The mean-risk portfolio optimization model



The mean-risk portfolio optimization model

Consider a portfolio of d risky assets and the random vector
X = (X1, Xa,...,Xq)7 of their returns. Let E(X) = p.



The mean-risk portfolio optimization model

Consider a portfolio of d risky assets and the random vector
X = (X1, Xa,...,Xq)7 of their returns. Let E(X) = p.

Let P be the family of all portfolios consisting of the obove d assets



The mean-risk portfolio optimization model

Consider a portfolio of d risky assets and the random vector

X = (X1, Xa,...,Xq)7 of their returns. Let E(X) = p.

Let P be the family of all portfolios consisting of the obove d assets

Any (long-short) portfolio in P is uniquelly determined by its weight
vector w = (w;) € R with 3,4 [wi| = 1. w; > 0 (w; < 0) represents a
long (short) investment.



The mean-risk portfolio optimization model

Consider a portfolio of d risky assets and the random vector

X = (X1, Xa,...,Xq)7 of their returns. Let E(X) = p.

Let P be the family of all portfolios consisting of the obove d assets

Any (long-short) portfolio in P is uniquelly determined by its weight
vector w = (w;) € R with 3,4 [wi| = 1. w; > 0 (w; < 0) represents a
long (short) investment.

The return of portfolio w is the r.v. Z(w) = Eszl w;X;. The expected
portfolio return is E(Z(w)) = w' .



The mean-risk portfolio optimization model

Consider a portfolio of d risky assets and the random vector

X = (X1, Xa,...,Xq)7 of their returns. Let E(X) = p.

Let P be the family of all portfolios consisting of the obove d assets
Any (long-short) portfolio in P is uniquelly determined by its weight
vector w = (w;) € R with 3,4 [wi| = 1. w; > 0 (w; < 0) represents a
long (short) investment.

The return of portfolio w is the r.v. Z(w) = Eszl w;X;. The expected
portfolio return is E(Z(w)) = w' .

Let Pp, be the family of portfolios in P with E(Z(w)) = m, for some
melR, m>0.

Pmi={w=(w) € IRd,Z:-jzl wi| =1, wTp = m}



The mean-risk portfolio optimization model

Consider a portfolio of d risky assets and the random vector
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Any (long-short) portfolio in P is uniquelly determined by its weight
vector w = (w;) € R with 3,4 [wi| = 1. w; > 0 (w; < 0) represents a
long (short) investment.

The return of portfolio w is the r.v. Z(w) = Eszl w;X;. The expected
portfolio return is E(Z(w)) = w' .

Let Pp, be the family of portfolios in P with E(Z(w)) = m, for some
melR, m>0.

Pmi={w=(w) € IRd,Z:-jzl wi| =1, wTp = m}

For a risk emasure p the mean-p portfolio optimization model is:

min p(Z(w)) (1)
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If Cov(x) = X and the weights are nonnegative (long-only portfolio) we
get the Markovitz portfolio optimization model (Markowitz 1952):

min wTTw
w
s.t.
wlip=m
d
Zi:l lwi| =1

If p= VaR,, a € (0,1) we get the mean-VaR pf. optimization model
in VaR.(Z .
min VaR(Z(w))

Question: What is the relationship between these three portfolio
optimization models?
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Theorem: (Embrechts et al., 2002)

Let X = (X1, X2, ..., Xy) =+ AY be elliptically distributed with
pelRY AeRYF and a spherically distributed vector Y ~ Si(1)).
Assume that 0 < E(X?2) < oo holds Vk. If the risk measure p has the
properties (C1) and (C3) and p(Y1) > 0 for the first component Y; of Y,
then

argmin{p(Z(w)): w € Pp,} = argmin{var(Z(w)): w € Pp}
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Equivalently, a copula C is a function C: [0,1]¢ — [0,1], with the
following properties:

1. C(u1, uy,...,uq) is mon. increasing in each variable u;, 1 </ < d.
2. C(1,1,...,1, ug,1,...,1) = uy forany k € {1,...,d} and
Yu, € [0, 1].

3. The rectangle inequality holds ¥(ay, a2, . . ., a4) € [0,1]7,
(b, by, ..., by) € [0, 1] with ax < by, Vk € {1,2,...,d}:
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Equivalently, a copula C is a function C: [0,1]¢ — [0,1], with the
following properties:

1. C(u1, uy,...,uq) is mon. increasing in each variable u;, 1 </ < d.
2. C(1,1,...,1, ug,1,...,1) = uy forany k € {1,...,d} and
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2 2
kitko+...+k
E E (—1)1 2 dC(u1k17u2k25"'7udkd)ZO?
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where uj; = aj and uj = b;.

Remark: The k-dimensional marginal distributions of a d-dimensional
copula are k-dimensional copulas, for all 2 < k < d.
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3
4,
5
6
7
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Then the following statements hold:

1. h* is eine monotone increasing left continuous function.
2. his continuous <= h* s strictly monotone increasing.
3. h is strictly monotone increasing <= h* is continuous.
4. h* (h(x)) < x
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7

. his continuous = h(h* (y)) = y.

Lemma: Let X be a r.v. with continuous distribution function F. Then
P(F<(F(x))=x)=1,ie FC(F(X)) ¥ X



