・ロト ・日 ・ モ ・ モ ・ ・ モ ・ うへで

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, ..., X_d)^T$ of their returns. Let $E(X) = \mu$.

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, ..., X_d)^T$ of their returns. Let $E(X) = \mu$.

Let \mathcal{P} be the family of all portfolios consisting of the obove d assets

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, \dots, X_d)^T$ of their returns. Let $E(X) = \mu$.

Let \mathcal{P} be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in \mathcal{P} is uniquelly determined by its weight vector $w = (w_i) \in \mathbb{R}^d$ with $\sum_{i=1^d} |w_i| = 1$. $w_i > 0$ ($w_i < 0$) represents a long (short) investment.

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, ..., X_d)^T$ of their returns. Let $E(X) = \mu$.

Let \mathcal{P} be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in \mathcal{P} is uniquelly determined by its weight vector $w = (w_i) \in \mathbb{R}^d$ with $\sum_{i=1^d} |w_i| = 1$. $w_i > 0$ ($w_i < 0$) represents a long (short) investment.

The return of portfolio w is the r.v. $Z(w) = \sum_{i=1}^{d} w_i X_i$. The expected portfolio return is $E(Z(w)) = w^T \mu$.

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, ..., X_d)^T$ of their returns. Let $E(X) = \mu$.

Let \mathcal{P} be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in \mathcal{P} is uniquelly determined by its weight vector $w = (w_i) \in \mathbb{R}^d$ with $\sum_{i=1^d} |w_i| = 1$. $w_i > 0$ ($w_i < 0$) represents a long (short) investment.

The return of portfolio w is the r.v. $Z(w) = \sum_{i=1}^{d} w_i X_i$. The expected portfolio return is $E(Z(w)) = w^T \mu$.

Let \mathcal{P}_m be the family of portfolios in \mathcal{P} with E(Z(w)) = m, for some $m \in \mathbb{R}, m > 0$. $\mathcal{P}_m := \{w = (w_i) \in \mathbb{R}^d, \sum_{i=1}^d |w_i| = 1, w^T \mu = m\}$

Consider a portfolio of *d* risky assets and the random vector $X = (X_1, X_2, ..., X_d)^T$ of their returns. Let $E(X) = \mu$.

Let \mathcal{P} be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in \mathcal{P} is uniquelly determined by its weight vector $w = (w_i) \in \mathbb{R}^d$ with $\sum_{i=1^d} |w_i| = 1$. $w_i > 0$ ($w_i < 0$) represents a long (short) investment.

The return of portfolio w is the r.v. $Z(w) = \sum_{i=1}^{d} w_i X_i$. The expected portfolio return is $E(Z(w)) = w^T \mu$.

Let \mathcal{P}_m be the family of portfolios in \mathcal{P} with E(Z(w)) = m, for some $m \in \mathbb{R}, m > 0$. $\mathcal{P}_m := \{w = (w_i) \in \mathbb{R}^d, \sum_{i=1}^d |w_i| = 1, w^T \mu = m\}$

For a risk emasure ρ the mean- ρ portfolio optimization model is:

$$\min_{w \in \mathcal{P}_m} \rho(Z(w)) \tag{1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

<ロ> <回> <回> <回> <三> <三> <三> <三> <三> <三</p>

If ρ equals the portfolio variance we get $\min_{w \in \mathcal{P}_m} var(Z(w))$

If ρ equals the portfolio variance we get $\min_{w \in \mathcal{P}_m} var(Z(w))$

m

If $Cov(x) = \Sigma$ and the weights are nonnegative (long-only portfolio) we get the Markovitz portfolio optimization model (Markowitz 1952):

$$\min_{w} \qquad w^{T} \Sigma w$$
s.t.
$$w^{T} \mu = m$$

$$\sum_{i=1}^{d} |w_{i}| = 1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If ρ equals the portfolio variance we get $\min_{w \in \mathcal{P}_m} var(Z(w))$

If $Cov(x) = \Sigma$ and the weights are nonnegative (long-only portfolio) we get the Markovitz portfolio optimization model (Markowitz 1952):

$$\min_{w} \qquad w^{T} \Sigma w$$
s.t.
$$w^{T} \mu = m$$

$$\sum_{i=1}^{d} |w_{i}| = 1$$

If $\rho = VaR_{\alpha}$, $\alpha \in (0,1)$ we get the mean-VaR pf. optimization model

$$\min_{w\in\mathcal{P}_m} VaR_\alpha(Z(w)).$$

Question: What is the relationship between these three portfolio optimization models?

Mean-risk portfolio optimization in the case of elliptically distributed asset returns

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Mean-risk portfolio optimization in the case of elliptically distributed asset returns

Theorem: (Embrechts et al., 2002) Let *M* be the set of returns of the portfolii in $\mathcal{P} := \{w = (w_i) \in \mathbb{R}^d, \sum_{i=1}^d |w_i| = 1\}$. Let the asset returns $X = (X_1, X_2, \dots, X_d)$ be elliptically distributed, $X = (X_1, X_2, \dots, X_d) \sim E_d(\mu, \Sigma, \psi)$ for some $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ and $\psi : \mathbb{R} \to \mathbb{R}$. Then VaR_α ist coherent in *M*, for any $\alpha \in (0.5, 1)$.

Mean-risk portfolio optimization in the case of elliptically distributed asset returns

Theorem: (Embrechts et al., 2002) Let *M* be the set of returns of the portfolii in $\mathcal{P} := \{w = (w_i) \in \mathbb{R}^d, \sum_{i=1}^d |w_i| = 1\}$. Let the asset returns $X = (X_1, X_2, \dots, X_d)$ be elliptically distributed, $X = (X_1, X_2, \dots, X_d) \sim E_d(\mu, \Sigma, \psi)$ for some $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ and $\psi : \mathbb{R} \to \mathbb{R}$. Then VaR_α ist coherent in *M*, for any $\alpha \in (0.5, 1)$.

Theorem: (Embrechts et al., 2002) Let $X = (X_1, X_2, \ldots, X_d) = \mu + AY$ be elliptically distributed with $\mu \in \mathbb{R}^d$, $A \in \mathbb{R}^{d \times k}$ and a spherically distributed vector $Y \sim S_k(\psi)$. Assume that $0 < E(X_k^2) < \infty$ holds $\forall k$. If the risk measure ρ has the properties (C1) and (C3) and $\rho(Y_1) > 0$ for the first component Y_1 of Y, then

$$rgmin\{
ho(Z(w))\colon w\in \mathcal{P}_m\}=rgmin\{var(Z(w))\colon w\in \mathcal{P}_m\}$$

Definition: A *d*-dimensional copula is a distribution function on $[0, 1]^d$ with uniform marginal distributions on [0, 1].

(ロ)、(型)、(E)、(E)、 E、 の(の)

Definition: A *d*-dimensional copula is a distribution function on $[0, 1]^d$ with uniform marginal distributions on [0, 1].

Equivalently, a copula C is a function $C \colon [0,1]^d \to [0,1]$, with the following properties:

- 1. $C(u_1, u_2, \ldots, u_d)$ is mon. increasing in each variable u_i , $1 \le i \le d$.
- 2. $C(1, 1, ..., 1, u_k, 1, ..., 1) = u_k$ for any $k \in \{1, ..., d\}$ and $\forall u_k \in [0, 1]$.
- 3. The rectangle inequality holds $\forall (a_1, a_2, \dots, a_d) \in [0, 1]^d$, $\forall (b_1, b_2, \dots, b_d) \in [0, 1]^d$ with $a_k \leq b_k$, $\forall k \in \{1, 2, \dots, d\}$:

$$\sum_{k_1=1}^2 \dots \sum_{k_d=1}^2 (-1)^{k_1+k_2+\dots+k_d} C(u_{1k_1}, u_{2k_2}, \dots, u_{dk_d}) \geq 0,$$

where $u_{j1} = a_j$ and $u_{j2} = b_j$.

Definition: A *d*-dimensional copula is a distribution function on $[0, 1]^d$ with uniform marginal distributions on [0, 1].

Equivalently, a copula C is a function $C \colon [0,1]^d \to [0,1]$, with the following properties:

- 1. $C(u_1, u_2, \ldots, u_d)$ is mon. increasing in each variable u_i , $1 \le i \le d$.
- 2. $C(1, 1, ..., 1, u_k, 1, ..., 1) = u_k$ for any $k \in \{1, ..., d\}$ and $\forall u_k \in [0, 1]$.
- 3. The rectangle inequality holds $\forall (a_1, a_2, \dots, a_d) \in [0, 1]^d$, $\forall (b_1, b_2, \dots, b_d) \in [0, 1]^d$ with $a_k \leq b_k$, $\forall k \in \{1, 2, \dots, d\}$:

$$\sum_{k_1=1}^2 \dots \sum_{k_d=1}^2 (-1)^{k_1+k_2+\dots+k_d} C(u_{1k_1}, u_{2k_2}, \dots, u_{dk_d}) \geq 0,$$

where $u_{j1} = a_j$ and $u_{j2} = b_j$.

Remark: The *k*-dimensional marginal distributions of a *d*-dimensional copula are *k*-dimensional copulas, for all $2 \le k \le d$.

1. h^{\leftarrow} is eine monotone increasing left continuous function.

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.
- 4. $h^{\leftarrow}(h(x)) \leq x$

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.
- 4. $h^{\leftarrow}(h(x)) \leq x$
- 5. $h(h^{\leftarrow}(y)) \geq y$

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.
- 4. $h^{\leftarrow}(h(x)) \leq x$
- 5. $h(h^{\leftarrow}(y)) \geq y$
- 6. *h* is strictly monotone increasing $\implies h^{\leftarrow}(h(x)) = x$.

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.
- 4. $h^{\leftarrow}(h(x)) \leq x$
- 5. $h(h^{\leftarrow}(y)) \geq y$
- 6. *h* is strictly monotone increasing $\implies h^{\leftarrow}(h(x)) = x$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

7. *h* is continuous $\implies h(h^{\leftarrow}(y)) = y$.

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.
- 4. $h^{\leftarrow}(h(x)) \leq x$
- 5. $h(h^{\leftarrow}(y)) \geq y$
- 6. *h* is strictly monotone increasing $\implies h^{\leftarrow}(h(x)) = x$.
- 7. *h* is continuous $\implies h(h^{\leftarrow}(y)) = y$.

Lemma: Let X be a r.v. with continuous distribution function F. Then $P(F^{\leftarrow}(F(x)) = x) = 1$, i.e. $F^{\leftarrow}(F(X)) \stackrel{a.s.}{=} X$