Methods for the computation of VaR und CVaR

Consider the portfolio value V,, = f(tm, Zm), where Z,, is the vector of
risk factors.

Let the loss function over the interval [ty tmy1] be given as
Limy1 = fm)(Xmy1), where Xy 1 is the vector of the risk factor changes,
i.e.

Xm+1 = Zm+1 —Zm.

Consider observations (historical data) of risk factor values
Zononits s Zom.
How to use these data to compute/estimate VaR(Lmt1), CVaR(Lmi1)?



The empirical VaR and the empirical CVaR

Let x1,x2,...,X, be a sample of i.i.d. random variables Xi, X5, ..., X,
with distribution function F.
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B Zg(rillfa)H»l Xk

The empirical estimator of CVaR is ma(F) = =T
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A non-parametric bootstrapping approach to compute the

confidence interval of the estimator

Let X1, X5, ..., X, be i.i.d. with distribution function F and let
X1, X2, ... X, be a sample of F.

Goal: computation of an estimator of a certain parameter 6 depending on
F, e.g. 8 = go(F), and the corresponding confidence interval.

~

Let O(x1, ..., x,) be an estimator of 0, e.g. O(x1,...,x,) = X[(n(1—a)]+1,n
0 = quo(F), where x1.n > X2, > ... > Xp n is the ordered sample.

The required confidence interval is an (a, b) with a = a(xq, ..., x,) u.
b= b(x1,...,%n), such that P(a < 6 < b) = p, for a given confidence
level p.

Case I: F is known. . . _
Generate N samples £ £ .. %) 1< i < N, by simulation from F
(N should be large)

Let §; = é(;{’),ig"),...,zﬁ")), 1<i<N.



Case | (cont.)

The empirical distribution function of é(Xl,X2, ..., Xp) is given as

~ 1 N
0 .__ .
v =D o)
i=1

and it tends to F? for N — oc.

The required conficence interval is given as

2

<q1;p(’:/€),qw(’:/€)>

(assuming that the sample sizes N und n are large enough).
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Case Il: F is not known =- Bootstrapping!
The empirical distribution function of X;, 1 </ < n, is given as

1 n
Fn(X) = ; Z /[X/.’oo)(X).
i=1

For n large F, =~ F holds.

Generate samples from F,, be choosing n elementes in {x1,x2,..., Xy}
and putting every element back to the set immediately after its choice

Assume N such samples are generated: xf(i),x;(i), oD <<
Compute 0} = 0A<xf(i), x;(i), cxi®

The empirical distribution of 87 is given as F,(\’,* (x) = %ZL /[9/.*’00)(X);
it approximates the distribution function FO of @(Xl,Xg, ooy Xn) for
N — oco.
A confidence interval (a, b) with confidence level p is given by
2= qu—p)2(F ). b= auip)2(FY ).

Thus a = 0y 14 p) /214180 D= Olna—p) 241,100 Where 07y > Oy is
the sorted 6* sample.



Summary of the non-parametric bootstrapping approach to

compute confidence intervals

Input: Sample x1, x2, ..., x, of the i.i.d. random variables Xi, X, ..., X
with distribution function F and an estimator 6(x1, x2, ..., x,) of an
unknown parameter 6(F), A confidence level p € (0, 1).

Output: A confidence interval /, for § with confidence level p.

» Generate N new Samples xf(i),x;(i), .. ,x;(i), 1<i<N, by
chosing elements in {x1, x2, ..., Xy} and putting them back right
after the choice.

> Compute 0 = @(Xl*(i)sz*(i)’ o ’X:(i))

> Setz I, = HFN(1+p)/2]+1,N’9[*N(1*p)/2]+1,N , where

9{7,\, > 0;1,\, > ..9}*\,7,\, is obtained by sorting 07,05, ...,0} .
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Input: A sample x1, xo, ..., x, of the random variables X;, 1 </ < n,
i.i.d. with unknown continuous distribution function F, a confidence level
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An approximative solution without bootstrapping

Input: A sample x1, xo, ..., x, of the random variables X;, 1 </ < n,
i.i.d. with unknown continuous distribution function F, a confidence level
p€(0,1)

Output: A small p’ € (0,1), p’ > p, and a confidence interval (a, b) for
Go(F), i.e. a=a(x1,x2,...,%n), b= b(x1,xa,...,Xn), such that

P(a < go(F) < b)=p" and P(a > qa(F)) = P(b < gu(F) < (1—p)/2 holds.

Determine i > j, i,j € {1,2,...,n}, and the smallest p’ > p, such that

P(x,-,,, < qa(F) < xj,,,> =p (%) and

P<x,-7,, > qa(F)> <(1-p)/2and P<xj7,, < qa(F)> < (1 = p)/2(xx),

where X1, > X5 > ... > Xp p is obtained from xi, xo, ..., X, by sorting.
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An approximative solution without bootstrapping (contd.)

Let Yo := #{xx: xx > gu(F)}

We get P(x.0 < Ga(F)) = P(.0 < qu(F)) = P(Ya <j — 1)
P(xin > Ga(F)) = P(xin > Gu(F)) = 1 — P(Ya < i - 1)

Yo ~ Bin(n,1 — «) since Prob(xx > qo(F)) ~ 1 — « for a sample point
X -

Compute P(Xjn < Ga (F)) and P(x;.» > qa(F)) for different i and j until
indices i,j € {1,2,...,n}, i > j, which fulfill (xx) are found.

Set a:=xj, and b 1= X; p.
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Historical simulation

Let Xpn—n+1,--.,Xm be historical observations of the risk factor changes
Xm—nt1,---,Xm; the historically realized losses are given as

/k = /[m](Xm—k+1)y k = 1, 2, .

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss

distribution.

Empirical VaR: VaR = CIa(F )= ha—a)+1,n
Z[n(l a]+1

Empirical CVaR: CVaR = W)]Hﬁ

where | , > b, > ... > I, , is obtained from /;, 1 < i < n, by sorting.

VaR and CVaR of the loss aggregated over a number of days, e.g. 10
days, over the days m —n+10(k —1)+1,m—n+10(k—1)+2, ...,
m — n+ 10(k — 1) + 10, denoted by /,Elo) is given as

B = <Z}31 Xim—n+10(k—1)+j k=1,...,[n/10]



Historical simulation (contd.)

Advantages:
» simple implementation

» considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xim—x = (Xm—k,15- -+, Xm—k,d)-



Historical simulation (contd.)

Advantages:
» simple implementation

» considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xim—x = (Xm—k,15- -+, Xm—k,d)-

Disadvantages:
» lots of historical data needed to get good estimators

> the estimated loss cannot be larger than the maximal loss
experienced in the past
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Estimator for VaR: \737?(Lm+1) =—-WwTi+ Vv WT>A:W¢71(OZ)
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The variance-covariance method (contd.)

Advantages:
» analytical solution
» simple implementation

» no simulationen needed

Disadvantages:

» Linearisation is not always appropriate, only for a short time horizon
reasonable

» The normal distribution assumption could lead to underestimation
of risks and should be argued upon (e.g. in terms of historical data)



Monte-Carlo approach

historical observations of risk factor changes X;,—n11, - .., Xn.

assumption on a parametric model for the cumulative distribution
function of X,, m—n+1< k< m;
e.g. a common distribution function F and independence

estimation of the parameters of F.

generation of N samples X, %2, ..., %y from F (N > 1) and
computation of the losses lx = f (%), 1 < k<N

computation of the empirical distribution of the loss function L, 1:

Fll\_l’77+1 N Z [lk,00

computation of estimates for the VaR and CVAR of the loss
function: \ZQ\R(Lerl) = (ﬁll\'l'"+1> = /[N(l—a)]+1,N:

[N(ll a)]+1/ N

CVBR(Lm+1) = W,

where the losses are sorted h y > by > ... 2> Iyn.



Monte-Carlo approach (contd.)

Advantages:

> very flexible; can use any distribution F from which simulation is
possible

» time dependencies of the risk factor changes can be considered by
using time series



Monte-Carlo approach (contd.)

Advantages:

> very flexible; can use any distribution F from which simulation is
possible

» time dependencies of the risk factor changes can be considered by
using time series

Disadvantages:

» computationally expensive; a large number of simulations needed to
obtain good estimates



Monte-Carlo approach (contd.)
Example

The portfolio consists of one unit of asset S with price be S; at time t.
The risk factor changes

Xk+1 = In(stk+1) - ln(sfk)’

are i.i.d. with distribution function Fy for some unknown parameter 0.



Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S; at time t.
The risk factor changes

Xk+1 = In(stk+1) - ln(sfk)’

are i.i.d. with distribution function Fy for some unknown parameter 0.
0 can be estimated by means of historical data (e.g. maximum likelihood
approaches)



Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S; at time t.
The risk factor changes

Xk+1 = In(stk+1) - ln(sfk)’

are i.i.d. with distribution function Fy for some unknown parameter 0.

0 can be estimated by means of historical data (e.g. maximum likelihood
approaches)

Let the price at time ty be S := S,



Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S; at time t.
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are i.i.d. with distribution function Fy for some unknown parameter 0.
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approaches)

Let the price at time ty be S := S,
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VaRa (L, 11) = 5(1 —exp{F (1 a)}) .



Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S; at time t.
The risk factor changes

Xk+1 = In(stk+1) - ln(sfk)’

are i.i.d. with distribution function Fy for some unknown parameter 0.

0 can be estimated by means of historical data (e.g. maximum likelihood
approaches)

Let the price at time ty be S := S,

The VaR of the portfolio over [ty, ty+1] is given as

VaRa (L, 11) = 5(1 —exp{F (1 a)}) .

Depending on Fy it can be complicated or impossible to compute CVaR
analytically.
Alternative: Monte-Carlo simulation.



Monte-Carlo approach (contd.)

Example

Let the portfolio and the risk factor changes Xy1 be as in the previous
example.

A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xis1 = Ok41Zk41 (1)
Ths1 = a0+ aXg + biog (2)

where Zx, k € IN, are i.i.d. and standard normally distributed, and ag,a;
and by are parameters, which should be estimated.
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Monte-Carlo approach (contd.)

Example

Let the portfolio and the risk factor changes Xy1 be as in the previous
example.

A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xk+1 = Uk+1Zk+1 (1)
2 _ 2 2
Oky1 = a0+ aXg + biog (2)
where Zx, k € IN, are i.i.d. and standard normally distributed, and ag,a;
and by are parameters, which should be estimated.
It is simple to simulate from this model.

However analytical computation of VaR and CVaR over a certain time
interval consisting of many periods is cumbersome! Check it out!
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» We will often use the same notation for the distribution of a random
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> f(x) ~ g(x) for x — 0o means lim,_, f(x)/g(x) =1

» F:=1— F is called the right tail of the univariate distribution
function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff
limy oo 282 = 00, YA > 0.

Also a r.v. X for which 3k € IN with E(X*) = oo will be often called
heavy tailed.

These two “definitions” are not equivalent!
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Regular variation

Definition
A measurable function h: (0, +00) — (0,400) has a regular variation
with index p € IR towards 400 iff

A hD)

=x, ¥x>0 (3)

Notation: h € RV,.

If p =0, we say h has a slow variation or is slowly varying towards co.
If h € RV, then h(x)/x? € RV,.

If h € RV, then 3L € RV; such that h(x) = L(x)x” (L(x) = h(x)/x").
If p < 0, then the convergence in (3) uniform in every interval (b, +00)
for b > 0.

Example
Show that L € RVy holds for the functions L as below:

(a) limyx—i00 L(x) = ¢ € (0, +0)
(b) L(x):=1In(14 x)
(c) L(x):=1In(1+In(1+ x))
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for some parameter (fixed) a > 0. Then lim, o F(x)/x™* =1
holds, i.e. F € RV_,.
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Let X > 0 be a r.v. with distribution function F, such that F € RV_,, for
some a > 0. Then E(X”) < oo for B < a and E(X?) = o for 8 > «
hold.

The converse is not true!
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Application of regular variation

Example 1: Let X; and X; be two nonnegative i.i.d. r.v. with
distribution function F, F € RV_, for some o > 0. Let X (X2)
represent the loss of a portfolio which consists of 1 unit of asset A; (Ay).
Assumption: The prices of A; and A are identical and their logreturns
are i.i.d..
Consider a portfolio P; containing 2 units of asset A; and a portfolio P»
containing one unit of A; and one unit of A,. Let L; represent the loss of
portfolio P;, i = 1,2.
Compare the probabilities of high losses in the two portfolios by
computing the limit
Prob(Ly > 1)
im ————=
|—00 Prob(L1 > /)



