$.

Definition: X_1 and X_2 are colled co-monotone if M is a copula of $(X_1, X_2)^T$. X_1 snd X_2 are called anti-monotone if W is a copula of $(X_1, X_2)^T$.

Theorem: Assume that W or M is a copula of $(X_1, X_2)^T$. Then there exist two monotone functions $\alpha, \beta \colon \mathbb{R} \to \mathbb{R}$ and a r.v. Z, such that

$$(X_1, X_2) \stackrel{d}{=} (\alpha(Z), \beta(Z)).$$

If M is the copula of $(X_1, X_2)^T$, then both α and β are monotone increasing, if W is the copula of $(X_1, X_2)^T$, then one of the functions α , β is monotone increasing and the other one is monotone decreasing.

Definition: X_1 and X_2 are colled co-monotone if M is a copula of $(X_1, X_2)^T$. X_1 snd X_2 are called anti-monotone if W is a copula of $(X_1, X_2)^T$.

Theorem: Assume that W or M is a copula of $(X_1, X_2)^T$. Then there exist two monotone functions $\alpha, \beta \colon \mathbb{R} \to \mathbb{R}$ and a r.v. Z, such that

$$(X_1, X_2) \stackrel{d}{=} (\alpha(Z), \beta(Z)).$$

If *M* is the copula of $(X_1, X_2)^T$, then both α and β are monotone increasing, if *W* is the copula of $(X_1, X_2)^T$, then one of the functions α , β is monotone increasing and the other one is monotone decreasing.

If C is the copula of (X_1, X_2) and the marginal d.f. F_1 and F_2 of (X_1, X_2) are continuous, then the following hold:

C = W iff $X_2 \stackrel{a.s.}{=} T(X_1)$ with $T = F_2^{\leftarrow} \circ (1 - F_1)$ monotone decreasing, C = M iff $X_2 \stackrel{a.s.}{=} T(X_1)$ with $T = F_2^{\leftarrow} \circ F_1$ monotone increasing.

Definition: X_1 and X_2 are colled co-monotone if M is a copula of $(X_1, X_2)^T$. X_1 snd X_2 are called anti-monotone if W is a copula of $(X_1, X_2)^T$.

Theorem: Assume that W or M is a copula of $(X_1, X_2)^T$. Then there exist two monotone functions $\alpha, \beta \colon \mathbb{R} \to \mathbb{R}$ and a r.v. Z, such that

$$(X_1, X_2) \stackrel{d}{=} (\alpha(Z), \beta(Z)).$$

If *M* is the copula of $(X_1, X_2)^T$, then both α and β are monotone increasing, if *W* is the copula of $(X_1, X_2)^T$, then one of the functions α , β is monotone increasing and the other one is monotone decreasing.

If C is the copula of (X_1, X_2) and the marginal d.f. F_1 and F_2 of (X_1, X_2) are continuous, then the following hold:

C = W iff $X_2 \stackrel{a.s.}{=} T(X_1)$ with $T = F_2^{\leftarrow} \circ (1 - F_1)$ monotone decreasing, C = M iff $X_2 \stackrel{a.s.}{=} T(X_1)$ with $T = F_2^{\leftarrow} \circ F_1$ monotone increasing. Proof: In McNeil et al., 2005.