Application of regular variation

Example 1: Let X_1 and X_2 be two nonnegative i.i.d. r.v. with distribution function F, $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Let X_1 (X_2) represent the loss of a portfolio which consists of 1 unit of asset A_1 (A_2).

Assumption: The prices of A_1 and A_2 are identical and their logreturns are i.i.d..

Consider a portfolio P_1 containing 2 units of asset A_1 and a portfolio P_2 containing one unit of A_1 and one unit of A_2 . Let L_i represent the loss of portfolio $\mathrm{P}_i,\,i=1,2.$

Compare the probabilities of high losses in the two portfolios by computing the limit

 $\lim_{l\to\infty}\frac{\operatorname{Prob}(L_2>l)}{\operatorname{Prob}(L_1>l)}.$

Application of regular variation (contd.)

Example 2: Let $X, Y \ge 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents).

Application of regular variation (contd.)

Example 2: Let $X, Y \ge 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents). *Assumptions*

▶ $\overline{F} \in RV_{-\alpha}$, for some $\alpha > 0$, where F is the distribution function of X.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

• $E(Y^k) < \infty, \forall k > 0.$

Application of regular variation (contd.)

Example 2: Let $X, Y \ge 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents). *Assumptions*

▶ $\overline{F} \in RV_{-\alpha}$, for some $\alpha > 0$, where F is the distribution function of X.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

•
$$E(Y^k) < \infty, \forall k > 0.$$

 $\label{eq:computed} \mbox{Compute $\lim_{X \to \infty} P(X \, > x \, | X \, + Y \, > x$)}.$

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \ge 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i : 1 \le i \le n\}$

Let $(X_k), \, k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \geq 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \mathsf{max}\{X_i \colon 1 \leq i \leq n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Let $(X_k), \, k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \geq 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \mathsf{max}\{X_i \colon 1 \leq i \leq n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of S_{n}

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n-b_n)$, for some sequences of reals $a_n>0$ und $b_n\in {\rm I\!R}$, $n\in {\rm I\!N}$?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $(X_k), \, k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \geq 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \mathsf{max}\{X_i \colon 1 \leq i \leq n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of $\mathrm{S}_{n}\!\!\cdot$

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n-b_n)$, for some sequences of reals $a_n>0$ und $b_n\in {\rm I\!R}, \ n\in {\rm I\!N}?$

Notation: $\lim_{n\to\infty} a_n^{-1}(S_n - b_n) \stackrel{d}{=} Z$

Let $(X_k), \, k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \geq 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \mathsf{max}\{X_i \colon 1 \leq i \leq n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of $\mathrm{S}_{n}\!.$

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n-b_n)$, for some sequences of reals $a_n>0$ und $b_n\in {\rm I\!R}$, $n\in {\rm I\!N}$?

Notation: $\lim_{n\to\infty} a_n^{-1}(S_n - b_n) \stackrel{d}{=} Z$

Definition: A r.v. X is called *stable*, (α -stable, Lévy-stable), iff for all $c_1, c_2 \in \mathbb{R}_+$ and the i.i.d. copies X_1 and X_2 of X, there exist constantes $a(c_1, c_2) \in \mathbb{R}$ and $b(c_1, c_2) \in \mathbb{R}$, such that $c_1X_1 + c_2X_2$ und $a(c_1, c_2)X + b(c_1, c_2)$ are identically distributed. Notation: $c_1X_1 + c_2X_2 \stackrel{d}{=} a(c_1, c_2)X + b(c_1, c_2)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $(X_k), \, k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \geq 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \mathsf{max}\{X_i \colon 1 \leq i \leq n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of $\mathrm{S}\,_{n}\!.$

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n-b_n)$, for some sequences of reals $a_n>0$ und $b_n\in {\rm I\!R}$, $n\in {\rm I\!N}$?

Notation: $\lim_{n \to \infty} \mathrm{a}_n^{-1} (\mathrm{S}_n - \mathrm{b}_n) \stackrel{\mathrm{d}}{=} \mathrm{Z}$

Definition: A r.v. X is called *stable*, (α -stable, Lévy-stable), iff for all $c_1, c_2 \in \mathbb{R}_+$ and the i.i.d. copies X_1 and X_2 of X, there exist constantes $a(c_1, c_2) \in \mathbb{R}$ and $b(c_1, c_2) \in \mathbb{R}$, such that $c_1X_1 + c_2X_2$ und $a(c_1, c_2)X + b(c_1, c_2)$ are identically distributed. Notation: $c_1X_1 + c_2X_2 \stackrel{d}{=} a(c_1, c_2)X + b(c_1, c_2)$

Theorem

The family of stable distributions coincides whith the limit distributions of appropriately normalized and centralized sums of i.i.d. r.v..

Proof e.g. in Rényi, 1962.

Theorem: The characteristic function of a stable distribution X is given as:

$$\varphi X(t) = E \left[\exp\{iXt\} \right] = \exp\{i\gamma t - c |t|^{\alpha} (1 + i\beta \operatorname{signum}(t) z(t, \alpha)) \}, (4)$$

where $\gamma \in {\rm I\!R}$, ${\rm c} >$ 0, $lpha \in$ (0,2], $eta \in$ [-1,1] and

$$z(t, \alpha) = \begin{cases} \tan(\frac{\pi\alpha}{2}) & \text{wenn } \alpha \neq 1 \\ -\frac{2}{\pi}\ln|t| & \text{wenn } \alpha = 1 \end{cases}$$

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Theorem: The characteristic function of a stable distribution X is given as:

$$\varphi \mathbf{X}(\mathbf{t}) = \mathbf{E}\left[\exp\{\mathbf{i}\mathbf{X}\mathbf{t}\}\right] = \exp\{\mathbf{i}\gamma\mathbf{t} - \mathbf{c}\,|\mathbf{t}|^{\alpha}(\mathbf{1} + \mathbf{i}\beta\mathrm{signum}(\mathbf{t})\mathbf{z}(\mathbf{t},\alpha))\}\,,(\mathbf{4})$$

where $\gamma \in {\rm I\!R}$, ${\rm c} >$ 0, $lpha \in$ (0,2], $eta \in$ [-1,1] and

$$z(t, \alpha) = \begin{cases} \tan(\frac{\pi\alpha}{2}) & \text{wenn } \alpha \neq 1 \\ -\frac{2}{\pi}\ln|t| & \text{wenn } \alpha = 1 \end{cases}$$

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Definition: The parameter α in (4) is called *the form parameter or characteristical exponent*, the corresponding distribution is called α -stable and its distribution function is denoted by G_{α} .

Theorem: The characteristic function of a stable distribution X is given as:

$$\varphi_{\mathbf{X}}(t) = \mathbf{E}\left[\exp\{iXt\}\right] = \exp\{i\gamma t - c |t|^{\alpha} (1 + i\beta \operatorname{signum}(t)z(t,\alpha))\}, (4)$$

where $\gamma \in {\rm I\!R}$, ${\rm c} >$ 0, $lpha \in$ (0,2], $eta \in$ [-1,1] and

$$z(t, \alpha) = \begin{cases} \tan(\frac{\pi\alpha}{2}) & \text{wenn } \alpha \neq 1 \\ -\frac{2}{\pi}\ln|t| & \text{wenn } \alpha = 1 \end{cases}$$

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Definition: The parameter α in (4) is called *the form parameter or characteristical exponent*, the corresponding distribution is called α -stable and its distribution function is denoted by G_{α} .

Definition: Let X be a r.v. with distribution function F. Assume that there exists two sequences of reals $a_n>0$ and $b_n\in I\!\!R$, $n\in I\!\!N$, such that $\lim_{n\to\infty}a_n^{-1}(S_n-b_n)=G_\alpha$, for some α -stable distribution G_α . Then we say that "F belongs to the domain of attraction of G_α ". Notation: $F\in DA(G_\alpha)$.

 $\begin{array}{l} \mbox{Stable distributions (contd.)}\\ \mbox{Remark: } X \sim G_2 \Longleftrightarrow \varphi X(t) = \exp\{i\gamma t - \frac{1}{2}t^2(2c)\} \Longleftrightarrow X \sim N(\gamma, 2c) \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

 $\mathsf{Remark:} \ \mathrm{X} \ \sim \mathrm{G}_2 \Longleftrightarrow \varphi \mathrm{X}(\mathrm{t}) = \mathsf{exp}\{\mathrm{i}\gamma \mathrm{t} - \tfrac{1}{2}\mathrm{t}^2(2\mathrm{c})\} \Longleftrightarrow \mathrm{X} \ \sim \mathrm{N}(\gamma, 2\mathrm{c})$

Exercise: Show that $F \in DA(G_2) \iff F \in DA(\phi)$, where ϕ is the standard normal distribution N(0, 1). Hint: The Convergence to Types Theorem could be used.

 $\mathsf{Remark:} \ X \ \sim G_2 \Longleftrightarrow \varphi X(t) = \mathsf{exp}\{i\gamma t - \tfrac{1}{2}t^2(2c)\} \Longleftrightarrow X \ \sim N(\gamma, 2c)$

Exercise: Show that $F \in DA(G_2) \iff F \in DA(\phi)$, where ϕ is the standard normal distribution N(0, 1). Hint: The Convergence to Types Theorem could be used.

Definition: The r.v. Z and \tilde{Z} are of the same type if there exist the constants $\sigma > 0$ and $\mu \in \mathbb{R}$, such that $\tilde{Z} \stackrel{d}{=} (Z - \mu)/\sigma$, i.e. $\tilde{F}(x) = F(\mu + \sigma x), \forall x \in \mathbb{R}$, where F and \tilde{F} are the distribution functions of Z and \tilde{Z} , respectively.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The Convergence to Types Theorem

Let Z, Ž, Y_D, $n \ge 1$, be two not almost surely constant r.v. Let $a_{D}, \tilde{a}_{D}, b_{D}, \tilde{b}_{n} \in \mathbb{R}$, $n \in \mathbb{N}$, be sequences of reals with $a_{D}, \tilde{a}_{n} > 0$.

$$\lim_{n\to\infty} a_n^{-1}(Y_n - b_n) = Z \text{ and } \lim_{n\to\infty} \tilde{a}_n^{-1}(Y_n - \tilde{b}_n) = \tilde{Z}$$
 (5)

then there exist $\mathrm{A}>0$ und $\mathrm{B}\in\mathrm{I\!R}$, such that

$$\lim_{n\to\infty}\frac{\tilde{a}_n}{a_n} = A \text{ and } \lim_{n\to\infty}\frac{\tilde{b}_n - b_n}{a_n} = B \tag{6}$$

and

(i) If

$$\tilde{Z} \stackrel{d}{=} (Z - B)/A.$$
 (7)

(ii) Assume that (6) holds. Then each of the two relations in (5) implies the other and also (7) holds.

The Convergence to Types Theorem

Let Z, Ž, Y_D, $n \ge 1$, be two not almost surely constant r.v. Let $a_{n}, \tilde{a}_{n}, b_{n}, \tilde{b}_{n} \in \mathbb{R}$, $n \in \mathbb{N}$, be sequences of reals with $a_{n}, \tilde{a}_{n} > 0$.

$$\lim_{n\to\infty} a_n^{-1}(Y_n - b_n) = Z \text{ and } \lim_{n\to\infty} \tilde{a}_n^{-1}(Y_n - \tilde{b}_n) = \tilde{Z}$$
 (5)

then there exist $\mathrm{A}>0$ und $\mathrm{B}\in\mathrm{I\!R}$, such that

$$\lim_{n \to \infty} \frac{\tilde{a}_n}{a_n} = A \text{ and } \lim_{n \to \infty} \frac{\tilde{b}_n - b_n}{a_n} = B$$
 (6)

and

(i) If

$$\tilde{Z} \stackrel{d}{=} (Z - B)/A.$$
 (7)

(ii) Assume that (6) holds. Then each of the two relations in (5) implies the other and also (7) holds.

Proof: See Resnick 1987, Prop. 0.2, Seite 7.

(i) Let ϕ be the standard normal distribution function. The equivalence

$$\mathbf{F} \in \mathrm{DA}(\phi) \Longleftrightarrow \lim_{\mathbf{X} \to \infty} \frac{\mathbf{x}^2 \int_{[-\mathbf{X},\mathbf{X}]} \mathrm{Cd}\mathbf{F}(\mathbf{y})}{\int_{[-\mathbf{X},\mathbf{X}]} \mathbf{y}^2 \mathrm{d}\mathbf{F}(\mathbf{y})} = \mathbf{0}$$

holds, where $[-x,x]^C$ is the complement of [-x,x] in ${\rm I\!R}.$

(i) Let ϕ be the standard normal distribution function. The equivalence

$$\mathrm{F} \in \mathrm{DA}(\phi) \Longleftrightarrow \lim_{\mathrm{X} o \infty} rac{\mathrm{x}^2 \int_{[-\mathrm{X},\mathrm{X}]} \mathrm{CdF}(\mathrm{y})}{\int_{[-\mathrm{X},\mathrm{X}]} \mathrm{y}^2 \mathrm{dF}(\mathrm{y})} = 0$$

holds, where $[-x, x]^{C}$ is the complement of [-x, x] in IR. (ii) For $\alpha \in (0, 2)$ the equivalence

$$F \in DA(G_{\alpha}) \iff F(-x) = \frac{c_1 + o(1)}{x^{\alpha}}L(x), \overline{F}(x) = \frac{c_2 + o(1)}{x^{\alpha}}L(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

holds, where L is a slowly varying function around infinity and $c_1,c_2\geq 0$ with $c_1+c_2>0.$

(i) Let ϕ be the standard normal distribution function. The equivalence

$$\mathbf{F} \in \mathrm{DA}(\phi) \Longleftrightarrow \lim_{\mathbf{X} \to \infty} \frac{\mathbf{x}^2 \int_{[-\mathbf{X},\mathbf{X}]} \mathrm{Cd}\mathbf{F}(\mathbf{y})}{\int_{[-\mathbf{X},\mathbf{X}]} \mathbf{y}^2 \mathrm{d}\mathbf{F}(\mathbf{y})} = \mathbf{0}$$

holds, where $[-x, x]^{C}$ is the complement of [-x, x] in \mathbb{R} . (ii) For $\alpha \in (0, 2)$ the equivalence

$$F \in DA(G_{\alpha}) \iff F(-x) = \frac{c_1 + o(1)}{x^{\alpha}}L(x), \overline{F}(x) = \frac{c_2 + o(1)}{x^{\alpha}}L(x)$$

holds, where L is a slowly varying function around infinity and $c_1,c_2\geq 0$ with $c_1+c_2>0.$

This theorem is also known as Theorem of Lévy, Feller and Chintschin. Proof in Rényi, 1962.

(i) Let ϕ be the standard normal distribution function. The equivalence

$$\mathrm{F} \in \mathrm{DA}(\phi) \Longleftrightarrow \lim_{\mathrm{X} o \infty} rac{\mathrm{x}^2 \int_{[-\mathrm{X},\mathrm{X}]} \mathrm{Cd}\mathrm{F}(\mathrm{y})}{\int_{[-\mathrm{X},\mathrm{X}]} \mathrm{y}^2 \mathrm{d}\mathrm{F}(\mathrm{y})} = 0$$

holds, where $[-x,x]^{C}$ is the complement of [-x,x] in \mathbb{R} . (ii) For $\alpha \in (0,2)$ the equivalence

$$F \in DA(G_{\alpha}) \Longleftrightarrow F(-x) = \frac{c_1 + o(1)}{x^{\alpha}}L(x), \overline{F}(x) = \frac{c_2 + o(1)}{x^{\alpha}}L(x)$$

holds, where L is a slowly varying function around infinity and $c_1,c_2\geq 0$ with $c_1+c_2>0.$

This theorem is also known as Theorem of Lévy, Feller and Chintschin. Proof in Rényi, 1962.

Remark: Let $F \in DA(G_{\alpha})$ for $\alpha \in (0, 2)$. Then $E(|X|^{\delta}) < \infty$ for $\delta < \alpha$ and $E(|X|^{\delta}) = \infty$ for $\delta > \alpha$ hold.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(i) Let ϕ be the standard normal distribution function. The equivalence

$$\mathrm{F} \in \mathrm{DA}(\phi) \Longleftrightarrow \lim_{\mathrm{X} o \infty} rac{\mathrm{x}^2 \int_{[-\mathrm{X},\mathrm{X}]} \mathrm{Cd}\mathrm{F}(\mathrm{y})}{\int_{[-\mathrm{X},\mathrm{X}]} \mathrm{y}^2 \mathrm{d}\mathrm{F}(\mathrm{y})} = 0$$

holds, where $[-x, x]^C$ is the complement of [-x, x] in \mathbb{R} .

(ii) For $\alpha \in (0,2)$ the equivalence

$$F \in DA(G_{\alpha}) \iff F(-x) = \frac{c_1 + o(1)}{x^{\alpha}}L(x), \overline{F}(x) = \frac{c_2 + o(1)}{x^{\alpha}}L(x)$$

holds, where L is a slowly varying function around infinity and $c_1,c_2\geq 0$ with $c_1+c_2>0.$

This theorem is also known as Theorem of Lévy, Feller and Chintschin. Proof in Rényi, 1962.

Remark: Let $F \in DA(G_{\alpha})$ for $\alpha \in (0, 2)$. Then $E(|X|^{\delta}) < \infty$ for $\delta < \alpha$ and $E(|X|^{\delta}) = \infty$ for $\delta > \alpha$ hold.

Proof: See Resnick 1987 (or a demanding homework!)

Let (Xk), $k\in {\rm I\!N},$ be non-gegenerate i.i.d. r.v. with distribution function F .

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

For $n \ge 1$, set $M_n := \max\{X_i \colon 1 \le i \le n\}$

Let (Xk), $k\in {\rm I\!N},$ be non-gegenerate i.i.d. r.v. with distribution function F .

For $n \geq 1$, set $M_n := \mathsf{max}\{X_i \colon 1 \leq i \leq n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered ${\rm M}_n?$

Let (Xk), $k\in {\rm I\!N},$ be non-gegenerate i.i.d. r.v. with distribution function F .

For $n \geq 1$, set $M_n := \mathsf{max}\{X_i \colon 1 \leq i \leq n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered $\mathrm{M}_n?$

Consider $\lim_{n\to\infty} P\left(a_n^{-1}(M_n - b_n) \le x\right) = \lim_{n\to\infty} P\left(M_n \le u_n\right)$, where $u_n = a_n x + b_n$, $\forall n \in {\rm I\!N}$.

Let (Xk), $k\in {\rm I\!N},$ be non-gegenerate i.i.d. r.v. with distribution function F .

For $n\geq 1$, set $M_n:=\mathsf{max}\{X_i\colon 1\leq i\leq n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered $\mathrm{M}_n?$

 $\begin{array}{l} \mbox{Consider } \mbox{lim}_{n \to \infty} P\left(a_n^{-1}(M_n - b_n) \leq x\right) = \mbox{lim}_{n \to \infty} P\left(M_n \leq u_n\right) \mbox{, where} \\ u_n = a_n x + b_n, \ \forall n \in {\rm I\!N}. \end{array}$

Theorem: (Poisson Approximation) Let $\tau \in [0, \infty]$ and a sequence of reals $u_n \in {\rm I\!R}$. Then the following holds

$$\lim_{n\to\infty} n\bar{F}(u_n) = \tau \iff \lim_{n\to\infty} P(M_n \le u_n) = \exp\{-\tau\}.$$

Let (Xk), $k\in {\rm I\!N},$ be non-gegenerate i.i.d. r.v. with distribution function F .

For $n\geq 1,$ set $M_n:=\mathsf{max}\{X_i\colon 1\leq i\,\leq n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered ${\rm M}_n?$

 $\begin{array}{l} \mbox{Consider } \mbox{lim}_{n \to \infty} \mathrm{P} \left(\mathrm{a}_n^{-1} (\mathrm{M}_n - \mathrm{b}_n) \leq \mathrm{x} \right) = \mbox{lim}_{n \to \infty} \mathrm{P} \left(\mathrm{M}_n \leq \mathrm{u}_n \right) \mbox{, where} \\ \mathrm{u}_n = \mathrm{a}_n \mathrm{x} + \mathrm{b}_n, \ \forall n \in {\rm I\!N}. \end{array}$

Theorem: (Poisson Approximation) Let $\tau \in [0, \infty]$ and a sequence of reals $u_n \in {\rm I\!R}$. Then the following holds

$$\lim_{n\to\infty} n\bar{F}(u_n) = \tau \iff \lim_{n\to\infty} P(M_n \le u_n) = \exp\{-\tau\}.$$

Exercise:

Use the convergence to types theorem to convince yourself that H and \tilde{H} are of the same type, if $\lim_{n\to\infty}a_n^{-1}(M_n-b_n)=H \text{ and } \lim_{n\to\infty}\tilde{a}_n^{-1}(M_n-\tilde{b}_n)=\tilde{H}.$

<□> <□> <□> <三> <三> <三> <三> <三> ○へ⊙

 $\begin{array}{l} \mbox{Definition: A non-degenarate r.v. X is called $max-stable$ iff for any} $n\geq 2$ max{X_1,X_2,\ldots,X_n} \stackrel{d}{=} a_n X + b_n$ for indepedent copies X_1,X_2, \ldots,X_n of X and appropriate constants $a_n>0$ and $b_n\in I\!R$.} \end{array}$

 $\begin{array}{l} \mbox{Definition: A non-degenarate r.v. X is called max-stable$ iff for any} $n \geq 2$ max} \{X_1, X_2, \ldots, X_n\} \stackrel{d}{=} a_n X + b_n$ for indepedent copies X_1, X_2, \ldots, X_n of X and appropriate constants $a_n > 0$ and $b_n \in {\rm I\!R}$.} \end{array}$

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.) The class of max-stable distributions coincides with the class of non-degenerate limit distributions of normalized and centered maxima of i.i.d. r.v.

 $\begin{array}{l} \mbox{Definition: A non-degenarate r.v. X is called max-stable$ iff for any} $n \geq 2$ max} \{X_1, X_2, \ldots, X_n\} \stackrel{d}{=} a_n X + b_n$ for indepedent copies X_1, X_2, \ldots, X_n of X and appropriate constants $a_n > 0$ and $b_n \in {\rm I\!R}$.} \end{array}$

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.) The class of max-stable distributions coincides with the class of non-degenerate limit distributions of normalized and centered maxima of i.i.d. r.v.

 $\begin{array}{l} \mbox{Definition: A non-degenarate r.v. X is called max-stable iff for any} $n \geq 2$ max{X_1, X_2, \ldots, X_n} \stackrel{d}{=} $a_nX + b_n$ for indepedent copies X_1, X_2, \ldots, X_n of X and appropriate constants $a_n > 0$ and $b_n \in {\rm I\!R}$.} \end{array}$

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.) The class of max-stable distributions coincides with the class of non-degenerate limit distributions of normalized and centered maxima of i.i.d. r.v.

Theorem: (Fischer-Tippet Theorem, Proof in Resnick 1987, page 9-11) Let (Xk) be a sequence of i.i.d. r.v.. If the constants $a_n, b_n \in \mathbb{R}$, $a_n > 0$, and a non-degenerate disribution H exist, such that $\lim_{n \to \infty} a_n^{-1}(M_n - b_n) = H$, then H is of the same type as one of the following three distributions:

$$\begin{array}{ll} \mbox{Fr\'echet} & \Phi_{\alpha}(x) = \left\{ \begin{array}{ccc} 0 & x \leq 0 \\ \exp\{-x^{-\alpha}\} & x > 0 \end{array} \right. & \alpha > 0 \\ \mbox{Weibull} & \Psi_{\alpha}(x) = \left\{ \begin{array}{ccc} \exp\{-(-x)^{\alpha}\} & x \leq 0 \\ 1 & x > 0 \end{array} \right. & \alpha > 0 \\ \mbox{Gumbel} & \Lambda(x) = \exp\{-e^{-X}\} \end{array} \right. & x \in \mbox{IR} \end{array}$$

・ロト ・ 母 ト ・ 目 ト ・ 目 ・ の へ ()・

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions* (standard evd). The distributions which are of the same type as the standard evt are called *extreme value distributions* (evd).

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions* (standard evd). The distributions which are of the same type as the standard evt are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribuion) belongs to the maximum domain of attraction of the evd H iff there exist constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that $\lim_{n \to \infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions* (standard evd). The distributions which are of the same type as the standard evt are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribuion) belongs to the maximum domain of attraction of the evd H iff there exist constants $a_n > 0$ and $b_n \in I\!\!R$ such that $\lim_{n \to \infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

 $\begin{array}{l} \textbf{Theorem:} \ (Characterisation \ of \ MDA) \\ F \ \in \ MDA(H) \ with \ normalizing \ and \ centering \ constants \ a_n > 0 \ snd \\ b_n \in \ I\!\!R \ holds, \ iff \end{array}$

$$\underset{n \to \infty}{\lim} n \bar{F}(a_n x + b_n) = -\ln H(x), \forall x \in {\rm I\!R},$$

where $-\ln H(x)$ is replaced by ∞ if H(x) = 0.

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions* (standard evd). The distributions which are of the same type as the standard evt are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribuion) belongs to the maximum domain of attraction of the evd H iff there exist constants $a_n > 0$ and $b_n \in I\!\!R$ such that $\lim_{n \to \infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

 $\begin{array}{l} \textbf{Theorem:} \ (Characterisation \ of \ MDA) \\ F \ \in \ MDA(H) \ with \ normalizing \ and \ centering \ constants \ a_n > 0 \ snd \\ b_n \in \ I\!\!R \ holds, \ iff \end{array}$

$$\underset{n \to \infty}{\lim} n \bar{F}(a_n x + b_n) = -\ln H(x), \forall x \in {\rm I\!R},$$

where $-\ln H(x)$ is replaced by ∞ if H(x) = 0.

Hint for the proof: apply the theorem about the Poisson approximation.

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions* (standard evd). The distributions which are of the same type as the standard evt are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribuion) belongs to the maximum domain of attraction of the evd H iff there exist constants $a_n > 0$ and $b_n \in I\!\!R$ such that $\lim_{n \to \infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

 $\begin{array}{l} \textbf{Theorem:} \ (Characterisation \ of \ MDA) \\ F \in \mathrm{MDA}(\mathrm{H} \) \ with \ normalizing \ and \ centering \ constants \ \mathrm{a}_n > 0 \ \text{snd} \\ \mathrm{b}_n \in \mathrm{I\!R} \ \text{holds, iff} \end{array}$

$$\underset{n \to \infty}{\lim} n \bar{F}(a_n x + b_n) = -\ln H(x), \forall x \in {\rm I\!R},$$

where $-\ln H(x)$ is replaced by ∞ if H(x) = 0.

Hint for the proof: apply the theorem about the Poisson approximation.

There exist distributions which do not belong to the MDA of any evd ! **Example:** (The Poisson distribution)

Let $X \sim P(\lambda)$, i.e. $P(X = k) = e^{-\lambda} \lambda^k / k!$, $k \in \mathbb{N}_0$, $\lambda > 0$. Show that there exist no evd Z such that $X \in MDA(Z)$.

Examples and the generalized evd

Example: (Maxima of the exponential distribution) Let (X_k) be a sequence of i.i.d. r.v. with distribution function F, $F(x) = 1 - e^{-x}$ for $x \ge 0$. Show that $F \in MDA(\Lambda)$ with normalizing and centering constants $a_n = 1$ and $b_n = \ln n$.

Examples and the generalized evd

Example: (Maxima of the exponential distribution)

Let (X_k) be a sequence of i.i.d. r.v. with distribution function F,

 $F\left(x\right)=1-\mathrm{e}^{-x}$ for $x\geq0.$ Show that $F\in\mathrm{MDA}(\Lambda)$ with normalizing and centering constants $\mathrm{a}_{n}=1$ and $\mathrm{b}_{n}=\ln n.$

Example: (Maxima of the Cauchy distribution) Let (X_k) be a sequence of i.i.d. r.v. with distribution function F and density function f, $f(x) = (\pi(1+x^2))^{-1}$ for $x \in I\!R$. Show that $F \in MDA(\Phi_1)$ with normalizing and centering constants $a_n = n/\pi$ and $b_n = 0$.

Examples and the generalized evd

Example: (Maxima of the exponential distribution)

Let (X_k) be a sequence of i.i.d. r.v. with distribution function F, $F\left(x\right)=1-\mathrm{e}^{-x}$ for $x\geq 0$. Show that $F\in\mathrm{MDA}(\Lambda)$ with normalizing and

centering constants $a_n = 1$ and $b_n = \ln n$.

Example: (Maxima of the Cauchy distribution) Let (X_k) be a sequence of i.i.d. r.v. with distribution function F and density function f, $f(x) = (\pi(1+x^2))^{-1}$ for $x \in I\!R$. Show that $F \in MDA(\Phi_1)$ with normalizing and centering constants $a_n = n/\pi$ and $b_n = 0$.

Definition: (The generalized extreme value distribution (gevd)) Let the distribution function H_{γ} be given as follows:

$$H_{\gamma}(x) = \begin{cases} \exp\{-(1+\gamma x)^{-1/\gamma}\} & \text{wenn } \gamma \neq 0\\ \exp\{-\exp\{-x\}\} & \text{wenn } \gamma = 0 \end{cases}$$

where $1+\gamma x$ > 0, i.e. the definition area of H_{γ} is given as

$$\begin{array}{ll} \mathrm{x} > -\gamma^{-1} & \text{wenn } \gamma > 0 \\ \mathrm{x} < -\gamma^{-1} & \text{wenn } \gamma < 0 \\ \mathrm{x} \in {\rm I\!R} & \text{wenn } \gamma = 0 \end{array}$$

 H_{γ} is called generalized extreme value distribution (gevd), (=, =)