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Let F: RY — [0,1] a c.d.f. with marginal d_.f. Fi,... Fq. There exists a
copula C, such that for all x;,xz,...,xg € IR = [—00, 00| the equality

F(Xl,XQ7 .o 7Xd) = C(Fl(Xl), FQ(XQ)7 ey Fd(Xd)) holds.

If F1,...,Fq are continuous, then C is unique.
Vice-versa, if C is a copula and Fi,...,Fy are d.f., then the function F
defined by the equality above is a c.d.f. with marginal d.f. F;,...,Fy.

C as above is called the copula of F. For a random vector X € IRY with
c.d.f. F we say that C is the copula of X.
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Example: Let X = (Xq,...,Xg) ~ Ng(0,X) with ¥ = R being the
correlation matrix of X. Let ¢r and ¢ be the c.d.f of X and Xi, resp..
The copula of X is called a Gaussian copula and is denoted by C,ga:

Cl-%;a(ulau%" ) ¢R(¢ (ul) ¢_1(u2)7"'7¢_1(ud))'

C&? is the copula of any non-degenerate normal distribution Ng(, ¥)
with correlation matrix R.

Ford=2and p= Ry € (—1 1) we have :

(1) —(xf — 2px1x2 + x3) }
(v, u = ex dxy dx;
1 t2) / / 2my/1— 2 p{ 2(1-p?) e
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The following inequalities hold for any d-dimensional copula C and any
(u1, 2, ..., uq) €[0,1]9, where d € IN:

d
max{Zuk —d+ 1,0} < C(uy, Uz, ... ug) <min{uy, uz, ..., uq}.

k=1
Notation: Lower bound =: Wy, upper bound =: My, for d > 2.
For d = 2 we write M := My, W := W,.

Remark: Analogous inequalities hold for any general c.d.f. F with
marginal d.f. F;, 1 <i<d:

max {Z Fi(xe) — d + 1,0} < F(x1, %0, -+ -5 %) < min{Fi(x1), Fa(x2), - - ., Fa(xd)}-

Exercise: The Fréchet lower bound Wy is not a copula for d > 3.

Hint: Check that the rectangle inequality

2 2 .
S p i gy g g (LR R W (U g, Uak,) > O with
ujp = aj and ujp = bj for j € {1,2,...,d}, is not fulfilled for d > 3 and
ai=% b=1, fori:1,2,...,d.
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Theorem: (for a proof see Nelsen 1999)
Forany d € IN, d > 3, and any u € [0, 1]9, there exists a copula Ca.u
such that Cy ,(u) = Wy(u).

Remark 1: The Fréchet upper bound My is a copula for any d € IN,
d>2.
The fulfillment of the three copula axioms is simple to check.

Remark 2: M and W are copulas.

Hint: Let X be a r.v. eine with d.f. Fx, let T be a strictly monotone
increasing function, and let S be a strictly monotone decreasing function.
Consider the r.v. Y := T(X) and Z := §(X).

Then M is the copula of (X, T(X))T and W is the copula of (X, S(X))".
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increasing, if W is the copula of (X1, X2)", then one of the functions «,
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If C is the copula of (X1, X2) and the marginal d.f. F; and Fy of (X1, X2)
are continuous, then the following hold:

C = W iff X, 2 T(X;) with T = Ff o (1 — F;) monotone decreasing,

C = M iff X; = T(X1) with T = F5~ o F1 monotone increasing.
Proof: In McNeil et al., 2005.



