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If F1,. . .,Fd are continuous, then C is unique.
Vice-versa, if C is a copula and F1,. . .,Fd are d.f., then the function F

defined by the equality above is a c.d.f. with marginal d.f. F1,. . .,Fd .

C as above is called the copula of F . For a random vector X ∈ IR
d with

c.d.f. F we say that C is the copula of X .
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For d = 2 and ρ = R12 ∈ (−1, 1) we have :

CGa
R (u1, u2) =

∫ φ−1(u1)

−∞

∫ φ−1(u2)

−∞

1

2π
√

1− ρ2
exp

{

−(x21 − 2ρx1x2 + x22 )

2(1− ρ2)

}

dx1dx2
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Exercise: The Fréchet lower bound Wd is not a copula for d ≥ 3.

Hint: Check that the rectangle inequality
∑2

k1=1

∑2
k2=1 . . .

∑2
kd=1(−1)k1+k2+...+kdWd (u1k1 , u2k2 , . . . , udkd ) ≥ 0 with

uj1 = aj and uj2 = bj for j ∈ {1, 2, . . . , d}, is not fulfilled for d ≥ 3 and
ai =

1
2 , bi = 1, for i = 1, 2, . . . , d .
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Theorem: (for a proof see Nelsen 1999)
For any d ∈ IN, d ≥ 3, and any u ∈ [0, 1]d , there exists a copula Cd,u

such that Cd,u(u) = Wd (u).

Remark 1: The Fréchet upper bound Md is a copula for any d ∈ IN,
d ≥ 2.
The fulfillment of the three copula axioms is simple to check.

Remark 2: M and W are copulas.
Hint: Let X be a r.v. eine with d.f. FX , let T be a strictly monotone
increasing function, and let S be a strictly monotone decreasing function.
Consider the r.v. Y := T (X ) and Z := S(X ).

Then M is the copula of (X ,T (X ))T and W is the copula of (X , S(X ))T .
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Proof: In McNeil et al., 2005.


