Goal: model the risk factor changes $X_n = (X_{n,1}, X_{n,2}, \dots, X_{n,d})$ Assumption: $X_{n,i}$ and $X_{n,j}$ are dependent but $X_{n,i}$ und $X_{n\pm k,j}$ are independent for $k \in \mathbb{N}$, $k \neq 0$, $1 \leq i,j \leq d$.

Goal: model the risk factor changes $X_n = (X_{n,1}, X_{n,2}, \dots, X_{n,d})$ Assumption: $X_{n,i}$ and $X_{n,j}$ are dependent but $X_{n,i}$ und $X_{n\pm k,j}$ are independent for $k \in \mathbb{N}$, $k \neq 0$, $1 \leq i,j \leq d$.

Goal: model the risk factor changes $X_n = (X_{n,1}, X_{n,2}, \dots, X_{n,d})$ Assumption: $X_{n,i}$ and $X_{n,j}$ are dependent but $X_{n,i}$ und $X_{n\pm k,j}$ are independent fot $k \in \mathbb{N}$, $k \neq 0$, $1 \leq i,j \leq d$.

A *d*-dimensional random vector $X = (X_1, X_2, \dots, X_d)^T$ is uniquely specified by its (multivariate) cumulative distribution function (c.d.f.) F:

$$F(x): F(x_1, x_2, ..., x_d) := P(X_1 \le x_1, X_2 \le x_2, ..., X_d \le x_d) = P(X \le x).$$

Goal: model the risk factor changes $X_n = (X_{n,1}, X_{n,2}, \dots, X_{n,d})$ Assumption: $X_{n,i}$ and $X_{n,j}$ are dependent but $X_{n,i}$ und $X_{n\pm k,j}$ are independent fot $k \in \mathbb{N}$, $k \neq 0$, $1 \leq i,j \leq d$.

A *d*-dimensional random vector $X = (X_1, X_2, \dots, X_d)^T$ is uniquely specified by its (multivariate) cumulative distribution function (c.d.f.) F:

$$F(x): F(x_1, x_2, ..., x_d) := P(X_1 \le x_1, X_2 \le x_2, ..., X_d \le x_d) = P(X \le x).$$

The *i*-th marginal distribution F_i of F is the distribution function of X_i given as follows:

$$F_i(x_i) = P(X_i \leq x_i) = F(\infty, \dots, \infty, x_i, \infty, \dots, \infty)$$

Goal: model the risk factor changes $X_n = (X_{n,1}, X_{n,2}, \dots, X_{n,d})$ Assumption: $X_{n,i}$ and $X_{n,j}$ are dependent but $X_{n,i}$ und $X_{n\pm k,j}$ are independent fot $k \in \mathbb{N}$, $k \neq 0$, $1 \leq i,j \leq d$.

A *d*-dimensional random vector $X = (X_1, X_2, \dots, X_d)^T$ is uniquely specified by its (multivariate) cumulative distribution function (c.d.f.) F:

$$F(x): F(x_1, x_2, \ldots, x_d) := P(X_1 \le x_1, X_2 \le x_2, \ldots, X_d \le x_d) = P(X \le x).$$

The *i*-th marginal distribution F_i of F is the distribution function of X_i given as follows:

$$F_i(x_i) = P(X_i \le x_i) = F(\infty, \dots, \infty, x_i, \infty, \dots, \infty)$$

The distribution function F is continuous if there exists a non-negative function $f \ge 0$, such that

$$F(x_1, x_2, \dots, x_d) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \dots \int_{-\infty}^{x_d} f(u_1, u_2, \dots, u_d) du_1 du_2 \dots du_d$$

f is then called the *(multivariate)* density function (d.f.) of F.

The components of X are independent iff $F(x) = \prod_{i=1}^{d} F_i(x_i)$. If the d.f. f and the marginal d.f. f_i , $1 \le i \le d$, exist, then the components of X are independent iff

$$f(x) = \prod_{i=1}^d f_i(x_i)$$

The components of X are independent iff $F(x) = \prod_{i=1}^{d} F_i(x_i)$. If the d.f. f and the marginal d.f. f_i , $1 \le i \le d$, exist, then the components of X are independent iff

$$f(x) = \prod_{i=1}^d f_i(x_i)$$

A random vector can be uniquely characterized in terms of its characteristic function $\phi_X(t)$:

$$\phi_X(t) := E(\exp\{it^T X\}), t \in \mathbb{R}^d$$

The components of X are independent iff $F(x) = \prod_{i=1}^{d} F_i(x_i)$. If the d.f. f and the marginal d.f. f_i , $1 \le i \le d$, exist, then the components of X are independent iff

$$f(x) = \prod_{i=1}^d f_i(x_i)$$

A random vector can be uniquely characterized in terms of its characteristic function $\phi_X(t)$:

$$\phi_X(t) := E(\exp\{it^T X\}), t \in \mathbb{R}^d$$

If $E(X_k^2) < \infty$ for all k, the the covariance (matrix) of X exists and is given es

$$Cov(X) = E((X - E(X))(X - E(X))^{T})$$

The components of X are independent iff $F(x) = \prod_{i=1}^{d} F_i(x_i)$. If the d.f. f and the marginal d.f. f_i , $1 \le i \le d$, exist, then the components of X are independent iff

$$f(x) = \prod_{i=1}^d f_i(x_i)$$

A random vector can be uniquely characterized in terms of its characteristic function $\phi_X(t)$:

$$\phi_X(t) := E(\exp\{it^T X\}), t \in \mathbb{R}^d$$

If $E(X_k^2) < \infty$ for all k, the the covariance (matrix) of X exists and is given es

$$Cov(X) = E((X - E(X))(X - E(X))^{T})$$

For an *n*-dimensional random vector X, a constant matrix $B \in \mathbb{R}^{n \times n}$ and a constant vector $b \in \mathbb{R}^n$ the following hold:

$$E(BX + b) = BE(X) + b$$
 $Cov(BX + b) = BCov(X)B^{T}$

Example: The d.f. f and the characteristic function ϕ_X of the multivariate normal distribution with expected value μ and covariance Σ are given as

$$f(x) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}, x \in \mathbb{R}^d$$
$$\phi_X(t) = \exp\left\{it^T \mu - \frac{1}{2}t^T \Sigma t\right\}, t \in \mathbb{R}^d,$$

where $|\Sigma| = |Det(\Sigma)|$.

Example: The d.f. f and the characteristic function ϕ_X of the multivariate normal distribution with expected value μ and covariance Σ are given as

$$f(x) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}, x \in \mathbb{R}^d$$
$$\phi_X(t) = \exp\left\{it^T \mu - \frac{1}{2}t^T \Sigma t\right\}, t \in \mathbb{R}^d,$$

where $|\Sigma| = |Det(\Sigma)|$.

Modelling the depedencies of risk factor changes (or financial data in general) in terms of the multivariate normal distribution might be inappropriate:

- risk factor changes are in general heavier tailed than normal
- ▶ the dependence between large return drops is in general stronger than the dependence between ordinary returns. This type of dependency cannot be modelled by the multivariate normal distribution.

Let X_1 and X_2 be r.v. There exist several scalar measures for the dependence between X_1 und X_2 .

Let X_1 and X_2 be r.v. There exist several scalar measures for the dependence between X_1 und X_2 .

Linear correlation

Assumption: $var(X_1), var(X_2) \in (0, \infty)$.

The linear correlation coefficient $\rho_L(X_1, X_2)$ ist given as follows

$$\rho_L(X_1, X_2) = \frac{cov(X_1, X_2)}{\sqrt{var(X_1)var(X_2)}}$$

Let X_1 and X_2 be r.v. There exist several scalar measures for the dependence between X_1 und X_2 .

Linear correlation

Assumption: $var(X_1)$, $var(X_2) \in (0, \infty)$.

The linear correlation coefficient $\rho_L(X_1, X_2)$ ist given as follows

$$\rho_L(X_1, X_2) = \frac{cov(X_1, X_2)}{\sqrt{var(X_1)var(X_2)}}$$

Properties of the linear correlation coefficient:

▶ X_1 and X_2 are independent $\Rightarrow \rho_L(X_1, X_2) = 0$, but $\rho_L(X_1, X_2) = 0 \Rightarrow X_1$ and X_2 are independent **Example:** Let $X_1 \sim N(0,1)$ and $X_2 = X_1^2$. $\rho_L(X_1, X_2) = 0$ holds although X_1 and X_2 are dependent.

Let X_1 and X_2 be r.v. There exist several scalar measures for the dependence between X_1 und X_2 .

Linear correlation

Assumption: $var(X_1), var(X_2) \in (0, \infty)$.

The linear correlation coefficient $\rho_L(X_1, X_2)$ ist given as follows

$$\rho_L(X_1, X_2) = \frac{cov(X_1, X_2)}{\sqrt{var(X_1)var(X_2)}}$$

Properties of the linear correlation coefficient:

- ▶ X_1 and X_2 are independent $\Rightarrow \rho_L(X_1,X_2)=0$, but $\rho_L(X_1,X_2)=0 \not\Rightarrow X_1$ and X_2 are independent **Example:** Let $X_1 \sim N(0,1)$ and $X_2=X_1^2$. $\rho_L(X_1,X_2)=0$ holds although X_1 and X_2 are dependent.
- ▶ $|\rho_L(X_1, X_2)| = 1 \Leftrightarrow \exists \alpha, \beta \in \mathbb{R}, \ \beta \neq 0$, such that $X_2 \stackrel{d}{=} \alpha + \beta X_1$ and signum $(\beta) = \text{signum}(\rho_L(X_1, X_2))$.

▶ The linear correlation coefficient is invariant under strict monotone increasing linear transformations. This means that for any two r.v. X_1 and X_2 and real constants $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, $\beta_1 > 0$, $\beta_2 > 0$ the following holds:

$$\rho_L(\alpha_1 + \beta_1 X_1, \alpha_2 + \beta_2 X_2) = \rho_L(X_1, X_2).$$

▶ The linear correlation coefficient is invariant under strict monotone increasing linear transformations. This means that for any two r.v. X_1 and X_2 and real constants $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, $\beta_1 > 0$, $\beta_2 > 0$ the following holds:

$$\rho_L(\alpha_1 + \beta_1 X_1, \alpha_2 + \beta_2 X_2) = \rho_L(X_1, X_2).$$

However, in general, the linear correlation coefficient is not invariant under strict monotone increasing non linear transformations.

▶ The linear correlation coefficient is invariant under strict monotone increasing linear transformations. This means that for any two r.v. X_1 and X_2 and real constants $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{R}$, $\beta_1 > 0$, $\beta_2 > 0$ the following holds:

$$\rho_L(\alpha_1 + \beta_1 X_1, \alpha_2 + \beta_2 X_2) = \rho_L(X_1, X_2).$$

However, in general, the linear correlation coefficient is not invariant under strict monotone increasing non linear transformations.

Example: Let $X_1 \sim Exp(\lambda)$, $X_2 = X_1$, and T_1 , T_2 be two strict monotone increasing transformations: $T_1(X_1) = X_1$ and $T_2(X_1)) = X_1^2$. Then

$$\rho_L(X_1, X_1) = 1 \text{ and } \rho_L(T_1(X_1), T_2(X_1)) = \frac{2}{\sqrt{5}}.$$

Let (x_1, x_2) and $(\tilde{x}_1, \tilde{x}_2)$ be two points in \mathbb{R}^2 . They are called *concordant* iff $(x_1 - \tilde{x}_1)(x_2 - \tilde{x}_2) > 0$ and *discordant* iff $(x_1 - \tilde{x}_1)(x_2 - \tilde{x}_2) < 0$.

Let (x_1, x_2) and $(\tilde{x}_1, \tilde{x}_2)$ be two points in \mathbb{R}^2 . They are called *concordant* iff $(x_1 - \tilde{x}_1)(x_2 - \tilde{x}_2) > 0$ and *discordant* iff $(x_1 - \tilde{x}_1)(x_2 - \tilde{x}_2) < 0$.

Let $(X_1, X_2)^T$ and $(\tilde{X}_1, \tilde{X}_2)^T$ be two i.i.d. random vectors.

The Kendall's Tau ρ_{τ} is defined as

$$\rho_{\tau}(X_1, X_2) = P\left((X_1 - \tilde{X}_1)(X_2 - \tilde{X}_2) > 0\right) - P\left((X_1 - \tilde{X}_1)(X_2 - \tilde{X}_2) < 0\right)$$

Let (x_1, x_2) and $(\tilde{x}_1, \tilde{x}_2)$ be two points in \mathbb{R}^2 . They are called *concordant* iff $(x_1 - \tilde{x}_1)(x_2 - \tilde{x}_2) > 0$ and *discordant* iff $(x_1 - \tilde{x}_1)(x_2 - \tilde{x}_2) < 0$.

Let $(X_1, X_2)^T$ and $(\tilde{X}_1, \tilde{X}_2)^T$ be two i.i.d. random vectors.

The Kendall's Tau ρ_{τ} is defined as

$$\rho_{\tau}(X_1, X_2) = P\left((X_1 - \tilde{X}_1)(X_2 - \tilde{X}_2) > 0\right) - P\left((X_1 - \tilde{X}_1)(X_2 - \tilde{X}_2) < 0\right)$$

Let (\hat{X}_1, \hat{X}_2) be a third random vector independent from (X_1, X_2) and $(\tilde{X}_1, \tilde{X}_2)$ with the same distribution as the later two vectors.

The Spearman's Rho ρ_S is defined as

$$\rho_{S}(X_{1},X_{2}) = 3\left\{P\left((X_{1} - \tilde{X}_{1})(X_{2} - \hat{X}_{2}) > 0\right) - P\left((X_{1} - \tilde{X}_{1})(X_{2} - \hat{X}_{2}) < 0\right)\right\}$$

Some properties of ρ_{τ} und $\rho_{\mathcal{S}}$:

Some properties of ρ_{τ} und ρ_{S} :

1. $\rho_{\tau}(X_1, X_2) \in [-1, 1]$ and $\rho_{S}(X_1, X_2) \in [-1, 1]$.

Some properties of ρ_{τ} und ρ_{S} :

- 1. $\rho_{\tau}(X_1, X_2) \in [-1, 1]$ and $\rho_{S}(X_1, X_2) \in [-1, 1]$.
- 2. if X_1 and X_2 are independent, then $\rho_{\tau}(X_1, X_2) = \rho_{S}(X_1, X_2) = 0$. In general the converse does not hold.

Some properties of ρ_{τ} und ρ_{S} :

- 1. $\rho_{\tau}(X_1, X_2) \in [-1, 1]$ and $\rho_{S}(X_1, X_2) \in [-1, 1]$.
- 2. if X_1 and X_2 are independent, then $\rho_{\tau}(X_1, X_2) = \rho_{S}(X_1, X_2) = 0$. In general the converse does not hold.
- 3. Let $T \colon \mathbb{R} \to \mathbb{R}$ be a strict monotone increasing function. Then the following holds

$$\rho_{\tau}(T(X_1), T(X_2)) = \rho_{\tau}(X_1, X_2)$$

$$\rho_{S}(T(X_{1}), T(X_{2})) = \rho_{S}(X_{1}, X_{2})$$

Proof: 1) and 2) are trivial. Proof of 3) will be done in terms of copulas later.

Definition: Let $(X_1, X_2)^T$ be a random vector with marginal c.d.f. F_1 and F_2 . The coefficient of upper tail dependence of $(X_1, X_2)^T$ is defined as:

$$\lambda_U(X_1, X_2) = \lim_{u \to 1^-} P(X_2 > F_2^{\leftarrow}(u) | X_1 > F_1^{\leftarrow}(u))$$

provided that this limit exists.

Definition: Let $(X_1, X_2)^T$ be a random vector with marginal c.d.f. F_1 and F_2 . The coefficient of upper tail dependence of $(X_1, X_2)^T$ is defined as:

$$\lambda_U(X_1, X_2) = \lim_{u \to 1^-} P(X_2 > F_2^{\leftarrow}(u) | X_1 > F_1^{\leftarrow}(u))$$

provided that this limit exists.

The coefficient of lower tail dependence of $(X_1, X_2)^T$ is defined as:

$$\lambda_L(X_1, X_2) = \lim_{u \to 0^+} P(X_2 \le F_2^{\leftarrow}(u) | X_1 \le F_1^{\leftarrow}(u))$$

provided that this limit exists.

If the limit exists and $\lambda_U > 0$ ($\lambda_L > 0$) we say that $(X_1, X_2)^T$ has an upper (lower) tail dependence.

Definition: Let $(X_1, X_2)^T$ be a random vector with marginal c.d.f. F_1 and F_2 . The coefficient of upper tail dependence of $(X_1, X_2)^T$ is defined as:

$$\lambda_U(X_1, X_2) = \lim_{u \to 1^-} P(X_2 > F_2^{\leftarrow}(u) | X_1 > F_1^{\leftarrow}(u))$$

provided that this limit exists.

The coefficient of lower tail dependence of $(X_1, X_2)^T$ is defined as:

$$\lambda_L(X_1, X_2) = \lim_{u \to 0^+} P(X_2 \le F_2^{\leftarrow}(u) | X_1 \le F_1^{\leftarrow}(u))$$

provided that this limit exists.

If the limit exists and $\lambda_U > 0$ ($\lambda_L > 0$) we say that $(X_1, X_2)^T$ has an upper (lower) tail dependence.

Exercise: Let $X_1 \sim Exp(\lambda)$ and $X_2 = X_1^2$. Determine $\lambda_U(X_1, X_2)$, $\lambda_L(X_1, X_2)$ and show that $(X_1, X_2)^T$ has an upper tail dependence and a lower tail dependence. Compute also the linear correlation coefficient $\rho_L(X_1, X_2)$.

Multivariate elliptical distributions

Multivariate elliptical distributions

a) The multivariate normal distribution

Definition: The random vector $(X_1, X_2, \ldots, X_d)^T$ has a *multivariate* normal distribution (or a *multivariate Gaussian distribution*) iff $X \stackrel{d}{=} \mu + AZ$, where $Z = (Z_1, Z_2, \ldots, Z_k)^T$ is a vector of i.i.d. standard normal distributed r.v. $(Z_i \sim N(0,1), \forall i=1,2,\ldots,k)$, $A \in \mathbb{R}^{d \times k}$ is a constant matrix and $\mu \in \mathbb{R}^d$ is a constant vector.

Multivariate elliptical distributions

a) The multivariate normal distribution

Definition: The random vector $(X_1, X_2, \dots, X_d)^T$ has a multivariate normal distribution (or a multivariate Gaussian distribution) iff

 $X \stackrel{d}{=} \mu + AZ$, where $Z = (Z_1, Z_2, \dots, Z_k)^T$ is a vector of i.i.d. standard normal distributed r.v. $(Z_i \sim N(0,1), \forall i=1,2,\dots,k)$,

 $A \in \mathbb{R}^{d \times k}$ is a constant matrix and $\mu \in \mathbb{R}^d$ is a constant vector.

For such a random vector X we have: $E(X) = \mu$, $cov(X) = \Sigma = AA^T$. Thus Σ is positive semidefinite. Notation: $X \sim N_d(\mu, \Sigma)$.

Multivariate elliptical distributions

a) The multivariate normal distribution

Definition: The random vector $(X_1, X_2, ..., X_d)^T$ has a multivariate normal distribution (or a multivariate Gaussian distribution) iff $X \stackrel{d}{=} u + AZ$, where $Z = (Z_1, Z_2, ..., Z_k)^T$ is a vector of i.i.d. standard

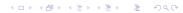
 $X = \mu + AZ$, where $Z = (Z_1, Z_2, \dots, Z_k)^*$ is a vector of i.i.d. standard normal distributed r.v. $(Z_i \sim N(0,1), \forall i=1,2,\dots,k)$,

 $A \in {\rm I\!R}^{d imes k}$ is a constant matrix and $\mu \in {\rm I\!R}^d$ is a constant vector.

For such a random vector X we have: $E(X) = \mu$, $cov(X) = \Sigma = AA^T$. Thus Σ is positive semidefinite. Notation: $X \sim N_d(\mu, \Sigma)$.

Theorem: (Equivalent characterisations of the multivariate normal distribution)

1. $X \sim N_d(\mu, \Sigma)$ for some vector $\mu \in \mathbb{R}^d$ and some positiv semidefinite matrix $\Sigma \in \mathbb{R}^{d \times d}$, iff $\forall a \in \mathbb{R}^d$, $a = (a_1, a_2, \dots, a_d)^T$, the random variable $a^T X$ is normally distributed.



Equivalent characterisations of the multivariate normal distribution

2. A random vector $X \in \mathbb{R}^d$ is multivariate normally distributed iff its characteristic function $\phi_X(t)$ is given as

$$\phi_X(t) = E(\exp\{it^T X\}) = \exp\{it^T \mu - \frac{1}{2}t^T \Sigma t\}$$

for some vector $\mu \in {\rm I\!R}^d$ and some positive semidefinite matrix $\Sigma \in {\rm I\!R}^{d \times d}.$

3. A random vector $X \in \mathbb{R}^d$ with $E(X) = \mu$ and $cov(X) = \Sigma$, $|\Sigma| > 0$, is multivariate normally distributed, i.e. $X \sim N_d(\mu, \Sigma)$, iff its density function $f_X(x)$ is given as follows

$$f_X(x) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left\{-\frac{(x-\mu)^T \Sigma^{-1} (x-\mu)}{2}\right\}.$$

Proof: (see eg. Gut 1995)

Theorem:

Let $X \sim N_d(\mu, \Sigma)$. The following hold:

Linear combinations:

Let $B \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^k$. Then $BX + b \in N_k(B\mu + b, B\Sigma B^T)$.

Properties of the multivariate normal distribution Theorem:

Let $X \sim N_d(\mu, \Sigma)$. The following hold:

- Linear combinations: Let $B \in \mathbb{R}^{k \times d}$ and $b \in \mathbb{R}^k$. Then $BX + b \in N_k(B\mu + b, B\Sigma B^T)$.
- Marginal distributions:

Let
$$X^T = \left({{X^{(1)}}^T,X^{(2)}}^T \right)$$
 with ${X^{(1)}}^T = (X_1,X_2,\dots,X_k)^T$ and ${X^{(2)}}^T = (X_{k+1},X_{k+2},\dots,X_d)^T$. Analogously let $\mu^T = \left({\mu^{(1)}}^T,{\mu^{(2)}}^T \right)$ and $\Sigma = \left({\begin{array}{*{20}c} {\Sigma^{(1,1)}} & {\Sigma^{(1,2)}} \\ {\Sigma^{(2,1)}} & {\Sigma^{(2,2)}} \end{array}} \right)$.

Then
$$X^{(1)} \sim N_k \bigg(\mu^{(1)}, \Sigma^{(1,1)} \bigg)$$
 and $X^{(2)} \sim N_{d-k} \bigg(\mu^{(2)}, \Sigma^{(2,2)} \bigg)$.

Conditional distributions:

Let Σ be nonsingular. The conditioned random vector

$$X^{(2)} | X^{(1)} = x^{(1)}$$
 is multivariate normally distributed with

$$\begin{split} X^{(2)}|X^{(1)} &= x^{(1)} \sim \textit{N}_{d-k}\Bigg(\mu^{(2,1)}, \Sigma^{(22,1)}\Bigg) \text{ where} \\ \mu^{(2,1)} &= \mu^{(2)} + \Sigma^{(2,1)}\Bigg(\Sigma^{(1,1)}\Bigg)^{-1}\Bigg(x^{(1)} - \mu^{(1)}\Bigg) \text{ and} \\ \Sigma^{(22,1)} &= \Sigma^{(2,2)} - \Sigma^{(2,1)}\Bigg(\Sigma^{(1,1)}\Bigg)^{-1}\Sigma^{(1,2)}. \end{split}$$

▶ Quadratic forms:

Is Σ is nonsingular, then $D^2=(X-\mu)^T\Sigma^{-1}(X-\mu)\sim\chi_d^2$. The r.v. D is called *Mahalanobis distance*.

- ▶ Quadratic forms: Is Σ is nonsingular, then $D^2 = (X - \mu)^T \Sigma^{-1} (X - \mu) \sim \chi_d^2$. The r.v. D is called *Mahalanobis distance*.
- Convolutions: Let $X \sim N_d(\mu, \Sigma)$ and $Y \sim N_d(\tilde{\mu}, \tilde{\Sigma})$ be two independent random

Let $X \sim N_d(\mu, \Sigma)$ and $Y \sim N_d(\tilde{\mu}, \Sigma)$ be two independent random vectors. Then $X + Y \sim N_d(\mu + \tilde{\mu}, \Sigma + \tilde{\Sigma})$.

Definition: A random vector $X \in \mathbb{R}^d$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{d}{=} \mu + WAZ$ where $Z \sim N_k(0,I), \ W \geq 0$ is a r.v. independent from $Z, \ \mu \in \mathbb{R}^d$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix.

Definition: A random vector $X \in \mathbb{R}^d$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{d}{=} \mu + WAZ$ where $Z \sim N_k(0,I), \ W \geq 0$ is a r.v. independent from $Z, \ \mu \in \mathbb{R}^d$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix.

Definition: A random vector $X \in \mathbb{R}^d$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{d}{=} \mu + WAZ$ where $Z \sim N_k(0,I), \ W \geq 0$ is a r.v. independent from $Z, \ \mu \in \mathbb{R}^d$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix. By conditioning on W = w we get $X \sim N_d(\mu, w^2\Sigma)$, with $\Sigma = AA^T$.

Moreover $E(X) = \mu$ and $cov(X) = E(W^2AZZ^TA^T) = E(W^2)\Sigma$, if $E(W^2) < \infty$

Definition: A random vector $X \in \mathbb{R}^d$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{d}{=} \mu + WAZ$ where $Z \sim N_k(0,I), \ W \geq 0$ is a r.v. independent from $Z, \ \mu \in \mathbb{R}^d$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix.

By conditioning on W=w we get $X\sim N_d(\mu,w^2\Sigma)$, with $\Sigma=AA^T$.

Moreover
$$E(X) = \mu$$
 and $cov(X) = E(W^2AZZ^TA^T) = E(W^2)\Sigma$, if $E(W^2) < \infty$

Example: the multivariate t_{α} distribution

Let $Y \sim IG(\alpha, \beta)$ (inverse-gamma distribution) with density function given as $f_{\alpha,\beta}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} \exp(-\beta/x)$ for x > 0, $\alpha > 0$, $\beta > 0$.

Then
$$E(Y) = \frac{\beta}{\alpha - 1}$$
 for $\alpha > 1$, $var(Y) = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)}$ for $\alpha > 2$.

Definition: A random vector $X \in \mathbb{R}^d$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{d}{=} \mu + WAZ$ where $Z \sim N_k(0,I), \ W \geq 0$ is a r.v. independent from $Z, \ \mu \in \mathbb{R}^d$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix.

By conditioning on W=w we get $X\sim N_d(\mu,w^2\Sigma)$, with $\Sigma=AA^T$.

Moreover $E(X) = \mu$ and $cov(X) = E(W^2AZZ^TA^T) = E(W^2)\Sigma$, if $E(W^2) < \infty$

Example: the multivariate t_{α} distribution

Let $Y \sim IG(\alpha, \beta)$ (inverse-gamma distribution) with density function given as $f_{\alpha,\beta}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} \exp(-\beta/x)$ for x > 0, $\alpha > 0$, $\beta > 0$.

Then
$$E(Y) = \frac{\beta}{\alpha - 1}$$
 for $\alpha > 1$, $var(Y) = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)}$ for $\alpha > 2$.

Let $W^2 \sim IG(\alpha/2, \alpha/2)$. Then $X = \mu + WAZ$ has the multivariate t_{α} -distribution with α degrees of freedom. Notation: $X \sim t_d(\alpha, \mu, \Sigma)$.

Definition: A random vector $X \in \mathbb{R}^d$ is said to have a multivariate normal variance mixture distribution if $X \stackrel{d}{=} \mu + WAZ$ where $Z \sim N_k(0,I), \ W \geq 0$ is a r.v. independent from $Z, \ \mu \in \mathbb{R}^d$ is a constant vector, $A \in \mathbb{R}^{d \times k}$ is a constant matrix, and I is the unit matrix.

By conditioning on W=w we get $X\sim N_d(\mu,w^2\Sigma)$, with $\Sigma=AA^T$.

Moreover $E(X) = \mu$ and $cov(X) = E(W^2AZZ^TA^T) = E(W^2)\Sigma$, if $E(W^2) < \infty$

Example: the multivariate t_{α} distribution

Let $Y \sim IG(\alpha, \beta)$ (inverse-gamma distribution) with density function given as $f_{\alpha,\beta}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-(\alpha+1)} \exp(-\beta/x)$ for x > 0, $\alpha > 0$, $\beta > 0$.

Then
$$E(Y) = \frac{\beta}{\alpha - 1}$$
 for $\alpha > 1$, $var(Y) = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)}$ for $\alpha > 2$.

Let $W^2 \sim IG(\alpha/2, \alpha/2)$. Then $X = \mu + WAZ$ has the multivariate t_{α} -distribution with α degrees of freedom. Notation: $X \sim t_d(\alpha, \mu, \Sigma)$.

Since
$$E(W^2) = \alpha/(\alpha - 2)$$
, for $\alpha > 2$, we get $cov(X) = E(W^2)\Sigma = \frac{\alpha}{\alpha - 2}\Sigma$.

Definition: A random vector $X = (X_1, X_2, \dots, X_d)^T$ has a spherical distribution if for every orthogonal matrix $U \in \mathbb{R}^{d \times d}$ we have $UX \stackrel{d}{=} X$.

Definition: A random vector $X = (X_1, X_2, ..., X_d)^T$ has a spherical distribution if for every orthogonal matrix $U \in \mathbb{R}^{d \times d}$ we have $UX \stackrel{d}{=} X$.

Theorem: The following statements are equivalent:

1. $X \in {\rm I\!R}^d$ has a spherical distribution.

Definition: A random vector $X = (X_1, X_2, ..., X_d)^T$ has a spherical distribution if for every orthogonal matrix $U \in \mathbb{R}^{d \times d}$ we have $UX \stackrel{d}{=} X$.

Theorem: The following statements are equivalent:

- 1. $X \in \mathbb{R}^d$ has a spherical distribution.
- 2. There exists a function $\psi \colon \mathbb{R} \to \mathbb{R}$ of a scalar variable, such that the characteristic function of X satisfies

$$\phi_X(t) = \psi(t^T t) = \psi(t_1^2 + t_2^2 + \ldots + t_d^2)$$

Definition: A random vector $X = (X_1, X_2, ..., X_d)^T$ has a spherical distribution if for every orthogonal matrix $U \in \mathbb{R}^{d \times d}$ we have $UX \stackrel{d}{=} X$.

Theorem: The following statements are equivalent:

- 1. $X \in \mathbb{R}^d$ has a spherical distribution.
- 2. There exists a function $\psi \colon \mathbb{R} \to \mathbb{R}$ of a scalar variable, such that the characteristic function of X satisfies

$$\phi_X(t) = \psi(t^T t) = \psi(t_1^2 + t_2^2 + \ldots + t_d^2)$$

3. For every vector $a \in \mathbb{R}^d$, $a^t X \stackrel{d}{=} ||a|| X_1$ holds, where $||a||^2 = a_1^2 + a_2^2 + \ldots + a_d^2$.

Definition: A random vector $X = (X_1, X_2, ..., X_d)^T$ has a spherical distribution if for every orthogonal matrix $U \in \mathbb{R}^{d \times d}$ we have $UX \stackrel{d}{=} X$.

Theorem: The following statements are equivalent:

- 1. $X \in \mathbb{R}^d$ has a spherical distribution.
- 2. There exists a function $\psi \colon \mathbb{R} \to \mathbb{R}$ of a scalar variable, such that the characteristic function of X satisfies

$$\phi_X(t) = \psi(t^T t) = \psi(t_1^2 + t_2^2 + \ldots + t_d^2)$$

- 3. For every vector $a \in \mathbb{R}^d$, $a^t X \stackrel{d}{=} ||a|| X_1$ holds, where $||a||^2 = a_1^2 + a_2^2 + \ldots + a_d^2$.
- 4. X has the stochastic representation $X \stackrel{d}{=} RS$, where $S \in \mathbb{R}^d$ is a random vector uniformly distributed on the unit sphere S^{d-1} , $S^{d-1} := \{x \in \mathbb{R}^d : ||x|| = 1\}$, and $R \ge 0$ is a r.v. independent of S.

Notation: $X \sim S_d(\psi)$, cf. 2.

Example: The standard normal distribution is a spherical distribution.

Let $X \sim N_d(0,I)$. Then $X \sim S_d(\psi)$ mit $\psi = \exp(-x/2)$. Indeed, $\phi_X(t) = \exp\{it^T0 - \frac{1}{2}t^TIt\} = \exp\{-t^Tt/2\} = \psi(t^Tt)$, and thus X has a spherical distribution.

Example: The standard normal distribution is a spherical distribution.

Let $X \sim N_d(0,I)$. Then $X \sim S_d(\psi)$ mit $\psi = \exp(-x/2)$. Indeed, $\phi_X(t) = \exp\{it^T0 - \frac{1}{2}t^TIt\} = \exp\{-t^Tt/2\} = \psi(t^Tt)$, and thus X has a spherical distribution.

Let X=RS be the stochastic representation of $X\sim N_d(0,I)$. Then $||X||^2\stackrel{d}{=}R^2\sim \chi_d^2;$

Example: The standard normal distribution is a spherical distribution.

Let $X \sim N_d(0,I)$. Then $X \sim S_d(\psi)$ mit $\psi = \exp(-x/2)$. Indeed, $\phi_X(t) = \exp\{it^T0 - \frac{1}{2}t^TIt\} = \exp\{-t^Tt/2\} = \psi(t^Tt)$, and thus X has a spherical distribution.

Let X=RS be the stochastic representation of $X\sim N_d(0,I)$. Then $||X||^2\stackrel{d}{=} R^2\sim \chi_d^2$;

Simulation of a spherical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere \mathcal{S}^{d-1} (e.g. by simulating y from a multivariate standard normal distribution $Y \sim N_d(0,I)$ and then setting s = y/||y||).

Example: The standard normal distribution is a spherical distribution.

Let $X \sim N_d(0,I)$. Then $X \sim S_d(\psi)$ mit $\psi = \exp(-x/2)$. Indeed, $\phi_X(t) = \exp\{it^T 0 - \frac{1}{2}t^T It\} = \exp\{-t^T t/2\} = \psi(t^T t)$, and thus X has a spherical distribution.

Let X=RS be the stochastic representation of $X\sim N_d(0,I)$. Then $||X||^2\stackrel{d}{=}R^2\sim \chi_d^2$;

Simulation of a spherical distribution:

- (i) Simulate s from S which is uniformly distributed on the unit sphere S^{d-1} (e.g. by simulating y from a multivariate standard normal distribution $Y \sim N_d(0, I)$ and then setting s = y/||y||).
- (ii) Simulate r from R.

Example: The standard normal distribution is a spherical distribution.

Let $X \sim N_d(0,I)$. Then $X \sim S_d(\psi)$ mit $\psi = \exp(-x/2)$. Indeed, $\phi_X(t) = \exp\{it^T0 - \frac{1}{2}t^TIt\} = \exp\{-t^Tt/2\} = \psi(t^Tt)$, and thus X has a spherical distribution.

Let X=RS be the stochastic representation of $X\sim N_d(0,I)$. Then $||X||^2\stackrel{d}{=} R^2\sim \chi_d^2$;

Simulation of a spherical distribution:

- (i) Simulate s from S which is uniformly distributed on the unit sphere S^{d-1} (e.g. by simulating y from a multivariate standard normal distribution $Y \sim N_d(0, I)$ and then setting s = y/||y||).
- (ii) Simulate r from R.
- (iii) Set x = rs.

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

The characteristic function can be written as

$$\phi_X(t) = E(\exp\{it^T X\}) = E(\exp\{it^T (\mu + AY)\})$$

$$= \exp\{it^T \mu\} E(\exp\{i(A^T t)^T Y\})$$

$$= \exp\{it^T \mu\} \psi(t^T \Sigma t),$$

where $\Sigma = AA^T$.

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

The characteristic function can be written as

$$\phi_X(t) = E(\exp\{it^T X\}) = E(\exp\{it^T (\mu + AY)\})$$

$$= \exp\{it^T \mu\} E(\exp\{i(A^T t)^T Y\})$$

$$= \exp\{it^T \mu\} \psi(t^T \Sigma t),$$

where $\Sigma = AA^T$.

Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

The characteristic function can be written as

$$\phi_X(t) = E(\exp\{it^T X\}) = E(\exp\{it^T (\mu + AY)\})$$

$$= \exp\{it^T \mu\} E(\exp\{i(A^T t)^T Y\})$$

$$= \exp\{it^T \mu\} \psi(t^T \Sigma t),$$

where $\Sigma = AA^T$.

Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 μ is called *location parameter*, Σ is called *dispersion parameter*, ψ is called *characteristic generator of the elliptic distribution*.

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

The characteristic function can be written as

$$\phi_X(t) = E(\exp\{it^T X\}) = E(\exp\{it^T (\mu + AY)\})$$

$$= \exp\{it^T \mu\} E(\exp\{i(A^T t)^T Y\})$$

$$= \exp\{it^T \mu\} \psi(t^T \Sigma t),$$

where $\Sigma = AA^T$.

Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 μ is called *location parameter*, Σ is called *dispersion parameter*, ψ is called *characteristic generator of the elliptic distribution*.

If
$$E(Y)$$
 exists, then $E(Y) = \mu$.

Definition: A random vector $X \in \mathbb{R}^d$ has an elliptical distribution if $X \stackrel{d}{=} \mu + AY$, where $Y \sim S_k(\psi)$, $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times k}$.

The characteristic function can be written as

$$\phi_X(t) = E(\exp\{it^T X\}) = E(\exp\{it^T (\mu + AY)\})$$
$$= \exp\{it^T \mu\} E(\exp\{i(A^T t)^T Y\})$$
$$= \exp\{it^T \mu\} \psi(t^T \Sigma t),$$

where $\Sigma = AA^T$.

Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 μ is called *location parameter*, Σ is called *dispersion parameter*, ψ is called *characteristic generator of the elliptic distribution*.

If
$$E(Y)$$
 exists, then $E(Y) = \mu$.

IF $A \in \mathbb{R}^{d \times d}$ is nonsingular, then we have the following relation between elliptical and spherical distributions:

$$X \sim E_d(\mu, \Sigma, \psi) \Leftrightarrow A^{-1}(X - \mu) \sim S_d(\psi), A \in \mathbb{R}^{d \times d}, AA^T = \Sigma.$$

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^d$ be an d-dimensional random vector. $X \sim E_d(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu + RAS$, where $S \in \mathbb{R}^k$ is a random vector uniformly distributed on the unit sphere S^{k-1} , $R \geq 0$ is a r.v. independent of S, $A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma = AA^T$ and $\mu \in \mathbb{R}^d$ is a constant vektor.

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^d$ be an d-dimensional random vector. $X \sim E_d(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu + RAS$, where $S \in \mathbb{R}^k$ is a random vector uniformly distributed on the unit sphere S^{k-1} , $R \geq 0$ is a r.v. independent of S, $A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma = AA^T$ and $\mu \in \mathbb{R}^d$ is a constant vektor.

Simulation of an elliptical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere S^{d-1} (e.g. by simulating y from a multivariate standard normal distribution $Y \sim N_d(0, I)$ and then setting s = y/||y||).

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^d$ be an d-dimensional random vector. $X \sim E_d(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu + RAS$, where $S \in \mathbb{R}^k$ is a random vector uniformly distributed on the unit sphere S^{k-1} , $R \geq 0$ is a r.v. independent of S, $A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma = AA^T$ and $\mu \in \mathbb{R}^d$ is a constant vektor.

Simulation of an elliptical distribution:

- (i) Simulate s from S which is uniformly distributed on the unit sphere S^{d-1} (e.g. by simulating y from a multivariate standard normal distribution $Y \sim N_d(0, I)$ and then setting s = y/||y||).
- (ii) Simulate r from R.

Theorem: (Stochastic representation of elliptical distributions) Let $X \in \mathbb{R}^d$ be an d-dimensional random vector. $X \sim E_d(\mu, \Sigma, \psi)$ iff $X \stackrel{d}{=} \mu + RAS$, where $S \in \mathbb{R}^k$ is a random vector uniformly distributed on the unit sphere S^{k-1} , $R \geq 0$ is a r.v. independent of S, $A \in \mathbb{R}^{d \times k}$ is a constant matrix with $\Sigma = AA^T$ and $\mu \in \mathbb{R}^d$ is a constant vektor.

Simulation of an elliptical distribution:

- (i) Simulate s from S which is uniformly distributed on the unit sphere S^{d-1} (e.g. by simulating y from a multivariate standard normal distribution $Y \sim N_d(0, I)$ and then setting s = y/||y||).
- (ii) Simulate r from R.
- (iii) Set $x = \mu + rAs$.

Examples of elliptical distributions

Examples of elliptical distributions

Multivariate normal distribution Let $X \sim N(\mu, \Sigma)$ with Σ positive definite. Then for $A \in \mathbb{R}^{d \times k}$ with $AA^T = \Sigma$ we have $X \stackrel{d}{=} \mu + AZ$, where $Z \in N_k(0, I)$. Moreover Z = RS holds with S being uniformly distributed on the unit sphere S^{k-1} and $R^2 \sim \chi_k^2$. Thus $X \stackrel{d}{=} \mu + RAS$ holds and hence $X \sim E_d(\mu, \Sigma, \psi)$ with $\psi(x) = \exp\{-x/2\}$.

Examples of elliptical distributions

- Multivariate normal distribution Let $X \sim N(\mu, \Sigma)$ with Σ positive definite. Then for $A \in \mathbb{R}^{d \times k}$ with $AA^T = \Sigma$ we have $X \stackrel{d}{=} \mu + AZ$, where $Z \in N_k(0, I)$. Moreover Z = RS holds with S being uniformly distributed on the unit sphere S^{k-1} and $R^2 \sim \chi_k^2$. Thus $X \stackrel{d}{=} \mu + RAS$ holds and hence $X \sim E_d(\mu, \Sigma, \psi)$ with $\psi(x) = \exp\{-x/2\}$.
- Multivariate normal variance mixtures Let $Z \sim N_d(0,I)$. Then Z has a spherical distribution with stochastic representation $Z \stackrel{d}{=} VS$ with $V^2 = ||Z||^2 \sim \chi_d^2$. Let $X = \mu + WAZ$ be a variance normal mixture. Then we get $X \stackrel{d}{=} \mu + VWAS$ with $V^2 \sim \chi_d^2$ and VW is a nonnegative r.v. independent of S. Thus X is elliptically distributed with R = VW.