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For a risk emasure ρ the mean-ρ portfolio optimization model is:

min
w∈Pm

ρ(Z (w)) (1)
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If Cov(x) = Σ and the weights are nonnegative (long-only portfolio) we
get the Markovitz portfolio optimization model (Markowitz 1952):

min
w

wTΣw

s.t.

wTµ = m
∑d

i=1
|wi | = 1

If ρ = VaRα, α ∈ (0, 1) we get the mean-VaR pf. optimization model

min
w∈Pm

VaRα(Z (w)).

Question: What is the relationship between these three portfolio
optimization models?
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Theorem: (Embrechts et al., 2002)
Let X = (X1,X2, . . . ,Xd ) = µ+ AY be elliptically distributed with
µ ∈ IR

d , A ∈ IR
d×k and a spherically distributed vector Y ∼ Sk(ψ).

Assume that 0 < E (X 2
k ) <∞ holds ∀k . If the risk measure ρ has the

properties (C1) and (C3) and ρ(Y1) > 0 for the first component Y1 of Y ,
then

argmin{ρ(Z (w)) : w ∈ Pm} = argmin{var(Z (w)) : w ∈ Pm}
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Remark: The k-dimensional marginal distributions of a d-dimensional
copula are k-dimensional copulas, for all 2 ≤ k ≤ d .
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Lemma: Let X be a r.v. with continuous distribution function F . Then
P (F←(F (x)) = x) = 1, i.e. F←(F (X ))

a.s.
= X


