Risk and Management: Goals and Perspective

Etymology: Risicare

Risk (Oxford English Dictionary): (Exposure to) the possibility of loss, injury, or other adverse or unwelcome circumstance; a chance or situation involving such a possibility.

Finance: The possibility that an actual return on an investment will be lower than the expected return.

Risk management: is the identification, assessment, and prioritization of risks followed by coordinated and economical application of resources to minimize, monitor, and control the probability and/or impact of unfortunate events or to maximize the realization of opportunities. Risk management's objective is to assure uncertainty does not deflect the endeavor from the business goals.

Risk and Management: Goals and Perspective

Subject of risk managment:

- Identification of risk sources (determination of exposure)
- Assessment of risk dependencies
- Measurement of risk
- Handling with risk
- Control and supervision of risk
- Monitoring and early detection of risk
- Development of a well structured risk management system

Risk and Management: Goals and Perspective

Main questions addressed by strategic risk managment:

- Which are the strategic risks?
- Which risks should be carried by the company?
- Which instruments should be used to control risk?
- What resources are needed to cover for risk?
- What are the risk adjusted measures of success used as steering mechanisms?

Start capital $V_0 = 100$ Game: lose or gain \in 50 with probability 1/2, respectively.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Start capital $V_0 = 100$ Game: lose or gain \in 50 with probability 1/2, respectively. The capital after the game is 150 or 50 with probability 0.5 each.

Start capital $V_0 = 100$

Game: lose or gain ${\in}\,50$ with probability 1/2, respectively.

The capital after the game is 150 or 50 with probability 0.5 each. Let $X := V_1 - V_0$ be the gain and let $L := V_0 - V_1$ be the loss. The distribution function of the random variable X(L) is called **gain distribution** (*GD*) (**loss distribution** (*LD*)).

Start capital $V_0 = 100$

Game: lose or gain ${\in}\,50$ with probability 1/2, respectively.

The capital after the game is 150 or 50 with probability 0.5 each. Let $X := V_1 - V_0$ be the gain and let $L := V_0 - V_1$ be the loss. The distribution function of the random variable X(L) is called **gain distribution** (*GD*) (**loss distribution** (*LD*)).

 $L \ge 0 \Rightarrow \mathsf{Risk}!$

Start capital $V_0 = 100$

Game: lose or gain ${\in}\,50$ with probability 1/2, respectively.

The capital after the game is 150 or 50 with probability 0.5 each. Let $X := V_1 - V_0$ be the gain and let $L := V_0 - V_1$ be the loss. The distribution function of the random variable X(L) is called **gain distribution** (*GD*) (**loss distribution** (*LD*)).

 $L \ge 0 \Rightarrow \mathsf{Risk}!$

Some people prefer no gain and no loss with certainty rather than either gain or loss with a probability of 1/2 each. They are *risk averse!*.

Start capital $V_0 = 100$

Game: lose or gain ${\in}\,50$ with probability 1/2, respectively.

The capital after the game is 150 or 50 with probability 0.5 each. Let $X := V_1 - V_0$ be the gain and let $L := V_0 - V_1$ be the loss. The distribution function of the random variable X(L) is called **gain distribution** (*GD*) (**loss distribution** (*LD*)).

 $L \ge 0 \Rightarrow \mathsf{Risk}!$

Some people prefer no gain and no loss with certainty rather than either gain or loss with a probability of 1/2 each. They are *risk averse!*.

The decision to play or not depends on the LD, which is generally unknown.

Start capital $V_0 = 100$

Game: lose or gain ${\in}\,50$ with probability 1/2, respectively.

The capital after the game is 150 or 50 with probability 0.5 each. Let $X := V_1 - V_0$ be the gain and let $L := V_0 - V_1$ be the loss. The distribution function of the random variable X(L) is called **gain distribution** (*GD*) (**loss distribution** (*LD*)).

 $L \ge 0 \Rightarrow \mathsf{Risk}!$

Some people prefer no gain and no loss with certainty rather than either gain or loss with a probability of 1/2 each. They are *risk averse!*.

The decision to play or not depends on the LD, which is generally unknown.

Instead of knowledge about the LD the player would rather prefer to have a number telling her/him how risky is the game!

Start capital $V_0 = 100$

Game: lose or gain ${\in}\,50$ with probability 1/2, respectively.

The capital after the game is 150 or 50 with probability 0.5 each. Let $X := V_1 - V_0$ be the gain and let $L := V_0 - V_1$ be the loss. The distribution function of the random variable X(L) is called **gain distribution** (*GD*) (**loss distribution** (*LD*)).

 $L \ge 0 \Rightarrow \mathsf{Risk}!$

Some people prefer no gain and no loss with certainty rather than either gain or loss with a probability of 1/2 each. They are *risk averse!*.

The decision to play or not depends on the LD, which is generally unknown.

Instead of knowledge about the LD the player would rather prefer to have a number telling her/him how risky is the game!

Definition: A risk measure ρ is a mapping from the random variables (r.v.) to the reals which assigns each r.v. *L* a real number $\rho(L) \in \mathbb{R}$.

Start capital $V_0 = 100$

Game: lose or gain ${\in}\,50$ with probability 1/2, respectively.

The capital after the game is 150 or 50 with probability 0.5 each. Let $X := V_1 - V_0$ be the gain and let $L := V_0 - V_1$ be the loss. The distribution function of the random variable X(L) is called **gain distribution** (*GD*) (**loss distribution** (*LD*)).

 $L \ge 0 \Rightarrow \mathsf{Risk}!$

Some people prefer no gain and no loss with certainty rather than either gain or loss with a probability of 1/2 each. They are *risk averse!*.

The decision to play or not depends on the LD, which is generally unknown.

Instead of knowledge about the LD the player would rather prefer to have a number telling her/him how risky is the game!

Definition: A risk measure ρ is a mapping from the random variables (r.v.) to the reals which assigns each r.v. *L* a real number $\rho(L) \in \mathbb{R}$. Examples: standard deviation, quantile of the loss distribution, ...

Types of risk

For an organization risk arises through events or activities which could prevent the organization from fulfilling its goals and executing its strategies.

Financial risk:

- Market risk
- Credit risk
- Operational risk
- Liquidity risk, legal (judicial) risk, reputational risk

The goal is to estimate these risks as precisely as possible, ideally based on the loss distribution (LD).

Regulation and supervision

1974: Establishment of Basel Committee on Banking Supervision (BCBS).

Risk capital depending on GD/LD.

Suggestions and guidelines on the requirements and methods used to *compute the risk capital*. Aims at *internationally accepted standards* for the computation of the risk capital and *statutory dispositions* based on those standards.

Control by the supervision agency.

- 1988 Basel I: International minimum capital requirements especially with respect to (w.r.t.) credit risk.
- 1996 Standardised models are formulated for the assessment of market risk with an option to use value at risk (VaR) models in larger banks
- 2007 Basel II: minimum capital requirements w.r.t. credit risk, market risk and operational risk, procedure of control by supervision agencies, market discipline¹.
- 2010 BASEL III Improvement and further development of BASEL II w.r.t. applicability, operational riskr und liquidity risk

see http://www.bis.org

Loss operators

V(t) - Value of portfolio at time tTime unit Δt Loss in time interval $[t, t + \Delta t]$: $L_{[t,t+\Delta t]} := -(V(t + \Delta t) - V(t))$ Discretisation of time: $t_n := n\Delta t$, n = 0, 1, 2, ...

$$L_{n+1} := L_{[t_n, t_{n+1}]} = -(V_{n+1} - V_n), \text{ where } V_n := V(n\Delta t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Loss operators

V(t) - Value of portfolio at time tTime unit Δt Loss in time interval $[t, t + \Delta t]$: $L_{[t,t+\Delta t]} := -(V(t + \Delta t) - V(t))$ Discretisation of time: $t_n := n\Delta t$, n = 0, 1, 2, ...

$$L_{n+1} := L_{[t_n, t_{n+1}]} = -(V_{n+1} - V_n), ext{ where } V_n := V(n\Delta t)$$

Example: An asset portfolio

The portfolio consists of α_i units of asset A_i with price $S_{n,i}$ at time t_n , i = 1, 2, ..., d.

Loss operators

V(t) - Value of portfolio at time tTime unit Δt Loss in time interval $[t, t + \Delta t]$: $L_{[t,t+\Delta t]} := -(V(t + \Delta t) - V(t))$ Discretisation of time: $t_n := n\Delta t$, n = 0, 1, 2, ...

$$L_{n+1} := L_{[t_n, t_{n+1}]} = -(V_{n+1} - V_n), ext{ where } V_n := V(n\Delta t)$$

Example: An asset portfolio

The portfolio consists of α_i units of asset A_i with price $S_{n,i}$ at time t_n , i = 1, 2, ..., d.

The portfolio value at time t_n is $V_n = \sum_{i=1}^d \alpha_i S_{n,i}$

Loss operators

V(t) - Value of portfolio at time tTime unit Δt Loss in time interval $[t, t + \Delta t]$: $L_{[t,t+\Delta t]} := -(V(t + \Delta t) - V(t))$ Discretisation of time: $t_n := n\Delta t$, n = 0, 1, 2, ...

$$L_{n+1} := L_{[t_n, t_{n+1}]} = -(V_{n+1} - V_n), ext{ where } V_n := V(n\Delta t)$$

Example: An asset portfolio

The portfolio consists of α_i units of asset A_i with price $S_{n,i}$ at time t_n , i = 1, 2, ..., d. The portfolio value at time t_n is $V_n = \sum_{i=1}^d \alpha_i S_{n,i}$

Let $Z_{n,i} := \ln S_{n,i}, X_{n+1,i} := \ln S_{n+1,i} - \ln S_{n,i}$ Let $w_{n,i} := \alpha_i S_{n,i} / V_n, i = 1, 2, ..., d$, be the relative portfolio weights.

Loss operator of an asset portfolio (cont.)

The following holds:

$$L_{n+1} := -\sum_{i=1}^{d} \alpha_i S_{n,i} \left(\exp\{X_{n+1,i}\} - 1 \right) = -V_n \sum_{i=1}^{d} w_{n,i} \left(\exp\{X_{n+1,i}\} - 1 \right) =: I_n(X_{n+1})$$

Loss operator of an asset portfolio (cont.)

The following holds:

$$L_{n+1} := -\sum_{i=1}^{d} \alpha_i S_{n,i} \left(\exp\{X_{n+1,i}\} - 1 \right) = -V_n \sum_{i=1}^{d} w_{n,i} \left(\exp\{X_{n+1,i}\} - 1 \right) =: I_n(X_{n+1})$$

Linearisation $e^x = 1 + x + o(x^2) \sim 1 + x$ implies

$$L_{n+1}^{\Delta} = -V_n \sum_{i=1}^{d} w_{n,i} X_{n+1,i} =: I_n^{\Delta}(X_{n+1}),$$

where L_{n+1} (L_{n+1}^{Δ}) is the (linearised) loss function and I_n (I_n^{Δ}) is the (linearised) loss operator.

The general case

Let $V_n = f(t_n, Z_n)$ and $Z_n = (Z_{n,1}, \ldots, Z_{n,d})$, where Z_n is a vector of risk factors

Risk factor changes:
$$X_{n+1} := Z_{n+1} - Z_n$$

 $L_{n+1} = -\left(f(t_{n+1}, Z_n + X_{n+1}) - f(t_n, Z_n)\right) =: I_n(X_{n+1})$, where
 $I_n(x) := -\left(f(t_{n+1}, Z_n + x) - f(t_n, Z_n)\right)$ is the loss operator.

The general case

Let $V_n = f(t_n, Z_n)$ and $Z_n = (Z_{n,1}, \ldots, Z_{n,d})$, where Z_n is a vector of risk factors

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Risk factor changes:
$$X_{n+1} := Z_{n+1} - Z_n$$

 $L_{n+1} = -\left(f(t_{n+1}, Z_n + X_{n+1}) - f(t_n, Z_n)\right) =: I_n(X_{n+1})$, where
 $I_n(x) := -\left(f(t_{n+1}, Z_n + x) - f(t_n, Z_n)\right)$ is the loss operator.

The linearised loss:

$$L_{n+1}^{\Delta} = -\left(f_t(t_n, Z_n)\Delta t + \sum_{i=1}^d f_{z_i}(t_n, Z_n)X_{n+1,i}\right),$$

where f_t and f_{z_i} are the partial derivatives of f .

The general case

Let $V_n = f(t_n, Z_n)$ and $Z_n = (Z_{n,1}, \ldots, Z_{n,d})$, where Z_n is a vector of risk factors

`

Risk factor changes:
$$X_{n+1} := Z_{n+1} - Z_n$$

 $L_{n+1} = -\left(f(t_{n+1}, Z_n + X_{n+1}) - f(t_n, Z_n)\right) =: I_n(X_{n+1})$, where
 $I_n(x) := -\left(f(t_{n+1}, Z_n + x) - f(t_n, Z_n)\right)$ is the loss operator.

The linearised loss:

$$L_{n+1}^{\Delta} = -\left(f_t(t_n, Z_n)\Delta t + \sum_{i=1}^d f_{Z_i}(t_n, Z_n)X_{n+1,i}\right),$$

where f_t and f_{z_i} are the partial derivatives of f.

The linearised loss operator:

$$I_n^{\Delta}(\mathbf{x}) := -\left(f_t(t_n, Z_n)\Delta t + \sum_{i=1}^d f_{Z_i}(t_n, Z_n)\mathbf{x}_i\right)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Definition: An *European call option (ECO)* on a certain asset S grants its holder the right but not the obligation to buy asset S at a specified day T (*execution day*) and at a specified price K (*strike price*). The option is bought by the owner at a certain price at day 0.

Definition: An *European call option (ECO)* on a certain asset S grants its holder the right but not the obligation to buy asset S at a specified day T (*execution day*) and at a specified price K (*strike price*). The option is bought by the owner at a certain price at day 0.

Value of ECO at time t: $C(t) = \max{S(t) - K, 0}$, where S(t) is the market price of asset S at time t.

Definition: An European call option (ECO) on a certain asset S grants its holder the right but not the obligation to buy asset S at a specified day T (execution day) and at a specified price K (strike price). The option is bought by the owner at a certain price at day 0.

Value of ECO at time t: $C(t) = \max{S(t) - K, 0}$, where S(t) is the market price of asset S at time t.

Definition: A zero-coupon bond (ZCB) with maturity T is a contract, which gives the holder of the contract $\in 1$ at time T. The price of the contract at time t is denoted by B(t, T). By definition B(T, T) = 1.

Definition: An *European call option (ECO)* on a certain asset S grants its holder the right but not the obligation to buy asset S at a specified day T (*execution day*) and at a specified price K (*strike price*). The option is bought by the owner at a certain price at day 0.

Value of ECO at time t: $C(t) = \max{S(t) - K, 0}$, where S(t) is the market price of asset S at time t.

Definition: A zero-coupon bond (ZCB) with maturity T is a contract, which gives the holder of the contract $\in 1$ at time T. The price of the contract at time t is denoted by B(t, T). By definition B(T, T) = 1.

Definition: A currency forward or an FX forward (FXF) is a contract between two parties to buy/sell an amount \overline{V} of foreign currency at a future time T for a specified exchange rate \overline{e} . The party who is going to buy the foreign currency is said to hold a long position and the party who will sell holds a short position.

Let B(t, T) be the price of the ZCB with maturity T at time t < T. The *continuously compounded yield*, $y(t, T) := -\frac{1}{T-t} \ln B(t, T)$, would represent the continuous interest rate which was dealt with at time t as being constant for the whole interval [t, T].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let B(t, T) be the price of the ZCB with maturity T at time t < T. The continuously compounded yield, $y(t, T) := -\frac{1}{T-t} \ln B(t, T)$, would represent the continuous interest rate which was dealt with at time t as being constant for the whole interval [t, T].

There are different yields for different maturities.

Let B(t, T) be the price of the ZCB with maturity T at time t < T. The continuously compounded yield, $y(t, T) := -\frac{1}{T-t} \ln B(t, T)$, would represent the continuous interest rate which was dealt with at time t as being constant for the whole interval [t, T].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There are different yields for different maturities.

The yield curve for fixed t is a function $T \mapsto y(t, T)$.

Let B(t, T) be the price of the ZCB with maturity T at time t < T.

The continuously compounded yield, $y(t, T) := -\frac{1}{T-t} \ln B(t, T)$, would represent the continuous interest rate which was dealt with at time t as being constant for the whole interval [t, T].

There are different yields for different maturities.

The yield curve for fixed t is a function $T \mapsto y(t, T)$.

Consider a portfolio consisting of α_i units of ZCB *i* with maturity T_i and price $B(t, T_i)$, i = 1, 2, ..., d.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Portfolio value at time t_n : $V_n = \sum_{i=1}^d \alpha_i B(t_n, T_i) = \sum_{i=1}^d \alpha_i exp\{-(T_i - t_n)Z_{n,i}\} = f(t_n, Z_n)$ where $Z_{n,i} := y(t_n, T_i)$ are the risk factors.

Let B(t, T) be the price of the ZCB with maturity T at time t < T.

The continuously compounded yield, $y(t, T) := -\frac{1}{T-t} \ln B(t, T)$, would represent the continuous interest rate which was dealt with at time t as being constant for the whole interval [t, T].

There are different yields for different maturities.

The yield curve for fixed t is a function $T \mapsto y(t, T)$.

Consider a portfolio consisting of α_i units of ZCB *i* with maturity T_i and price $B(t, T_i)$, i = 1, 2, ..., d.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Portfolio value at time t_n : $V_n = \sum_{i=1}^d \alpha_i B(t_n, T_i) = \sum_{i=1}^d \alpha_i exp\{-(T_i - t_n)Z_{n,i}\} = f(t_n, Z_n)$ where $Z_{n,i} := y(t_n, T_i)$ are the risk factors. Let $X_{n+1,i} := Z_{n+1,i} - Z_{n,i}$ be the risk factor changes. A bond portfolio (contd.)

$$I_{[n]}(x) = -\sum_{i=1}^{d} \alpha_i B(t_n, T_i) \left(\exp\{Z_{n,i} \Delta t - (T_i - t_{n+1}) x_i\} - 1 \right)$$

$$L_{n+1}^{\Delta} = -\sum_{i=1}^{d} \alpha_i B(t_n, T_i) \left(Z_{n,i} \Delta t - (T_i - t_{n+1}) X_{n+1,i} \right)$$

・ロト < 団ト < 三ト < 三ト < 回 < つへの

A bond portfolio (contd.)

$$I_{[n]}(x) = -\sum_{i=1}^{d} \alpha_i B(t_n, T_i) \left(exp\{Z_{n,i}\Delta t - (T_i - t_{n+1})x_i\} - 1 \right)$$

$$L_{n+1}^{\Delta} = -\sum_{i=1}^{d} \alpha_i B(t_n, T_i) \left(Z_{n,i} \Delta t - (T_i - t_{n+1}) X_{n+1,i} \right)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Example: A currency forward portfolio

A bond portfolio (contd.)

$$I_{[n]}(x) = -\sum_{i=1}^{d} \alpha_i B(t_n, T_i) (\exp\{Z_{n,i}\Delta t - (T_i - t_{n+1})x_i\} - 1)$$

$$L_{n+1}^{\Delta} = -\sum_{i=1}^{d} \alpha_i B(t_n, T_i) (Z_{n,i} \Delta t - (T_i - t_{n+1}) X_{n+1,i})$$

Example: A currency forward portfolio

The party who buys the foreign currency holds a *long position*. The party who sells holds a *short position*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

A bond portfolio (contd.)

$$I_{[n]}(x) = -\sum_{i=1}^{d} \alpha_i B(t_n, T_i) (\exp\{Z_{n,i}\Delta t - (T_i - t_{n+1})x_i\} - 1)$$

$$L_{n+1}^{\Delta} = -\sum_{i=1}^{d} \alpha_i B(t_n, T_i) (Z_{n,i} \Delta t - (T_i - t_{n+1}) X_{n+1,i})$$

Example: A currency forward portfolio

The party who buys the foreign currency holds a *long position*. The party who sells holds a *short position*.

<u>A long position</u> over (\overline{V}) units of a <u>FX forward</u> with maturity T<u>a long position</u> over \overline{V} units of a foreign zero-coupon bond (ZCB) with maturity T and <u>a short position</u> over \overline{eV} units of a domestic zero-coupon

bond with maturity T.

Assumptions:

Euro investor holds a long position of a USD/EUR forward over \overline{V} USD. Let $B^{f}(t, T)$ ($B^{d}(t, T)$) be the price of a USD based (EUR-based) ZCB. Let e(t) be the spot exchange rate for USD/EUR.

Assumptions:

Euro investor holds a long position of a USD/EUR forward over \overline{V} USD. Let $B^{f}(t, T)$ ($B^{d}(t, T)$) be the price of a USD based (EUR-based) ZCB. Let e(t) be the spot exchange rate for USD/EUR.

Value of the long position of the FX forward at time T : $V_T = \overline{V}(e(T) - \overline{e}).$

Assumptions:

Euro investor holds a long position of a USD/EUR forward over \overline{V} USD. Let $B^{f}(t, T)$ ($B^{d}(t, T)$) be the price of a USD based (EUR-based) ZCB. Let e(t) be the spot exchange rate for USD/EUR.

Value of the long position of the FX forward at time T : $V_T = \overline{V}(e(T) - \overline{e}).$

The short position of the domestic ZCB can be handled as in the case of a bond portfolio (previous example).

Assumptions:

Euro investor holds a long position of a USD/EUR forward over \overline{V} USD. Let $B^{f}(t, T)$ ($B^{d}(t, T)$) be the price of a USD based (EUR-based) ZCB. Let e(t) be the spot exchange rate for USD/EUR.

Value of the long position of the FX forward at time T : $V_T = \overline{V}(e(T) - \overline{e}).$

The short position of the domestic ZCB can be handled as in the case of a bond portfolio (previous example).

Consider the long losition in the foreign ZCB. Risk factors: $Z_n = (\ln e(t_n), y^f(t_n, T))^T$ Value of the long position (in Euro): $V_n = \overline{V} \exp\{Z_{n,1} - (T - t_n)Z_{n,2}\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assumptions:

Euro investor holds a long position of a USD/EUR forward over \overline{V} USD. Let $B^{f}(t, T)$ ($B^{d}(t, T)$) be the price of a USD based (EUR-based) ZCB. Let e(t) be the spot exchange rate for USD/EUR.

Value of the long position of the FX forward at time T : $V_T = \overline{V}(e(T) - \overline{e}).$

The short position of the domestic ZCB can be handled as in the case of a bond portfolio (previous example).

Consider the long losition in the foreign ZCB. Risk factors: $Z_n = (\ln e(t_n), y^f(t_n, T))^T$ Value of the long position (in Euro): $V_n = \overline{V} \exp\{Z_{n,1} - (T - t_n)Z_{n,2}\}$ The linearized loss: $L_{n+1}^{\Delta} = -V_n(Z_{n,2}\Delta t + X_{n+1,1} - (T - t_{n+1})X_{n+1,2})$ where $X_{n+1,1} := \ln e(t_{n+1}) - \ln e(t_n)$ und $X_{n+1,2} := y^f(t_{n+1}, T) - y^f(t_n, T)$

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

Risk factors: $Z_n = (\ln S_n, r_n, \sigma_n)^T$;

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

Risk factors: $Z_n = (\ln S_n, r_n, \sigma_n)^T$;

Risk factor changes: $X_{n+1} = (\ln S_{n+1} - \ln S_n, r_{n+1} - r_n, \sigma_{n+1} - \sigma_n)^T$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

Risk factors: $Z_n = (\ln S_n, r_n, \sigma_n)^T$;

Risk factor changes: $X_{n+1} = (\ln S_{n+1} - \ln S_n, r_{n+1} - r_n, \sigma_{n+1} - \sigma_n)^T$ Portfolio value: $V_n = C(t_n, S_n, r_n, \sigma_n) = C(t_n, exp(Z_{n,1}), Z_{n,2}, Z_{n,3})$

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

Risk factors: $Z_n = (\ln S_n, r_n, \sigma_n)^T$;

Risk factor changes: $X_{n+1} = (\ln S_{n+1} - \ln S_n, r_{n+1} - r_n, \sigma_{n+1} - \sigma_n)^T$ Portfolio value: $V_n = C(t_n, S_n, r_n, \sigma_n) = C(t_n, exp(Z_{n,1}), Z_{n,2}, Z_{n,3})$

The linearized loss: $L_{n+1}^{\Delta} = -(C_t \Delta t + C_S S_n X_{n+1,1} + C_r X_{n+1,2} + C_\sigma X_{n+1,3})$

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

Risk factors: $Z_n = (\ln S_n, r_n, \sigma_n)^T$;

Risk factor changes: $X_{n+1} = (\ln S_{n+1} - \ln S_n, r_{n+1} - r_n, \sigma_{n+1} - \sigma_n)^T$ Portfolio value: $V_n = C(t_n, S_n, r_n, \sigma_n) = C(t_n, exp(Z_{n,1}), Z_{n,2}, Z_{n,3})$

The linearized loss: $L_{n+1}^{\Delta} = -(C_t \Delta t + C_S S_n X_{n+1,1} + C_r X_{n+1,2} + C_{\sigma} X_{n+1,3})$ The greeks: C_t - theta, C_S - delta, C_r - rho, C_{σ} - Vega

Purpose of the risk management:

- Determination of the minimum regulatory capital:
 - i.e. the capital, needed to cover possible losses.

As a management tool:

to determine the limits of the amount of risk a unit within the company may take

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Purpose of the risk management:

Determination of the minimum regulatory capital:

i.e. the capital, needed to cover possible losses.

As a management tool:

to determine the limits of the amount of risk a unit within the company may take

Some basic risk measures (not based on the loss distribution)

Notational amount: weighted sum of notational values of individual securities weighted by a prespecified factor for each asset class

e.g. in Basel I (1998): Cooke Ratio= $\frac{\text{regulatory capital}}{\text{risk-weighted sum}} \ge 8\%$ Gewicht := $\begin{cases} 0\% & \text{for claims on }_{B^{-}} \\ 20\% & \text{claims on banks} \\ 50\% & \text{claims on individual investors with mortgage securities} \\ 100\% & \text{claims on the private sector} \end{cases}$

Purpose of the risk management:

Determination of the minimum regulatory capital:

i.e. the capital, needed to cover possible losses.

As a management tool:

to determine the limits of the amount of risk a unit within the company may take

Some basic risk measures (not based on the loss distribution)

Notational amount: weighted sum of notational values of individual securities weighted by a
prespecified factor for each asset class

e.g. in Basel I (1998):

 $Cooke Ratio = \frac{\text{regulatory capital}}{\text{risk-weighted sum}} \ge 8\%$

Disadvantages: no difference between long and short positions, diversification effects are not condidered

Portfolio value at time t_n : $V_n = f(t_n, Z_n)$, Z_n ist a vector of d risk factors Sensitivity coefficients: $f_{z_i} = \frac{\delta f}{\delta z_i}(t_n, Z_n)$, $1 \le i \le d$ Example: "The Greeks" of a portfolio are the sensitivity coefficients

Portfolio value at time t_n : $V_n = f(t_n, Z_n)$, Z_n ist a vector of d risk factors Sensitivity coefficients: $f_{z_i} = \frac{\delta f}{\delta z_i}(t_n, Z_n)$, $1 \le i \le d$ Example: "The Greeks" of a portfolio are the sensitivity coefficients Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in different markets is difficult;

Portfolio value at time t_n : $V_n = f(t_n, Z_n)$, Z_n ist a vector of d risk factors Sensitivity coefficients: $f_{z_i} = \frac{\delta f}{\delta z_i}(t_n, Z_n)$, $1 \le i \le d$ Example: "The Greeks" of a portfolio are the sensitivity coefficients Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in differnt markets is difficult;

Scenario based risk measures: Let n be the number of possible risk factor changes (= scenarios).

Let $\chi = \{X_1, X_2, \dots, X_N\}$ be the set of scenarios and $l_{[n]}(\cdot)$ the portfolio loss operator.

Portfolio value at time t_n : $V_n = f(t_n, Z_n)$, Z_n ist a vector of d risk factors Sensitivity coefficients: $f_{z_i} = \frac{\delta f}{\delta z_i}(t_n, Z_n)$, $1 \le i \le d$ Example: "The Greeks" of a portfolio are the sensitivity coefficients Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in differnt markets is difficult;

Scenario based risk measures: Let n be the number of possible risk factor changes (= scenarios).

Let $\chi = \{X_1, X_2, \dots, X_N\}$ be the set of scenarios and $l_{[n]}(\cdot)$ the portfolio loss operator.

Assign a weight w_i to every scenario $i, 1 \le i \le N$

Portfolio value at time t_n : $V_n = f(t_n, Z_n)$, Z_n ist a vector of d risk factors Sensitivity coefficients: $f_{z_i} = \frac{\delta f}{\delta z_i}(t_n, Z_n)$, $1 \le i \le d$ Example: "The Greeks" of a portfolio are the sensitivity coefficients Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in differnt markets is difficult;

Scenario based risk measures: Let n be the number of possible risk factor changes (= scenarios).

Let $\chi = \{X_1, X_2, \dots, X_N\}$ be the set of scenarios and $l_{[n]}(\cdot)$ the portfolio loss operator.

Assign a weight w_i to every scenario $i, 1 \le i \le N$

Portfolio risk:

$$\Psi[\chi, w] = \max\{w_1 l_{[n]}(X_1), w_2 l_{[n]}(X_2), \dots, w_N l_{[n]}(X_N)\}$$

A portfolio consists of many units of a certain future contract and many *put* and *call options* on the same contract with the same maturity.

A portfolio consists of many units of a certain future contract and many *put* and *call options* on the same contract with the same maturity.

Scenarios *i*, $1 \le i \le 14$:

Scenarios 1 to 8		Scenarios 9 to 14	
Volatility	Price of the future	Volatility	Price of the future
$\overline{\mathbf{x}}$	$ \xrightarrow{7} \frac{1}{3} * Range \xrightarrow{7} \frac{1}{3} * Range \xrightarrow{7} \frac{3}{3} * Range $	\nearrow	$\begin{array}{c} \begin{array}{c} & \frac{1}{3} * Range \\ & \frac{2}{3} * Range \\ & \frac{3}{3} * Range \end{array} \end{array}$

A portfolio consists of many units of a certain future contract and many *put* and *call options* on the same contract with the same maturity.

Scenarios *i*, $1 \le i \le 14$:

Scenarios 1 to 8		Scenarios 9 to 14	
Volatility	Price of the future	Volatility	Price of the future
\sim	$ \overrightarrow{} \stackrel{1}{\xrightarrow{3}} * Range \overrightarrow{} \stackrel{2}{\xrightarrow{3}} * Range \overrightarrow{} \stackrel{3}{\xrightarrow{3}} * Range \overrightarrow{} \stackrel{3}{\xrightarrow{3}} * Range $	\nearrow	$\sum_{\substack{\frac{1}{3} \\ \frac{2}{3} \\$

Scenarios *i*, *i* = 15, 16 represent an extreme increase or decrease of the future price, respectively. The weights are $w_i = 1$, for $i \in \{1, 2, ..., 14\}$, and $w_i = 0.35$, for $i \in \{15, 16\}$.

A portfolio consists of many units of a certain future contract and many *put* and *call options* on the same contract with the same maturity.

Scenarios *i*, $1 \le i \le 14$:

Scenarios 1 to 8		Scenarios 9 to 14	
Volatility	Price of the future	Volatility	Price of the future
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$ \xrightarrow{7} \frac{1}{3} * Range  \xrightarrow{7} \frac{2}{3} * Range  \xrightarrow{7} \frac{3}{3} * Range   $	$\nearrow$	$\searrow \frac{1}{3} * Range$ $\searrow \frac{1}{3} * Range$ $\bigotimes \frac{1}{3} * Range$

Scenarios *i*, *i* = 15, 16 represent an extreme increase or decrease of the future price, respectively. The weights are  $w_i = 1$ , for  $i \in \{1, 2, ..., 14\}$ , and  $w_i = 0.35$ , for  $i \in \{15, 16\}$ .

An appropriate model (zB. Black-Scholes) is used to generate the option prices in the different scenarios.

#### Risk measures based on the loss distribution

Let  $F_L := F_{L_{n+1}}$  be the loss distribution of  $L_{n+1}$ . The parameters of  $F_L$  will be estimated in terms of historical data, either directly or bin terms of risk factors.

1. The standard deviation  $std(L) := \sqrt{\sigma^2(F_L)}$ It is used frequently in portfolio theory.

Disadvantages:

- STD exists only for distributions with E(F²_L) < ∞, not applicable to leptocurtic ("fat tailed") loss distributions;</p>
- gains and losses equally influence the STD.

#### Example

 $L_1 \sim N(0,2)$ ,  $L_2 \sim t_4$  (Student's distribution with m = 4 degrees of freedom)  $\sigma^2(L_1) = 2$  and  $\sigma^2(L_2) = \frac{m}{m-2} = 2$  hold However the probability of losses is much larger for  $L_2$  than for  $L_1$ .

Plot the logarithm of the quotient  $\ln[P(L_2 > x)/P(L_1 > x)]!$ 

**Definition:** Let *L* be the loss distribution and  $\alpha \in (0, 1)$  a given confindence level.

 $VaR_{\alpha}(L)$  is the smallest number *I*, such that  $P(L > I) \leq 1 - \alpha$  holds.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

**Definition:** Let *L* be the loss distribution and  $\alpha \in (0, 1)$  a given confindence level.

 $VaR_{\alpha}(L)$  is the smallest number *I*, such that  $P(L > I) \leq 1 - \alpha$  holds.

$$VaR_{\alpha}(L) = \inf\{l \in \mathbb{R} : P(L > l) \le 1 - \alpha\} = \inf\{l \in \mathbb{R} : 1 - F_{L}(l) \le 1 - \alpha\} = \inf\{l \in \mathbb{R} : F_{L}(l) \ge \alpha\}$$

BIS (Bank of International Settlements) suggests  $VaR_{0.99}(L)$  over a horizon of 10 days as a measure for the market risk of a portfolio.

**Definition:** Let *L* be the loss distribution and  $\alpha \in (0, 1)$  a given confindence level.

 $VaR_{\alpha}(L)$  is the smallest number *I*, such that  $P(L > I) \leq 1 - \alpha$  holds.

$$VaR_{\alpha}(L) = \inf\{I \in \mathbb{R} : P(L > I) \le 1 - \alpha\} = \inf\{I \in \mathbb{R} : 1 - F_{L}(I) \le 1 - \alpha\} = \inf\{I \in \mathbb{R} : F_{L}(I) \ge \alpha\}$$

BIS (Bank of International Settlements) suggests  $VaR_{0.99}(L)$  over a horizon of 10 days as a measure for the market risk of a portfolio.

**Definition:** Let  $F: A \to B$  be an increasing function. The function  $F^{\leftarrow}: B \to A \cup \{-\infty, +\infty\}, y \mapsto \inf\{x \in \mathbb{R}: F(x) \ge y\}$  is called *generalized inverse function* of F.

Notice that  $\inf \emptyset = \infty$ .

**Definition:** Let *L* be the loss distribution and  $\alpha \in (0, 1)$  a given confindence level.

 $VaR_{\alpha}(L)$  is the smallest number *I*, such that  $P(L > I) \leq 1 - \alpha$  holds.

$$VaR_{\alpha}(L) = \inf\{I \in \mathbb{R} : P(L > I) \le 1 - \alpha\} = \inf\{I \in \mathbb{R} : 1 - F_{L}(I) \le 1 - \alpha\} = \inf\{I \in \mathbb{R} : F_{L}(I) \ge \alpha\}$$

BIS (Bank of International Settlements) suggests  $VaR_{0.99}(L)$  over a horizon of 10 days as a measure for the market risk of a portfolio.

**Definition:** Let  $F: A \to B$  be an increasing function. The function  $F^{\leftarrow}: B \to A \cup \{-\infty, +\infty\}, y \mapsto \inf\{x \in \mathbb{R}: F(x) \ge y\}$  is called *generalized inverse function* of F.

Notice that  $\inf \emptyset = \infty$ .

If *F* is strictly monotone increasing, then  $F^{-1} = F^{\leftarrow}$  holds. **Exercise:** Compute  $F^{\leftarrow}$  for  $F: [0, +\infty) \rightarrow [0, 1]$  with

$$F(x) = \begin{cases} 1/2 & 0 \le x < 1 \\ 1 & 1 \le x \end{cases}$$

**Definition:** Let  $F : \mathbb{R} \to \mathbb{R}$  be a (monotone increasing) distribution function and  $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$  be  $\alpha$ -quantile of F.

(ロ)、(型)、(E)、(E)、 E、 の(の)

**Definition:** Let  $F : \mathbb{R} \to \mathbb{R}$  be a (monotone increasing) distribution function and  $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$  be  $\alpha$ -quantile of F. For the loss function L and its distribution function F the following holds:

 $VaR_{\alpha}(L) = q_{\alpha}(F) = F^{\leftarrow}(\alpha).$ 

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

**Definition:** Let  $F : \mathbb{R} \to \mathbb{R}$  be a (monotone increasing) distribution function and  $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$  be  $\alpha$ -quantile of F. For the loss function L and its distribution function F the following holds:

$$VaR_{\alpha}(L) = q_{\alpha}(F) = F^{\leftarrow}(\alpha).$$

**Example:** Let  $L \sim N(\mu, \sigma^2)$ . Then  $VaR_{\alpha}(L) = \mu + \sigma q_{\alpha}(\Phi) = \mu + \sigma \Phi^{-1}(\alpha)$  holds, where  $\Phi$  is the distribution function of a random variable  $X \sim N(0, 1)$ .

**Definition:** Let  $F : \mathbb{R} \to \mathbb{R}$  be a (monotone increasing) distribution function and  $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$  be  $\alpha$ -quantile of F. For the loss function L and its distribution function F the following holds:

$$VaR_{\alpha}(L) = q_{\alpha}(F) = F^{\leftarrow}(\alpha).$$

**Example:** Let  $L \sim N(\mu, \sigma^2)$ . Then  $VaR_{\alpha}(L) = \mu + \sigma q_{\alpha}(\Phi) = \mu + \sigma \Phi^{-1}(\alpha)$  holds, where  $\Phi$  is the distribution function of a random variable  $X \sim N(0, 1)$ .

**Exercise:** Consider a portfolio consisting of 5 pieces of an asset *A*. The today's price of *A* is  $S_0 = 100$ . The daily logarithmic returns are i.i.d.:  $X_1 = \ln \frac{S_1}{S_0}, X_2 = \ln \frac{S_2}{S_1}, \ldots \sim N(0, 0.01)$ . Let  $L_1$  be the 1-day portfolio loss in the time interval (today, tomorrow).

- (a) Compute  $VaR_{0.99}(L_1)$ .
- (b) Compute  $VaR_{0.99}(L_{100})$  and  $VaR_{0.99}(L_{100}^{\Delta})$ , where  $L_{100}$  is the 100-day portfolio loss over a horizon of 100 days starting with today.  $L_{100}^{\Delta}$  is the linearization of the above mentioned 100-day PF-portfolio loss.

Hint: For  $Z \sim N(0,1)$  use the equality  $F_Z^{-1}(0.99) \approx 2.3$ 

・ロト < @ ト < 差 ト < 差 ト 差 の < @</li>

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss  $L \ge VaR_{\alpha}(L)$  happens.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss  $L \ge VaR_{\alpha}(L)$  happens.

**Definition:** Let  $\alpha$  be a given confidence level and L a continuous loss function with distribution function  $F_L$ .  $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$ 

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss  $L \ge VaR_{\alpha}(L)$  happens.

**Definition:** Let  $\alpha$  be a given confidence level and L a continuous loss function with distribution function  $F_L$ .  $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$ 

#### If $F_L$ is continuous:

$$CVaR_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)) = \frac{E(Ll_{[q_{\alpha}(L),\infty)}(L))}{P(L \ge q_{\alpha}(L))} = \frac{1}{1-\alpha} E(Ll_{[q_{\alpha}(L),\infty)}) = \frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} IdF_{L}(I)$$

 $I_A$  is the indicator function of the set A:  $I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$ 

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss  $L \ge VaR_{\alpha}(L)$  happens.

**Definition:** Let  $\alpha$  be a given confidence level and L a continuous loss function with distribution function  $F_L$ .  $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$ 

#### If $F_L$ is continuous:

$$CVaR_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)) = \frac{E(LI_{q_{\alpha}(L),\infty}(L))}{P(L \ge q_{\alpha}(L))} = \frac{1}{1-\alpha} E(LI_{[q_{\alpha}(L),\infty)}) = \frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} IdF_{L}(I)$$

 $I_A$  is the indicator function of the set A:  $I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$ 

If  $F_L$  is discrete the generalized CVaR is defined as follows:

$$GCVaR_{\alpha}(L) := \frac{1}{1-\alpha} \left[ E(LI_{[q_{\alpha}(L),\infty)}) + q_{\alpha} \left( 1 - \alpha - P(L > q_{\alpha}(L)) \right) \right]$$

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss  $L \ge VaR_{\alpha}(L)$  happens.

**Definition:** Let  $\alpha$  be a given confidence level and L a continuous loss function with distribution function  $F_L$ .  $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$ 

#### If $F_L$ is continuous:

$$CVaR_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)) = \frac{E(LI_{[q_{\alpha}(L),\infty)}(L))}{P(L \ge q_{\alpha}(L))} = \frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} IdF_{L}(I)$$

 $I_A$  is the indicator function of the set A:  $I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$ 

If  $F_L$  is discrete the generalized CVaR is defined as follows:

$$GCVaR_{\alpha}(L) := \frac{1}{1-\alpha} \left[ E(LI_{[q_{\alpha}(L),\infty)}) + q_{\alpha} \left( 1 - \alpha - P(L > q_{\alpha}(L)) \right) \right]$$

**Lemma** Let  $\alpha$  be a given confidence level and L a continuous loss function with distribution  $F_L$ . Then  $CVaR_{\alpha}(L) = \frac{1}{1-\alpha} \int_{\alpha}^{1} VaR_p(L)dp$  holds.

# Conditional Value at Risk (contd.) Example 1:

(a) Let  $L \sim Exp(\lambda)$ . Compute  $CVaR_{\alpha}(L)$ .

(b) Let the distribution function  $F_L$  of the loss function L be given as follows :  $F_L(x) = 1 - (1 + \gamma x)^{-1/\gamma}$  for  $x \ge 0$  and  $\gamma \in (0, 1)$ . Compute  $CVaR_{\alpha}(L)$ .

# Conditional Value at Risk (contd.) Example 1:

(a) Let 
$$L \sim Exp(\lambda)$$
. Compute  $CVaR_{\alpha}(L)$ .

(b) Let the distribution function  $F_L$  of the loss function L be given as follows :  $F_L(x) = 1 - (1 + \gamma x)^{-1/\gamma}$  for  $x \ge 0$  and  $\gamma \in (0, 1)$ . Compute  $CVaR_{\alpha}(L)$ .

#### Example 2:

Let  $L \sim N(0, 1)$ . Let  $\phi$  und  $\Phi$  be the density and the distribution function of L, respectively. Show that  $CVaR_{\alpha}(L) = \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$  holds. Let  $L' \sim N(\mu, \sigma^2)$ . Show that  $CVaR_{\alpha}(L') = \mu + \sigma \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$  holds.

# Conditional Value at Risk (contd.) Example 1:

(a) Let 
$$L \sim Exp(\lambda)$$
. Compute  $CVaR_{\alpha}(L)$ .

(b) Let the distribution function  $F_L$  of the loss function L be given as follows :  $F_L(x) = 1 - (1 + \gamma x)^{-1/\gamma}$  for  $x \ge 0$  and  $\gamma \in (0, 1)$ . Compute  $CVaR_{\alpha}(L)$ .

#### Example 2:

Let  $L \sim N(0, 1)$ . Let  $\phi$  und  $\Phi$  be the density and the distribution function of L, respectively. Show that  $CVaR_{\alpha}(L) = \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$  holds. Let  $L' \sim N(\mu, \sigma^2)$ . Show that  $CVaR_{\alpha}(L') = \mu + \sigma \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$  holds. **Exercise:** 

Let the loss L be distributed according to the Student's t-distribution with  $\nu>1$  degrees of freedom. The density of L is

$$g_{
u}(x) = rac{\Gamma((
u+1)/2)}{\sqrt{
u\pi}\Gamma(
u/2)} \left(1 + rac{x^2}{
u}
ight)^{-(
u+1)/2}$$

Show that  $CVaR_{\alpha}(L) = \frac{g_{\nu}(t_{\nu}^{-1}(\alpha))}{1-\alpha} \left(\frac{\nu+(t_{\nu}^{-1}(a))^2}{\nu-1}\right)$ , where  $t_{\nu}$  is the distribution function of L.