
Methods for the computation of VaR und CVaR

Consider the portfolio value Vm = f (tm,Zm), where Zm is the vector of
risk factors.

Let the loss function over the interval [tm, tm+1] be given as
Lm+1 = l[m](Xm+1), where Xm+1 is the vector of the risk factor changes,
i.e.

Xm+1 = Zm+1 − Zm.

Consider observations (historical data) of risk factor values
Zm−n+1, . . . ,Zm.
How to use these data to compute/estimate VaR(Lm+1), CVaR(Lm+1)?
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Let x1, x2, . . . , xn be a sample of i.i.d. random variables X1,X2, . . . ,Xn

with distribution function F .
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The empirical estimator of CVaR is ĈVaRα(F ) =
∑[n(1−α)]+1

k=1 xk
[(n(1−α)]+1
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Case I: F is known.

Generate N samples x̃
(i)
1 , x̃

(i)
2 , . . . , x̃

(i)
n , 1 ≤ i ≤ N , by simulation from F

(N should be large)

Let θ̃i = θ̂

(
x̃
(i)
1 , x̃

(i)
2 , . . . , x̃

(i)
n

)
, 1 ≤ i ≤ N .



Case I (cont.)

The empirical distribution function of θ̂(x1, x2, . . . , xn) is given as

F θ̂
N :=

1

N

N∑

i=1

I[θ̃i ,∞)

and it tends to F θ̂ for N → ∞.

The required conficence interval is given as

(
q 1−p

2
(F θ̂

N), q 1+p
2
(F θ̂

N)

)

(assuming that the sample sizes N und n are large enough).
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a = q(1−p)/2(F
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Thus a = θ∗[N(1+p)/2]+1,N , b = θ∗[N(1−p)/2]+1,N , where θ∗1,N ≥ . . . θ∗N,N is
the sorted θ∗ sample.



Summary of the non-parametric bootstrapping approach to

compute confidence intervals

Input: Sample x1, x2, . . . , xn of the i.i.d. random variables X1,X2, . . . ,Xn

with distribution function F and an estimator θ̂(x1, x2, . . . , xn) of an
unknown parameter θ(F ), A confidence level p ∈ (0, 1).

Output: A confidence interval Ip for θ with confidence level p.

◮ Generate N new Samples x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n , 1 ≤ i ≤ N , by

chosing elements in {x1, x2, . . . , xn} and putting them back right
after the choice.

◮ Compute θ∗i = θ̂

(
x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n

)
.

◮ Setz Ip :=

(
θ∗[N(1+p)/2]+1,N , θ

∗

[N(1−p)/2]+1,N

)
, where

θ∗1,N ≥ θ∗2,N ≥ . . . θ∗N,N is obtained by sorting θ∗1 , θ
∗

2 , . . . , θ
∗

N .



An approximative solution without bootstrapping

Input: A sample x1, x2, . . . , xn of the random variables Xi , 1 ≤ i ≤ n,
i.i.d. with unknown continuous distribution function F , a confidence level
p ∈ (0, 1)
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P(a < qα(F ) < b) = p′ and P(a ≥ qα(F )) = P(b ≤ qα(F ) ≤ (1−p)/2 holds.

Determine i > j , i , j ∈ {1, 2, . . . , n}, and the smallest p′ > p, such that

P

(
xi ,n < qα(F ) < xj,n

)
= p′ (∗) and

P

(
xi ,n ≥ qα(F )

)
≤ (1− p)/2 and P

(
xj,n ≤ qα(F )

)
≤ (1− p)/2(∗∗),

where x1,n ≥ x2,n ≥ . . . ≥ xn,n is obtained from x1, x2, . . . , xn by sorting.
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An approximative solution without bootstrapping (contd.)

Let Yα := #{xk : xk > qα(F )}
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Compute P(xj,n ≤ qα(F )) and P(xi ,n ≥ qα(F )) for different i and j until
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Set a := xj,n and b := xi ,n.
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i=1 li,n

[n(1−α)]+1 ,

where l1,n ≥ l2,n ≥ . . . ≥ ln,n is obtained from li , 1 ≤ i ≤ n, by sorting.

VaR and CVaR of the loss aggregated over a number of days, e.g. 10
days, over the days m − n + 10(k − 1) + 1,m − n + 10(k − 1) + 2, . . . ,

m − n + 10(k − 1) + 10, denoted by l
(10)
k is given as

l
(10)
k = l[m]

(
∑10

j=1 xm−n+10(k−1)+j

)
k = 1, . . . , [n/10]



Historical simulation (contd.)

Advantages:

◮ simple implementation

◮ considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xm−k = (Xm−k,1, . . . ,Xm−k,d ).



Historical simulation (contd.)

Advantages:

◮ simple implementation

◮ considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xm−k = (Xm−k,1, . . . ,Xm−k,d ).

Disadvantages:

◮ lots of historical data needed to get good estimators

◮ the estimated loss cannot be larger than the maximal loss
experienced in the past
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: Σ̂ =

(
σ̂ij

)
where

σ̂ij =
1

n−1

∑n

k=1(xm−k+1,i − µi )(xm−k+1,j − µj) i , j = 1, 2, . . . , d

Estimator for VaR: V̂aR(Lm+1) = −VwT µ̂+ V
√

wT Σ̂wφ−1(α)
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The variance-covariance method (contd.)

Advantages:

◮ analytical solution

◮ simple implementation

◮ no simulationen needed

Disadvantages:

◮ Linearisation is not always appropriate, only for a short time horizon
reasonable

◮ The normal distribution assumption could lead to underestimation
of risks and should be argued upon (e.g. in terms of historical data)



Monte-Carlo approach

(1) historical observations of risk factor changes Xm−n+1, . . ., Xm.

(2) assumption on a parametric model for the cumulative distribution
function of Xk , m − n+ 1 ≤ k ≤ m;
e.g. a common distribution function F and independence

(3) estimation of the parameters of F .

(4) generation of N samples x̃1, x̃2, . . . , x̃N from F (N ≫ 1) and
computation of the losses lk = l[m](x̃k ), 1 ≤ k ≤ N

(5) computation of the empirical distribution of the loss function Lm+1:

F̂ Lm+1

N (x) =
1

N

N∑

k=1

I[lk ,∞)(x).

(5) computation of estimates for the VaR and CVAR of the loss

function: V̂aR(Lm+1) = (F̂ Lm+1

N

)
= l[N(1−α)]+1,N ,

ĈVaR(Lm+1) =
∑[N(1−α)]+1

k=1 lk,N

[N(1−α)]+1 ,

where the losses are sorted l1,N ≥ l2,N ≥ . . . ≥ lN.N .



Monte-Carlo approach (contd.)

Advantages:

◮ very flexible; can use any distribution F from which simulation is
possible

◮ time dependencies of the risk factor changes can be considered by
using time series



Monte-Carlo approach (contd.)

Advantages:

◮ very flexible; can use any distribution F from which simulation is
possible

◮ time dependencies of the risk factor changes can be considered by
using time series

Disadvantages:

◮ computationally expensive; a large number of simulations needed to
obtain good estimates
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Example
The portfolio consists of one unit of asset S with price be St at time t.
The risk factor changes

Xk+1 = ln(Stk+1
)− ln(Stk ),

are i.i.d. with distribution function Fθ for some unknown parameter θ.
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Example
The portfolio consists of one unit of asset S with price be St at time t.
The risk factor changes

Xk+1 = ln(Stk+1
)− ln(Stk ),

are i.i.d. with distribution function Fθ for some unknown parameter θ.
θ can be estimated by means of historical data (e.g. maximum likelihood
approaches)
Let the price at time tk be S := Stk
The VaR of the portfolio over [tk , tk+1] is given as

VaRα(Ltk+1) = S

(
1− exp{F←θ (1− α)}

)
.



Monte-Carlo approach (contd.)

Example
The portfolio consists of one unit of asset S with price be St at time t.
The risk factor changes

Xk+1 = ln(Stk+1
)− ln(Stk ),

are i.i.d. with distribution function Fθ for some unknown parameter θ.
θ can be estimated by means of historical data (e.g. maximum likelihood
approaches)
Let the price at time tk be S := Stk
The VaR of the portfolio over [tk , tk+1] is given as

VaRα(Ltk+1) = S

(
1− exp{F←θ (1− α)}

)
.

Depending on Fθ it can be complicated or impossible to compute CVaR
analytically.
Alternative: Monte-Carlo simulation.



Monte-Carlo approach (contd.)

Example
Let the portfolio and the risk factor changes Xk+1 be as in the previous
example.
A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xk+1 = σk+1Zk+1 (1)

σ2
k+1 = a0 + a1X

2
k + b1σ

2
k (2)

where Zk , k ∈ IN, are i.i.d. and standard normally distributed, and a0,a1
and b1 are parameters, which should be estimated.
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Monte-Carlo approach (contd.)

Example
Let the portfolio and the risk factor changes Xk+1 be as in the previous
example.
A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xk+1 = σk+1Zk+1 (1)

σ2
k+1 = a0 + a1X

2
k + b1σ

2
k (2)

where Zk , k ∈ IN, are i.i.d. and standard normally distributed, and a0,a1
and b1 are parameters, which should be estimated.

It is simple to simulate from this model.

However analytical computation of VaR and CVaR over a certain time
interval consisting of many periods is cumbersome! Check it out!



Chapter 3: Extreme value theory

Notation:

◮ We will often use the same notation for the distribution of a random
variable (r.v.) and its (cumulative) distribution function!

◮ f (x) ∼ g(x) for x → ∞ means limx→∞ f (x)/g(x) = 1

◮ F̄ := 1− F is called the right tail of the univariate distribution
function F .
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Chapter 3: Extreme value theory

Notation:

◮ We will often use the same notation for the distribution of a random
variable (r.v.) and its (cumulative) distribution function!

◮ f (x) ∼ g(x) for x → ∞ means limx→∞ f (x)/g(x) = 1

◮ F̄ := 1− F is called the right tail of the univariate distribution
function F .

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff

limx→∞
F̄ (x)
e−λx = ∞, ∀λ > 0.

Also a r.v. X for which ∃k ∈ IN with E (X k ) = ∞ will be often called
heavy tailed.

These two “definitions” are not equivalent!



Regular variation

Definition
A measurable function h : (0,+∞) → (0,+∞) has a regular variation
with index ρ ∈ IR towards +∞ iff

lim
t→+∞

h(tx)

h(t)
= xρ , ∀x > 0 (3)

Notation: h ∈ RVρ.
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Regular variation

Definition
A measurable function h : (0,+∞) → (0,+∞) has a regular variation
with index ρ ∈ IR towards +∞ iff

lim
t→+∞

h(tx)

h(t)
= xρ , ∀x > 0 (3)

Notation: h ∈ RVρ.

If ρ = 0, we say h has a slow variation or is slowly varying towards ∞.
If h ∈ RVρ, then h(x)/xρ ∈ RV0.
If h ∈ RVρ, then ∃L ∈ RV0 such that h(x) = L(x)xρ (L(x) = h(x)/xρ).
If ρ < 0, then the convergence in (3) uniform in every interval (b,+∞)
for b > 0.

Example
Show that L ∈ RV0 holds for the functions L as below:

(a) limx→+∞ L(x) = c ∈ (0,+∞)

(b) L(x) := ln(1 + x)

(c) L(x) := ln(1 + ln(1 + x))



Example: Check whether f ∈ RV0 holds for f (x) = 3 + sin x ,
f (x) = ln(e + x) + sin x?
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Example: Check whether f ∈ RV0 holds for f (x) = 3 + sin x ,
f (x) = ln(e + x) + sin x?

Notice: a function L ∈ RV0 can have an infinite variation on ∞:

lim inf
x→∞

L(x) = 0 and lim sup
x→∞

L(x) = ∞

as for example L(x) = exp{(ln(1 + x))2 cos((ln(1 + x))1/2)}.

Definition: Let X > 0 be a r.v. with distribution function F . X is said
to have a regular variation on +∞, iff F̄ ∈ RV−α for some α > 0.

Example:

1. Pareto distribution: F (x) := 1− x−α, for x > 1 and α > 0. Then
F̄ (tx)/F̄ (x) = x−α holds for t > 0, i.e. F̄ ∈ RV−α.

2. Fréchet distribution: F (x) := exp{−x−α} for x > 0 and F (0) = 0,
for some parameter (fixed) α > 0. Then limx→∞ F̄ (x)/x−α = 1
holds, i.e. F̄ ∈ RV−α.

Proposition (no proof)
Let X > 0 be a r.v. with distribution function F , such that F̄ ∈ RV−α for
some α > 0. Then E (Xβ) < ∞ for β < α and E (Xβ) = ∞ for β > α
hold.
The converse is not true!
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distribution function F , F̄ ∈ RV−α for some α > 0. Let X1 (X2)
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Application of regular variation

Example 1: Let X1 and X2 be two nonnegative i.i.d. r.v. with
distribution function F , F̄ ∈ RV−α for some α > 0. Let X1 (X2)
represent the loss of a portfolio which consists of 1 unit of asset A1 (A2).

Assumption: The prices of A1 and A2 are identical and their logreturns
are i.i.d..

Consider a portfolio P1 containing 2 units of asset A1 and a portfolio P2

containing one unit of A1 and one unit of A2. Let Li represent the loss of
portfolio Pi , i = 1, 2.

Compare the probabilities of high losses in the two portfolios by
computing the limit

lim
l→∞

Prob(L2 > l)

Prob(L1 > l)
.


