
Application of regular variation

Example 1: Let X1 and X2 be two nonnegative i.i.d. r.v. with
distribution function F , F̄ ∈ RV−α for some α > 0. Let X1 (X2)
represent the loss of a portfolio which consists of 1 unit of asset A1 (A2).

Assumption: The prices of A1 and A2 are identical and their logreturns
are i.i.d..

Consider a portfolio P1 containing 2 units of asset A1 and a portfolio P2

containing one unit of A1 and one unit of A2. Let Li represent the loss of
portfolio P

i

, i = 1, 2.

Compare the probabilities of high losses in the two portfolios by
computing the limit

lim
l→∞

Prob(L2 > l)

Prob(L1 > l)
.
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Example 2: Let X ,Y ≥ 0 be two r.v. which represent the losses of two
business lines of an insurance company (e.g. fire and car accidents).

Assumptions

◮
F̄ ∈ RV−α, for some α > 0, where F is the distribution function of
X .

◮
E (Y k) < ∞, ∀k > 0.

Compute lim
x→∞P(X > x |X +Y > x).
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1, 
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Definition: A r.v. X is called stable, (α-stable, Lévy-stable), iff for all

1, 
2 ∈ IR+ and the i.i.d. copies X1 and X2 of X , there exist constantes
a(
1, 
2) ∈ IR and b(
1, 
2) ∈ IR, such that 
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Notation: 
1X1 + 
2X2
d
= a(
1, 
2)X + b(
1, 
2)

Theorem
The family of stable distributions coincides whith the limit distributions
of appropriately normalized and centralized sums of i.i.d. r.v..

Proof e.g. in Rényi, 1962.



Stable distributions (contd.)

Theorem: The characteristic function of a stable distribution X is given
as:

ϕ
X

(t) = E [exp{iXt}] = exp{iγt − 
 |t|α(1 + iβsignum(t)z(t, α))} , (4)

where γ ∈ IR, 
 > 0, α ∈ (0, 2], β ∈ [−1, 1] and

z(t, α) =

{

tan(πα2 ) wenn α 6= 1
− 2

π ln |t| wenn α = 1

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.
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Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Definition: The parameter α in (4) is called the form parameter or
characteristical exponent, the corresponding distribution is called α-stable
and its distribution function is denoted by Gα.



Stable distributions (contd.)
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ϕ
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(t) = E [exp{iXt}] = exp{iγt − 
 |t|α(1 + iβsignum(t)z(t, α))} , (4)

where γ ∈ IR, 
 > 0, α ∈ (0, 2], β ∈ [−1, 1] and

z(t, α) =

{

tan(πα2 ) wenn α 6= 1
− 2

π ln |t| wenn α = 1

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Definition: The parameter α in (4) is called the form parameter or
characteristical exponent, the corresponding distribution is called α-stable
and its distribution function is denoted by Gα.

Definition: Let X be a r.v. with distribution function F . Assume that
there exists two sequences of reals a

n

> 0 and b
n

∈ IR, n ∈ IN, such that
lim

n→∞a

−1
n

(S
n

− b

n

) = Gα, for some α-stable distribution Gα. Then we
say that “F belongs to the domain of attraction of Gα”.
Notation: F ∈ DA(Gα).
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Remark: X ∼ G2 ⇐⇒ ϕ
X

(t) = exp{iγt − 1
2 t

2(2
)} ⇐⇒ X ∼ N(γ, 2
)

Exercise: Show that F ∈ DA(G2) ⇐⇒ F ∈ DA(φ), where φ is the
standard normal distribution N(0, 1).
Hint: The Convergence to Types Theorem could be used.

Definition: The r.v. Z and Z̃ are of the same type if there exist the

constants σ > 0 and µ ∈ IR, such that Z̃
d
= (Z − µ)/σ, i.e.

F̃(x) = F (µ+ σx), ∀x ∈ IR, where F and F̃ are the distribution
functions of Z and Z̃ , respecitvely.



The Convergence to Types Theorem
Let Z , Z̃ , Y

n

, n ≥ 1, be two not almost surely constant r.v.
Let a

n

, ã
n

, b
n

, b̃
n

∈ IR, n ∈ IN, be sequences of reals with a
n

, ã
n

> 0.

(i) If
lim
n→∞

a

−1
n

(Y
n

− b

n

) = Z and lim
n→∞

ã

−1
n

(Y
n

− b̃

n

) = Z̃ (5)

then there exist A > 0 und B ∈ IR, such that

lim
n→∞

ã

n

a

n

= A and lim
n→∞

b̃

n

− b

n

a

n

= B (6)

and
Z̃

d
= (Z − B)/A. (7)

(ii) Assume that (6) holds. Then each of the two relations in (5)
implies the other and also (7) holds.
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(ii) Assume that (6) holds. Then each of the two relations in (5)
implies the other and also (7) holds.

Proof: See Resnick 1987, Prop. 0.2, Seite 7.
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Remark: Let F ∈ DA(Gα) for α ∈ (0, 2). Then E (|X |δ) < ∞ for δ < α
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Theorem: (Poisson Approximation)
Let τ ∈ [0,∞] and a sequence of reals u
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Theorem: (Poisson Approximation)
Let τ ∈ [0,∞] and a sequence of reals u
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∈ IR. Then the following holds

lim
n→∞

nF̄(u
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) = τ ⇐⇒ lim
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P(M
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≤ u
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) = exp{−τ}.

Exercise:
Use the convergence to types theorem to convince yourself that H and H̃
are of the same type, if
lim

n→∞a

−1
n

(M
n

− b

n

) = H and lim
n→∞ ã

−1
n

(M
n

− b̃

n

) = H̃.



Max-stable distributions and the Fischer-Tippet
theorem



Max-stable distributions and the Fischer-Tippet
theorem
Definition: A non-degenarate r.v. X is called max-stable iff for any

n ≥ 2 max{X1,X2, . . . ,Xn}
d
= a

n

X + b

n

for indepedent copies X1,X2,
. . .,X

n

of X and appropriate constants a
n

> 0 and b
n

∈ IR.



Max-stable distributions and the Fischer-Tippet
theorem
Definition: A non-degenarate r.v. X is called max-stable iff for any

n ≥ 2 max{X1,X2, . . . ,Xn}
d
= a

n

X + b

n

for indepedent copies X1,X2,
. . .,X

n

of X and appropriate constants a
n

> 0 and b
n

∈ IR.

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.)
The class of max-stable distributions coincides with the class of
non-degenerate limit distributions of normalized and centered maxima of
i.i.d. r.v.



Max-stable distributions and the Fischer-Tippet
theorem
Definition: A non-degenarate r.v. X is called max-stable iff for any

n ≥ 2 max{X1,X2, . . . ,Xn}
d
= a

n

X + b

n

for indepedent copies X1,X2,
. . .,X

n

of X and appropriate constants a
n

> 0 and b
n

∈ IR.

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.)
The class of max-stable distributions coincides with the class of
non-degenerate limit distributions of normalized and centered maxima of
i.i.d. r.v.



Max-stable distributions and the Fischer-Tippet
theorem
Definition: A non-degenarate r.v. X is called max-stable iff for any

n ≥ 2 max{X1,X2, . . . ,Xn}
d
= a

n

X + b

n
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Theorem: (Proof in McNeil, Frey und Embrechts, 2005.)
The class of max-stable distributions coincides with the class of
non-degenerate limit distributions of normalized and centered maxima of
i.i.d. r.v.

Theorem: (Fischer-Tippet Theorem, Proof in Resnick 1987, page 9-11)
Let (X

k

) be a sequence of i.i.d. r.v.. If the constants a
n

, b
n

∈ IR, a
n

> 0,
and a non-degenerate disribution H exist, such that
lim

n→∞a

−1
n

(M
n

− b

n

) = H , then H is of the same type as one of the
following three distributions:

Fréchet Φα(x) =

{

0 x ≤ 0
exp{−x−α} x > 0

α > 0

Weibull Ψα(x) =

{

exp{−(−x)α} x ≤ 0
1 x > 0

α > 0

Gumbel Λ(x) = exp{−e−x} x ∈ IR
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) = − lnH(x), ∀x ∈ IR,

where − lnH(x) is replaced by ∞ if H(x) = 0.

Hint for the proof: apply the theorem about the Poisson approximation.

There exist distributions which do not belong to the MDA of any evd !
Example: (The Poisson distribution)
Let X ∼ P(λ), i.e. P(X = k) = e

−λλk/k!, k ∈ IN0, λ > 0. Show that
there exist no evd Z such that X ∈ MDA(Z ).



Examples and the generalized evd
Example: (Maxima of the exponential distribution)
Let (X

k

) be a sequence of i.i.d. r.v. with distribution function F ,
F (x) = 1− e

−x for x ≥ 0. Show that F ∈ MDA(Λ) with normalizing and
centering constants a

n

= 1 and b
n

= ln n.



Examples and the generalized evd
Example: (Maxima of the exponential distribution)
Let (X

k

) be a sequence of i.i.d. r.v. with distribution function F ,
F (x) = 1− e

−x for x ≥ 0. Show that F ∈ MDA(Λ) with normalizing and
centering constants a

n

= 1 and b
n

= ln n.

Example: (Maxima of the Cauchy distribution )
Let (X

k

) be a sequence of i.i.d. r.v. with distribution function F and
density function f , f (x) = (π(1 + x

2))−1 for x ∈ IR. Show that
F ∈ MDA(Φ1) with normalizing and centering constants a

n

= n/π and
b

n

= 0.



Examples and the generalized evd
Example: (Maxima of the exponential distribution)
Let (X

k

) be a sequence of i.i.d. r.v. with distribution function F ,
F (x) = 1− e

−x for x ≥ 0. Show that F ∈ MDA(Λ) with normalizing and
centering constants a

n

= 1 and b
n

= ln n.

Example: (Maxima of the Cauchy distribution )
Let (X

k

) be a sequence of i.i.d. r.v. with distribution function F and
density function f , f (x) = (π(1 + x

2))−1 for x ∈ IR. Show that
F ∈ MDA(Φ1) with normalizing and centering constants a

n

= n/π and
b

n

= 0.

Definition: (The generalized extreme value distribution (gevd))
Let the distribution function Hγ be given as follows:

Hγ(x) =

{

exp{−(1 + γx)−1/γ} wenn γ 6= 0
exp{− exp{−x}} wenn γ = 0

where 1 + γx > 0, i.e. the definition area of Hγ is given as

x > −γ−1 wenn γ > 0
x < −γ−1 wenn γ < 0
x ∈ IR wenn γ = 0

Hγ is called generalized extreme value distribution (gevd).


