Let \boldsymbol{P} be a credit portfolio consisting of \boldsymbol{m} credits.

The loss function is $L = \sum_{i=1}^m L_i$ and the single credit losses L_i are independent conditioned on a vector Z of economical impact factors.

Let \boldsymbol{P} be a credit portfolio consisting of \boldsymbol{m} credits.

The loss function is $L=\sum_{i=1}^m L_i$ and the single credit losses L_i are independent conditioned on a vector Z of economical impact factors.

Goal: Determine $VaR_{\alpha}(L) = q_{\alpha}(L)$, $CVaR_{\alpha} = E(L|L > q_{\alpha}(L))$, $CVaR_{i,\alpha} = E(L_i|L > q_{\alpha}(L))$, for all i.

Let \boldsymbol{P} be a credit portfolio consisting of \boldsymbol{m} credits.

The loss function is $L = \sum_{i=1}^m L_i$ and the single credit losses L_i are independent conditioned on a vector Z of economical impact factors.

Goal: Determine $VaR_{\alpha}(L) = q_{\alpha}(L)$, $CVaR_{\alpha} = E(L|L > q_{\alpha}(L))$, $CVaR_{i,\alpha} = E(L_i|L > q_{\alpha}(L))$, for all i.

Application of Monte Carlo (MC) simulation has to deal with the simulation of rare events!

E.g. for $\alpha=0,99$ only 1% of the standard MC simulations will lead to a loss L, such that $L>q_{\alpha}(L)$.

Let \boldsymbol{P} be a credit portfolio consisting of \boldsymbol{m} credits.

The loss function is $L = \sum_{i=1}^m L_i$ and the single credit losses L_i are independent conditioned on a vector Z of economical impact factors.

Goal: Determine $VaR_{\alpha}(L) = q_{\alpha}(L)$, $CVaR_{\alpha} = E(L|L > q_{\alpha}(L))$, $CVaR_{i,\alpha} = E(L_i|L > q_{\alpha}(L))$, for all i.

Application of Monte Carlo (MC) simulation has to deal with the simulation of rare events!

E.g. for $\alpha=0,99$ only 1% of the standard MC simulations will lead to a loss L, such that $L>q_{\alpha}(L)$.

The standard MC estimator is:

$$\widehat{\mathrm{CVaR}}_{\alpha}^{(MC)}\!(L) = \frac{1}{\sum_{i=1}^{n} I_{(q_{\alpha},+\infty)}\!\left(L^{(i)}\right)} \sum_{i=1}^{n} L^{(i)} I_{(q_{\alpha},+\infty)}\!\left(L^{(i)}\right),$$

where L_i is the value of the loss in the ith simulation run.

Let \boldsymbol{P} be a credit portfolio consisting of \boldsymbol{m} credits.

The loss function is $L = \sum_{i=1}^m L_i$ and the single credit losses L_i are independent conditioned on a vector Z of economical impact factors.

Goal: Determine $VaR_{\alpha}(L) = q_{\alpha}(L)$, $CVaR_{\alpha} = E(L|L > q_{\alpha}(L))$, $CVaR_{i,\alpha} = E(L_i|L > q_{\alpha}(L))$, for all i.

Application of Monte Carlo (MC) simulation has to deal with the simulation of rare events!

E.g. for $\alpha=0,99$ only 1% of the standard MC simulations will lead to a loss L, such that $L>q_{\alpha}(L)$.

The standard MC estimator is:

$$\widehat{\mathrm{CVaR}}_{\alpha}^{(MC)}\!(L) = \frac{1}{\sum_{i=1}^{n} I_{(q_{\alpha},+\infty)}\!\left(L^{(i)}\right)} \sum_{i=1}^{n} L^{(i)} I_{(q_{\alpha},+\infty)}\!\left(L^{(i)}\right),$$

where L_i is the value of the loss in the ith simulation run.

 $\widehat{\mathrm{CVaR}}_{\alpha}^{(MC)}(L)$ is unstable, i.e. it has a very high variance, if the number of simulation runs ist not very high.

Let X be a r.v. in a probability space (Ω, \mathcal{F}, P) with absolutely continuous distribution function and density function f.

Goal: Determine $\theta = E(h(X)) = \int_{-\infty}^{\infty} h(x)f(x)dx$ for some given function h.

Let X be a r.v. in a probability space (Ω, \mathcal{F}, P) with absolutely continuous distribution function and density function f.

Goal: Determine $\theta = E(h(X)) = \int_{-\infty}^{\infty} h(x) f(x) dx$ for some given function h.

Examples:

Set $h(x) = I_A(x)$ to compute the probability of an event A.

Set $h(x) = xI_{X>C}(x)$ with c = VaR(X) to compute CVaR(X).

Let X be a r.v. in a probability space (Ω,\mathcal{F},P) with absolutely continuous distribution function and density function f .

Goal: Determine $\theta = E(h(X)) = \int_{-\infty}^{\infty} h(x)f(x)dx$ for some given function h.

Examples:

Set $h(x) = I_A(x)$ to compute the probability of an event A.

Set $h(x) = xI_{X>c}(x)$ with c = VaR(X) to compute CVaR(X).

Algorithm: Monte Carlo integration

- (1) Simulate X_1, X_2, \ldots, X_n independently with density f .
- (2) Compute the standard MC estimator $\hat{\theta}_n^{(MC)} = \frac{1}{n} \sum_{i=1}^n h(X_i)$.

Let X be a r.v. in a probability space $\left(\Omega,\mathcal{F},P\right)$ with absolutely continuous distribution function and density function f .

Goal: Determine $\theta = E(h(X)) = \int_{-\infty}^{\infty} h(x)f(x)dx$ for some given function h.

Examples:

Set $h(x) = I_A(x)$ to compute the probability of an event A.

Set $h(x) = xI_{X>c}(x)$ with c = VaR(X) to compute CVaR(X).

Algorithm: Monte Carlo integration

- (1) Simulate X_1, X_2, \ldots, X_n independently with density f.
- (2) Compute the standard MC estimator $\hat{\theta}_n^{(MC)} = \frac{1}{n} \sum_{i=1}^n h(X_i)$.

The strong low of large numbers implies $\lim_{n \to \infty} \hat{\theta}_n^{(MC)} = \theta$ almost surely.

Let X be a r.v. in a probability space $\left(\Omega,\mathcal{F},P\right)$ with absolutely continuous distribution function and density function f .

Goal: Determine $\theta = E(h(X)) = \int_{-\infty}^{\infty} h(x)f(x)dx$ for some given function h.

Examples:

Set $h(x) = I_A(x)$ to compute the probability of an event A.

Set $h(x) = xI_{X>c}(x)$ with c = VaR(X) to compute CVaR(X).

Algorithm: Monte Carlo integration

- (1) Simulate X_1, X_2, \ldots, X_n independently with density f.
- (2) Compute the standard MC estimator $\hat{\theta}_n^{(MC)} = \frac{1}{n} \sum_{i=1}^n h(X_i)$.

The strong low of large numbers implies $\lim_{n \to \infty} \hat{\theta}_n^{(MC)} = \theta$ almost surely. In case of rare events, e.g. $h(x) = I_A(x)$ with P(A) << 1, the convergence is very slow.

Let g be a probability density function, such that $f(x) > 0 \Rightarrow g(x) > 0$.

We define the *likelihood ratio* as:
$$r(x) := \begin{cases} \frac{f(x)}{g(x)} & g(x) > 0 \\ 0 & g(x) = 0 \end{cases}$$

Let g be a probability density function, such that $f\left(x\right)>0\Rightarrow g\left(x\right)>0$.

We define the *likelihood ratio* as:
$$r(x) := \begin{cases} \frac{f(x)}{g(x)} & g(x) > 0 \\ 0 & g(x) = 0 \end{cases}$$

The following equality holds:

$$\theta = \int_{-\infty}^{\infty} h(x)r(x)g(x)dx = E_g(h(x)r(x))$$

Algorithm: Importance sampling

- (1) Simulate X_1, X_2, \ldots, X_n independently with density g.
- (2) Compute the IS-estimator $\hat{\theta}_{n}^{(IS)} = \frac{1}{n} \sum_{i=1}^{n} h(X_i) r(X_i)$.

g is called importance sampling density (IS density).

Let g be a probability density function, such that $f(x) > 0 \Rightarrow g(x) > 0$.

We define the *likelihood ratio* as:
$$r(x) := \begin{cases} \frac{f(x)}{g(x)} & g(x) > 0 \\ 0 & g(x) = 0 \end{cases}$$

The following equality holds:

$$\theta = \int_{-\infty}^{\infty} h(x)r(x)g(x)dx = E_g(h(x)r(x))$$

Algorithm: Importance sampling

- (1) Simulate X_1, X_2, \ldots, X_n independently with density g.
- (2) Compute the IS-estimator $\hat{\theta}_n^{(IS)} = \frac{1}{n} \sum_{i=1}^n h(X_i) r(X_i)$.

g is called importance sampling density (IS density).

Goal: choose an IS density ${\rm g}$ such that the variance of the IS estimator is much smaller than the variance of the standard MC-estimator.

$$\begin{aligned} \operatorname{var}\left(\hat{\theta}_{n}^{(IS)}\right) &= \frac{1}{n^{2}} (\operatorname{Eg}(h^{2}(X)r^{2}(X)) - \theta^{2}) \\ \operatorname{var}\left(\hat{\theta}_{n}^{(MC)}\right) &= \frac{1}{n^{2}} (\operatorname{E}(h^{2}(X)) - \theta^{2}) \end{aligned}$$

Theoretically the variance of the IS estimator can be reduced to 0!

Theoretically the variance of the IS estimator can be reduced to 0!

Assume $h(x) \ge 0, \forall x$.

For $g^*(x) = f(x)h(x)/E(h(x))$ we get $: \hat{\theta}_1^{(IS)} = h(X_1)r(X_1) = E(h(X)).$

The IS estimator yields the correct value already after a single simulation!

Theoretically the variance of the IS estimator can be reduced to 0! Assume $h(x) \ge 0, \forall x$.

For $g^*(x) = f(x)h(x)/E(h(x))$ we get $: \hat{\theta}_1^{(IS)} = h(X_1)r(X_1) = E(h(X)).$

The IS estimator yields the correct value already after a single simulation!

Let $h(x) = I_{\{X > c\}}(x)$ where c >> E(X) (rare event).

Theoretically the variance of the IS estimator can be reduced to 0! Assume $h(x) \ge 0, \forall x$.

For $g^*(x) = f(x)h(x)/E(h(x))$ we get : $\hat{\theta}_1^{(IS)} = h(X_1)r(X_1) = E(h(X))$.

The IS estimator yields the correct value already after a single simulation!

Let
$$h(x) = I_{\{X \ge c\}}(x)$$
 where $c >> E(X)$ (rare event).
We have $E(h^2(X)) = P(X \ge c)$ and

We have
$$\mathrm{E}\left(\mathrm{h}^{2}(\mathrm{X}\,)\right)=\mathrm{P}\left(\mathrm{X}\geq\mathrm{c}\,\right)$$
 and

$$E_g(h^2(X)r^2(X)) = \int_{-\infty}^{\infty} h^2(x)r^2(x)g(x)dx = E_g(r^2(X); X \ge c) =$$

$$\int_{-\infty}^{\infty} h^2(x) r(x) f(x) dx = \int_{-\infty}^{\infty} h(x) r(x) f(x) dx = E_f(r(X); X \ge c)$$

Theoretically the variance of the IS estimator can be reduced to 0! Assume $h(x) \ge 0, \forall x$.

For
$$g^*(x) = f(x)h(x)/E(h(x))$$
 we get $: \hat{\theta}_1^{(IS)} = h(X_1)r(X_1) = E(h(X)).$

The IS estimator yields the correct value already after a single simulation!

Let
$$h(x) = I_{\{X \ge c\}}(x)$$
 where $c >> E(X)$ (rare event). We have $E(h^2(X)) = P(X \ge c)$ and

$$E_g(h^2(X)r^2(X)) = \int_{-\infty}^{\infty} h^2(x)r^2(x)g(x)dx = E_g(r^2(X); X \ge c) =$$

$$\int_{-\infty}^{\infty} h^2(x) r(x) f(x) dx = \int_{-\infty}^{\infty} h(x) r(x) f(x) dx = E_f(r(X); X \ge c)$$

Goal: choose g such that $E_g(h^2(X)r^2(X))$ becomes small, i.e. such that r(x) is small for $x\geq c$.

Theoretically the variance of the IS estimator can be reduced to 0! Assume $h(x) \ge 0, \forall x$.

For
$$g^*(x) = f(x)h(x)/E(h(x))$$
 we get $: \hat{\theta}_1^{(IS)} = h(X_1)r(X_1) = E(h(X)).$

The IS estimator yields the correct value already after a single simulation!

Let
$$h(x)=I_{\{X\geq c\}}(x)$$
 where $c>>E(X)$ (rare event). We have $E(h^2(X))=P(X\geq c)$ and

$$E_g(h^2(X)r^2(X)) = \int_{-\infty}^{\infty} h^2(x)r^2(x)g(x)dx = E_g(r^2(X); X \ge c) =$$

$$\int_{-\infty}^{\infty} h^2(x) r(x) f(x) dx = \int_{-\infty}^{\infty} h(x) r(x) f(x) dx = E_f(r(X); X \ge c)$$

Goal: choose g such that $E_g(h^2(X)r^2(X))$ becomes small, i.e. such that r(x) is small for $x\geq c$. Aquivalently, the event $X\geq c$ should be more probable under density g than under density f.

Let $M_X(t)\colon \mathbb{R}\to \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$MX(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tX}f(x)dx$$

Let $M_X(t)\colon \mathbb{R}\to \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$MX(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tX}f(x)dx$$

Consider the IS density $g_t(x):=\frac{e^{tx}f(x)}{MX^t}$. Then $r_t(x)=\frac{f(x)}{g(x)}=MX(t)e^{-tx}$.

Let $M_X(t)\colon \mathbb{R}\to \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tX} f(x) dx$$

Consider the IS density
$$g_t(x) := \frac{e^{t x} f(x)}{MX^t}$$
. Then $r_t(x) = \frac{f(x)}{g(x)} = MX(t)e^{-tx}$. Let $\mu_t := Eg_t(X) = E\left(Xe^{tX}\right)/MX(t)$.

Let $M_X(t)\colon \mathbb{R}\to \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$MX(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

Consider the IS density $g_t(x):=\frac{e^{b\xi}(x)}{MX^t}$. Then $r_t(x)=\frac{f(x)}{g_t(x)}=MX(t)e^{-tx}$.

Let
$$\mu_t := E_{gt}(X) = E(Xe^{tX})/MX(t)$$
.

How to determine a suitable t for a specific h(x)? For example for the estimation of the tail probability?

Let $M_X(t)\colon \mathbb{R}\to \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tX} f(x) dx$$

Consider the IS density $g_t(x):=\frac{e^{tx}\!f(x)}{MX}$. Then

$$r_t(x) = \frac{f(x)}{gt(x)} = MX(t)e^{-tx}$$
.

Let
$$\mu_t := E_{gt}(X) = E(Xe^{tX})/MX(t)$$
.

How to determine a suitable t for a specific h(x)?

For example for the estimation of the tail probability?

Goal: choose t such that $E(r(X); X \ge c) = E(I_{X \ge c}M_X(t)e^{-tX})$ becomes small.

Let $M_X(t)\colon \mathbb{R}\to \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$MX(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tX}f(x)dx$$

Consider the IS density $g_t(x):=\frac{e^{t_{\!F\!}}(x)}{MX^{\!}(t)}.$ Then

$$r_t(x) = \frac{f(x)}{gt(x)} = M_X(t)e^{-tx}$$
.

Let
$$\mu_t := E_{gt}(X) = E(Xe^{tX})/MX(t)$$
.

How to determine a suitable t for a specific h(x)?

For example for the estimation of the tail probability?

Goal: choose t such that $E(r(X); X \ge c) = E(I_{X \ge c}M_X(t)e^{-tX})$ becomes small.

$$e^{-tx} \le e^{-tc}$$
, for $x \ge c$, $t \ge 0 \Rightarrow E(I_{X>c}M_X(t)e^{-tX}) \le M_X(t)e^{-tc}$.

Let $M_X(t)\colon \mathbb{R}\to \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$MX(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tX}f(x)dx$$

Consider the IS density $g_t(x) := \frac{e^{t x}(x)}{M X^{t}}$. Then

$$r_t(x) = \frac{f(x)}{gt(x)} = M_X(t)e^{-tx}$$
.

Let
$$\mu_t := E_{gt}(X) = E(Xe^{tX})/MX(t)$$
.

How to determine a suitable t for a specific h(x)?

For example for the estimation of the tail probability?

Goal: choose t such that $E(r(X); X \ge c) = E(I_{X \ge c}M_X(t)e^{-tX})$ becomes small.

$$e^{-tx} \le e^{-tc}$$
, for $x \ge c$, $t \ge 0 \Rightarrow E(I_{X>c}M_X(t)e^{-tX}) \le M_X(t)e^{-tc}$.

Set $t = \operatorname{argmin}\{M\chi(t)e^{-tc}: t \ge 0\}$ which implies t = t(c), where t(c) is the solution of the equation $\mu_t = c$.

Let $M_X(t)\colon \mathbb{R}\to \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$MX(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tX}f(x)dx$$

Consider the IS density $g_t(x):=\frac{e^{th}\!f(x)}{MX(t)}.$ Then

$$r_t(x) = \frac{f(x)}{gt(x)} = M\chi(t)e^{-tx}$$
.

Let
$$\mu_t := E_{gt}(X) = E(Xe^{tX})/MX(t)$$
.

How to determine a suitable t for a specific h(x)?

For example for the estimation of the tail probability?

Goal: choose t such that $E(r(X); X \ge c) = E(I_{X \ge c}M_X(t)e^{-tX})$ becomes small.

$$e^{-tx} \le e^{-tc}$$
, for $x \ge c$, $t \ge 0 \Rightarrow E(I_{X>c}M_X(t)e^{-tX}) \le M_X(t)e^{-tc}$.

Set $t = argmin\{M\chi(t)e^{-tc}\colon t \ge 0\}$ which imples t = t(c), where t(c) is the solution of the equation $\mu_t = c$.

(A unique solution of the above equality exists for all relevant values of c, see e.g. Embrechts et al. for a proof).

(useful for the estimation of the credit portfolio risk)

(useful for the estimation of the credit portfolio risk)

Let $f\$ and $g\$ be probability densities. Define probability measures $P\$ and $Q\colon$

$$P(A):=\int_{x\in A}\!\!f\left(x\right)\!\mathrm{d}x$$
 and $Q(A):=\int_{x\in A}\!\!g\left(x\right)\!\mathrm{d}x$ for $A\subset\mathbb{R}.$

(useful for the estimation of the credit portfolio risk)

Let $f\$ and $g\$ be probability densities. Define probability measures $P\$ and $Q\colon$

$$P(A):=\int_{x\in A}\!\!f\left(x\right)\!\mathrm{d}x$$
 and $Q(A):=\int_{x\in A}\!\!g\left(x\right)\!\mathrm{d}x$ for $A\subset\mathbb{R}.$

Goal: Estimate the expected value $\theta:=E^P(h(X))$ of a given function $h\colon \mathcal{F}\to \mathbb{R}$ in the probability space (Ω,\mathcal{F},P) .

(useful for the estimation of the credit portfolio risk)

Let $f\$ and $g\$ be probability densities. Define probability measures $P\$ and $Q\colon$

$$P(A):=\int_{X\in A}\!\!f\left(x\right)\!dx$$
 and $Q(A):=\int_{X\in A}\!\!g\left(x\right)\!dx$ for $A\subset\mathbb{R}.$

Goal: Estimate the expected value $\theta:=E^P(h(X))$ of a given function $h\colon \mathcal{F}\to \mathbb{R}$ in the probability space (Ω,\mathcal{F},P) .

We have $\theta:=E^P(h(X))=E^Q(h(X)r(X))$ with r(x):=dP/dQ, thus r is the density of P w.r.t. Q.

(useful for the estimation of the credit portfolio risk)

Let $f\$ and $g\$ be probability densities. Define probability measures $P\$ and $Q\colon$

$$P(A):=\int_{x\in A}\!\!f\left(x\right)\!\mathrm{d}x$$
 and $Q(A):=\int_{x\in A}\!\!g\left(x\right)\!\!\mathrm{d}x$ for $A\subset\mathbb{R}.$

Goal: Estimate the expected value $\theta := E^P(h(X))$ of a given function $h \colon \mathcal{F} \to \mathbb{R}$ in the probability space (Ω, \mathcal{F}, P) .

We have $\theta := E^P(h(X)) = E^Q(h(X)r(X))$ with r(x) := dP/dQ, thus r is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:

Let X be a r.v. in (Ω, \mathcal{F}, P) such that $MX(t) = E^{P}(\exp\{tX\}) < \infty$, $\forall t$.

(useful for the estimation of the credit portfolio risk)

Let $f\$ and $g\$ be probability densities. Define probability measures $P\$ and $Q\colon$

$$P(A):=\int_{x\in A}\!\!f\left(x\right)\!\mathrm{d}x$$
 and $Q(A):=\int_{x\in A}\!\!g\left(x\right)\!\!\mathrm{d}x$ for $A\subset\mathbb{R}.$

Goal: Estimate the expected value $\theta:=E^P(h(X))$ of a given function $h\colon \mathcal{F}\to \mathbb{R}$ in the probability space (Ω,\mathcal{F},P) .

We have $\theta:=E^P(h(X))=E^Q(h(X)r(X))$ with r(x):=dP/dQ, thus r is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:

Let X be a r.v. in (Ω, \mathcal{F}, P) such that $MX(t) = E^P(\exp\{tX\}) < \infty$, $\forall t$.

Define a probability measure Q_t in (Ω, \mathcal{F}) , such that

$$\mathrm{d} Q_t/\mathrm{d} P = \exp(tX)/\mathrm{M}\underline{x}(t) \text{, i.e. } Q_t(A) := \mathrm{E}^{\,P}\Big(\tfrac{\exp\{tX\}}{\mathrm{M}\underline{x}(t)};A\Big).$$

(useful for the estimation of the credit portfolio risk)

Let $f\$ and $g\$ be probability densities. Define probability measures $P\$ and $Q\colon$

$$P(A):=\int_{x\in A}\!\!f\left(x\right)\!\mathrm{d}x$$
 and $Q(A):=\int_{x\in A}\!\!g\left(x\right)\!\!\mathrm{d}x$ for $A\subset\mathbb{R}.$

Goal: Estimate the expected value $\theta:=E^P(h(X))$ of a given function $h\colon \mathcal{F}\to \mathbb{R}$ in the probability space (Ω,\mathcal{F},P) .

We have $\theta:=E^P(h(X))=E^Q(h(X)r(X))$ with r(x):=dP/dQ, thus r is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:

Let X be a r.v. in (Ω, \mathcal{F}, P) such that $MX(t) = E^P(\exp\{tX\}) < \infty$, $\forall t$.

Define a probability measure Q_t in (Ω, \mathcal{F}) , such that

$$\mathrm{d} Q_t/\mathrm{d} P = \exp(tX)/\mathrm{M}\chi(t) \text{, i.e. } Q_t(A) := E^P\Big(\tfrac{\exp\{tX\}}{\mathrm{M}\chi t)}; A\Big).$$

We have $\frac{dP}{dQt} = MX(t) \exp(-tX) =: r_t(X)$.

(useful for the estimation of the credit portfolio risk)

Let $f\$ and $g\$ be probability densities. Define probability measures $P\$ and $Q\colon$

$$P(A):=\int_{x\in A}\!\!f\left(x\right)\!\mathrm{d}x$$
 and $Q(A):=\int_{x\in A}\!\!g\left(x\right)\!\mathrm{d}x$ for $A\subset\mathbb{R}.$

Goal: Estimate the expected value $\theta:=E^P(h(X))$ of a given function $h\colon \mathcal{F}\to \mathbb{R}$ in the probability space (Ω,\mathcal{F},P) .

We have $\theta:=E^P(h(X))=E^Q(h(X)r(X))$ with r(x):=dP/dQ, thus r is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:

Let X be a r.v. in (Ω, \mathcal{F}, P) such that $MX(t) = E^P(\exp\{tX\}) < \infty$, $\forall t$.

Define a probability measure Q_t in (Ω, \mathcal{F}) , such that

$$\mathrm{d} Q_t/\mathrm{d} P = \exp(tX)/\mathrm{M} \chi(t) \text{, i.e. } Q_t(A) := \mathrm{E}^{\,P}\Big(\tfrac{\exp\{tX\}}{\mathrm{M} \chi t)}; A\Big).$$

We have
$$\frac{dP}{dQt} = MX(t) \exp(-tX) =: r_t(X)$$
.

The IS algorithm does not change: Simulate independent realisations of X_i in (Ω,\mathcal{F},Q_t) and set $\hat{\theta}_n^{(IS)}=(1/n)\sum_{i=1}^n X_i r_t(X_i).$

(see Glasserman and Li (2003))

Consider the loss function of a credit portfolio $L = \sum_{i=1}^m e_i Y_i$.

(see Glasserman and Li (2003))

Consider the loss function of a credit portfolio $L = \sum_{i=1}^m e_i Y_i$.

 Y_i are the loss indicators with default probability \bar{p}_i and $e_i = (1 - \lambda_i)L_i$ are the positive deterministic exposures in the case that a corresponding loss happens. λ_i are the recovery rates and L_i are the credit nominals, for $i=1,2,\ldots,m$.

(see Glasserman and Li (2003))

Consider the loss function of a credit portfolio $L = \sum_{i=1}^m e_i Y_i$.

 Y_i are the loss indicators with default probability \overline{p}_i and $e_i = (1 - \lambda_i)L_i$ are the positive deterministic exposures in the case that a corresponding loss happens. λ_i are the recovery rates and L_i are the credit nominals, for $i=1,2,\ldots,m$.

Let Z be a vector of economical impact factors, such that $Y_i|Z$ are independent and $Y_i|(Z=z) \sim \mathrm{Bernoulli}\left(p_i(z)\right), \ \forall i=1,2,\ldots,m.$

(see Glasserman and Li (2003))

Consider the loss function of a credit portfolio $L = \sum_{i=1}^{m} e_i Y_i$.

 Y_i are the loss indicators with default probability \overline{p}_i and $e_i = (1 - \lambda_i)L_i$ are the positive deterministic exposures in the case that a corresponding loss happens. λ_i are the recovery rates and L_i are the credit nominals, for $i=1,2,\ldots,m$.

Let Z be a vector of economical impact factors, such that $Y_i|Z$ are independent and $Y_i|(Z=z) \sim \mathrm{Bernoulli}(p_i(z))$, $\forall i=1,2,\ldots,m$.

Goal: Estimation of $\theta=P(L\geq c\,)$ by means of IS, for some given c with c>>E(L).

(see Glasserman and Li (2003))

Consider the loss function of a credit portfolio $L = \sum_{i=1}^m e_i Y_i$.

 Y_i are the loss indicators with default probability \bar{p}_i and $e_i = (1 - \lambda_i) L_i$ are the positive deterministic exposures in the case that a corresponding loss happens. λ_i are the recovery rates and L_i are the credit nominals, for $i=1,2,\ldots,m$.

Let Z be a vector of economical impact factors, such that $Y_i|Z$ are independent and $Y_i|(Z=z) \sim \mathrm{Bernoulli}(p_i(z))$, $\forall i=1,2,\ldots,m$.

Goal: Estimation of $\theta=P(L\geq c)$ by means of IS, for some given c with c>>E(L).

Simplified case: Y_i are independent for $i=1,2,\ldots,m$. Let $\Omega=\{0,1\}^m$ be the state space of the random vector Y. Consider the probability measure P in Ω :

$$P(\{y\}) = \prod_{i=1}^{m} \bar{p}_{i}^{yi} (1 - \bar{p}_{i})^{1-yi}, y \in \{0, 1\}^{m}.$$

The moment generating function of L is $\mathrm{ML}(t) = \prod_{i=1}^m (\mathrm{e}^{t\dot{q}} \bar{p}_i + 1 - \bar{p}_i).$

Consider a probability measure Q_t :

$$Q_t(\{y\}) = \prod_{i=1}^n \left(\frac{\text{exp}\{te_iy_i\}}{\text{exp}\{te_i\}\bar{p}_i + 1 - \bar{p}_i} \bar{p}_i^{y\!i} (1 - \bar{p}_i)^{1-yi} \right).$$

Consider a probability measure Qt:

$$Q_t(\{\mathrm{y}\}) = \prod_{i=1}^n \left(\frac{\text{exp}\{\mathrm{te}_i\mathrm{y}_i\}}{\text{exp}\{\mathrm{te}_i\}\bar{p}_i+1-\bar{p}_i}\bar{p}_i^{yi}(1-\bar{p}_i)^{1-yi}\right).$$

Let $\bar{q}_{t,i}$ be new default probabilities

$$\bar{q}_{t,i} := \text{exp}\{\mathrm{te}_i\}\bar{p}_i/\big(\text{exp}\{\mathrm{te}_i\}\bar{p}_i + 1 - \bar{p}_i\big).$$

Consider a probability measure Qt:

$$Q_t(\{y\}) = \prod_{i=1}^n \left(\frac{\text{exp}\{te_iy_i\}}{\text{exp}\{te_i\}\bar{p}_i + 1 - \bar{p}_i} \bar{p}_i^{y\!\dot{i}} (1 - \bar{p}_i)^{1 - y\dot{i}} \right).$$

Let $\bar{q}_{t,i}$ be new default probabilities

$$\bar{q}_{t,i} := \text{exp}\{\mathrm{te}_i\}\bar{p}_i/\big(\text{exp}\{\mathrm{te}_i\}\bar{p}_i + 1 - \bar{p}_i\big).$$

We have
$$\mathrm{Q}_t(\{\mathrm{y}\})=\prod_{i=1}^m \bar{\mathrm{q}}_i^{yi}(1-\bar{\mathrm{q}}_i)^{1-yi}$$
 , for $\mathrm{y}\in\{0,1\}^m$

Consider a probability measure Qt:

$$Q_t(\{\mathrm{y}\}) = \prod_{i=1}^n \left(\frac{\text{exp}\{\mathrm{te}_i\mathrm{y}_i\}}{\text{exp}\{\mathrm{te}_i\}\bar{p}_i+1-\bar{p}_i}\bar{p}_i^{yi}(1-\bar{p}_i)^{1-yi}\right).$$

Let $\bar{q}_{t,i}$ be new default probabilities

$$\bar{q}_{t,i} := \text{exp}\{\mathrm{te}_i\}\bar{p}_i/(\text{exp}\{\mathrm{te}_i\}\bar{p}_i+1-\bar{p}_i).$$

We have
$$Q_t(\{y\}) = \prod_{i=1}^m \bar{q}_i^{yi} (1-\bar{q}_i)^{1-yi}$$
, for $y \in \{0,1\}^m$.

Thus after applying the exponential tilting the default indicators are independent with new default probabilities $\bar{q}_{t,i}$

Consider a probability measure Qt:

$$Q_t(\{\mathrm{y}\}) = \prod_{i=1}^n \left(\frac{\text{exp}\{\mathrm{te}_i\mathrm{y}_i\}}{\text{exp}\{\mathrm{te}_i\}\bar{p}_i+1-\bar{p}_i}\bar{p}_i^{yi}(1-\bar{p}_i)^{1-yi}\right).$$

Let $\bar{q}_{t,i}$ be new default probabilities

$$\bar{q}_{t,i} := \text{exp}\{\mathrm{te}_i\}\bar{p}_i/(\text{exp}\{\mathrm{te}_i\}\bar{p}_i+1-\bar{p}_i).$$

We have
$$Q_t(\{y\}) = \prod_{i=1}^m \bar{q}_i^{yi} (1-\bar{q}_i)^{1-yi}$$
, for $y \in \{0,1\}^m$.

Thus after applying the exponential tilting the default indicators are independent with new default probabilities $\bar{q}_{t,i}$

 $\underset{i=1}{\text{lim}_{t\to\infty}}\bar{q}_{t,i}=1$ and $\underset{i=1}{\text{lim}_{t\to-\infty}}\bar{q}_{t,i}=0$ imply that $\mathrm{E}^{Q}(\mathrm{L})$ takes all values in $(0,\sum_{i=1}^{m}\mathrm{e}_{i})$ for $\mathrm{t}\in\mathbb{R}.$

Consider a probability measure Qt:

$$Q_t(\{\mathrm{y}\}) = \prod_{i=1}^n \left(\frac{\text{exp}\{\mathrm{te}_i\mathrm{y}_i\}}{\text{exp}\{\mathrm{te}_i\}\bar{p}_i+1-\bar{p}_i}\bar{p}_i^{yi}(1-\bar{p}_i)^{1-yi}\right).$$

Let $\bar{q}_{t,i}$ be new default probabilities

$$\bar{q}_{t,i} := \exp\{te_i\}\bar{p}_i/(\exp\{te_i\}\bar{p}_i+1-\bar{p}_i).$$

We have
$$Q_t(\{y\}) = \prod_{i=1}^m \bar{q}_i^{yi} (1-\bar{q}_i)^{1-yi}$$
, for $y \in \{0,1\}^m$.

Thus after applying the exponential tilting the default indicators are independent with new default probabilities $\bar{q}_{t,i}$.

 $\underset{i=1}{\text{lim}_{t\to\infty}}\bar{q}_{t,i}=1$ and $\underset{i=1}{\text{lim}_{t\to-\infty}}\bar{q}_{t,i}=0$ imply that $\mathrm{E}^{Q}(\mathrm{L})$ takes all values in $(0,\sum_{i=1}^{m}\mathrm{e}_{i})$ for $\mathrm{t}\in\mathbb{R}.$

Choose t, such that $\sum_{i=1}^m e_i \bar{q}_{t,i} = c$.

The general case: Y_{i} are independent conditional on Z

The general case: Y_i are independent conditional on Z

1. Step: Estimation of the conditional excess probabilites

 $\theta(z\,) := P\left(L \geq c \,|\, Z = z\,\right)$ for a given realisation $z\,$ of the economic factor

Z, by means of the IS approach for the simplified case.

The general case: Yi are independent conditional on Z

1. Step: Estimation of the conditional excess probabilites $\theta(z) := P\left(L \geq c \,|\, Z = z\right) \text{ for a given realisation } z \text{ of the economic factor } Z, \text{ by means of the IS approach for the simplified case.}$

Algorithm: IS for the conditional loss distribution

(1) For a given z compute the conditional default probabilities $p_i(z)$ (as in the simplified case) and solve the equation

$$\sum_{i=1}^m e_i \frac{\exp\{te_i\}p_i(z)}{\exp\{te_i\}p_i(z) + 1 - p_i(z)} = c.$$

The solution t = t(c, z) specifies the correct degree of tilting.

The general case: Yi are independent conditional on Z

1. Step: Estimation of the conditional excess probabilites $\theta(z):=P(L\geq c\,|Z=z)$ for a given realisation z of the economic factor Z, by means of the IS approach for the simplified case.

Algorithm: IS for the conditional loss distribution

(1) For a given z compute the conditional default probabilities $p_i(z)$ (as in the simplified case) and solve the equation

$$\sum_{i=1}^{m} e_i \frac{\exp\{te_i\}p_i(z)}{\exp\{te_i\}p_i(z) + 1 - p_i(z)} = c.$$

The solution t = t(c, z) specifies the correct *degree of tilting*.

(2) Generate n_1 conditional realisations of the vector of default indicators (Y_1, \ldots, Y_m) , Y_i are simulated from $\operatorname{Bernoulli}(q_i)$, $i=1,2,\ldots,m$, with

$$q_i = \frac{\exp\{t(c, z)e_i\}p_i(z)}{\exp\{t(c, z)e_i\}p_i(z) + 1 - p_i(z)}.$$

(3) Let $M_L(t,z) := \prod [\exp\{t(c,z)e_i\}p_i(z) + 1 - p_i(z)]$ be the conditional moment generating function of L. Let $L^{(1)}$, $L^{(2)}$,..., $L^{(n_i)}$ be the n_1 conditional realisations of L for the n_1 simulated realisations of Y_1, Y_2, \ldots, Y_m . Compute the IS-estimator for the tail probability of the conditional loss distribution:

$$\hat{\theta}_{n_i}^{(IS)}\!(z) = \mathrm{ML}(t(c,z),z) \frac{1}{n_1} \sum_{j=1}^{n_i} \mathrm{I}_{L^j \! j \geq c} \exp\{-t(c,z) L^{(j)}\} L^{(j)}.$$

(3) Let $ML(t,z) := \prod [\exp\{t(c,z)e_i\}p_i(z) + 1 - p_i(z)]$ be the conditional moment generating function of L. Let $L^{(1)}$, $L^{(2)}$,..., $L^{(n_i)}$ be the n_1 conditional realisations of L for the n_1 simulated realisations of Y_1, Y_2, \ldots, Y_m . Compute the IS-estimator for the tail probability of the conditional loss distribution:

$$\hat{\theta}_{n_1}^{(IS)}\!(z) = \mathrm{ML}(t(c,z),z) \frac{1}{n_1} \sum_{j=1}^{n_1} \mathrm{I}_{L^j \! j \geq c} \exp\{-t(c,z) L^{(j)}\} L^{(j)}.$$

2. Step: Estimation of the unconditional excess probability $\theta = P(L \ge c)$.

(3) Let $M_L(t,z) := \prod [\exp\{t(c,z)e_i\}p_i(z) + 1 - p_i(z)]$ be the conditional moment generating function of L. Let $L^{(1)}$, $L^{(2)}$,..., $L^{(n_i)}$ be the n_1 conditional realisations of L for the n_1 simulated realisations of Y_1, Y_2, \ldots, Y_m . Compute the IS-estimator for the tail probability of the conditional loss distribution:

$$\hat{\theta}_{n_1}^{(IS)}\!(z) = \mathrm{ML}(t(c,z),z) \frac{1}{n_1} \sum_{j=1}^{n_1} I_{L} j_{j \geq c} \exp\{-t(c,z) L^{(j)}\} L^{(j)}.$$

2. Step: Estimation of the unconditional excess probability $\theta = P(L \ge c)$.

Naive approach: Generate many realisations z of the impact factors Z and compute $\hat{\theta}_{n_1}^{(IS)}(z)$ for every one of them. The required estimator is the average of $\hat{\theta}_{n_1}^{(IS)}(z)$ over all realisations z. This is not the most efficient approach, see Glasserman and Li (2003).

(3) Let $M_L(t,z) := \prod [\exp\{t(c,z)e_i\}p_i(z) + 1 - p_i(z)]$ be the conditional moment generating function of L. Let $L^{(1)}$, $L^{(2)}$,..., $L^{(n_i)}$ be the n_1 conditional realisations of L for the n_1 simulated realisations of Y_1, Y_2, \ldots, Y_m . Compute the IS-estimator for the tail probability of the conditional loss distribution:

$$\hat{\theta}_{n_1}^{(IS)}\!(z) = \mathrm{ML}(t(c,z),z) \frac{1}{n_1} \sum_{j=1}^{n_1} I_{L} j_{j \geq c} \exp\{-t(c,z) L^{(j)}\} L^{(j)}.$$

2. Step: Estimation of the unconditional excess probability $\theta = P(L \ge c)$.

Naive approach: Generate many realisations z of the impact factors Z and compute $\hat{\theta}_{n_1}^{(IS)}(z)$ for every one of them. The required estimator is the average of $\hat{\theta}_{n_1}^{(IS)}(z)$ over all realisations z. This is not the most efficient approach, see Glasserman and Li (2003).

A better alternative: IS for the impact factors.

Assumption: Z $\sim \mathrm{N}_p(0,\Sigma)$ (e.g. probit-normal Bernoulli mixture)

Assumption: $Z \sim \mathrm{N}_p(0,\Sigma)$ (e.g. probit-normal Bernoulli mixture) Let the IS density g be the density of $\mathrm{N}_p(\mu,\Sigma)$ for a new expected vector $\mu \in \mathbb{R}^p$. A good choice of μ should lead to frequent realisations of z which imply high conditional default probabilities $p_i(z)$.

Assumption: $Z \sim \mathrm{Np}(0,\Sigma)$ (e.g. probit-normal Bernoulli mixture) Let the IS density g be the density of $\mathrm{Np}(\mu,\Sigma)$ for a new expected vector $\mu \in \mathbb{R}^p$. A good choice of μ should lead to frequent realisations of z which imply high conditional default probabilities $\mathrm{pi}(z)$.

The likelihood ratio:

$$r_{\mu}(Z) = \frac{\exp\{-\frac{1}{2}Z^{t}\Sigma^{-1}Z\}}{\exp\{-\frac{1}{2}(Z-\mu)^{t}\Sigma^{-1}(Z-\mu)\}} = \exp\{-\mu^{t}\Sigma^{-1}Z + \frac{1}{2}\mu^{t}\Sigma^{1}\mu\}$$

Assumption: $Z \sim \mathrm{N}_p(0,\Sigma)$ (e.g. probit-normal Bernoulli mixture) Let the IS density g be the density of $\mathrm{N}_p(\mu,\Sigma)$ for a new expected vector $\mu \in \mathbb{R}^p$. A good choice of μ should lead to frequent realisations of z which imply high conditional default probabilities $p_i(z)$.

The likelihood ratio:

$$r_{\mu}(Z) = \frac{\exp\{-\frac{1}{2}Z^{t}\Sigma^{-1}Z\}}{\exp\{-\frac{1}{2}(Z-\mu)^{t}\Sigma^{-1}(Z-\mu)\}} = \exp\{-\mu^{t}\Sigma^{-1}Z + \frac{1}{2}\mu^{t}\Sigma^{1}\mu\}$$

Algorithm: complete IS for Bernoulli mixture models with Gaussian factors

(1) Generate $z_1,z_2,\dots,z_n\!\sim N_p\!\big(\mu,\Sigma\big)$ (n is the number of the simulation rounds)

Assumption: $Z \sim \mathrm{N}_p(0,\Sigma)$ (e.g. probit-normal Bernoulli mixture) Let the IS density g be the density of $\mathrm{N}_p(\mu,\Sigma)$ for a new expected vector $\mu \in \mathbb{R}^p$. A good choice of μ should lead to frequent realisations of z which imply high conditional default probabilities $p_i(z)$.

The likelihood ratio:

$$r_{\mu}(Z) = \frac{\exp\{-\frac{1}{2}Z^{t}\Sigma^{-1}Z\}}{\exp\{-\frac{1}{2}(Z-\mu)^{t}\Sigma^{-1}(Z-\mu)\}} = \exp\{-\mu^{t}\Sigma^{-1}Z + \frac{1}{2}\mu^{t}\Sigma^{1}\mu\}$$

Algorithm: complete IS for Bernoulli mixture models with Gaussian factors

- (1) Generate $z_1,z_2,\ldots,z_n\!\sim \mathrm{N}_p(\mu,\Sigma)$ (n is the number of the simulation rounds)
- (2) For each z_i compute $\hat{\theta}_{n_i}^{(IS)}(z_i)$ by applying the IS algorithm for the conditional loss.

Assumption: $Z \sim \mathrm{N}_p(0,\Sigma)$ (e.g. probit-normal Bernoulli mixture) Let the IS density g be the density of $\mathrm{N}_p(\mu,\Sigma)$ for a new expected vector

Let the IS density g be the density of $N_p(\mu, \Sigma)$ for a new expected vect $\mu \in \mathbb{R}^p$. A good choice of μ should lead to frequent realisations of z which imply high conditional default probabilities $p_i(z)$.

The likelihood ratio:

$$r_{\mu}(Z) = \frac{\exp\{-\frac{1}{2}Z^{t}\Sigma^{-1}Z\}}{\exp\{-\frac{1}{2}(Z-\mu)^{t}\Sigma^{-1}(Z-\mu)\}} = \exp\{-\mu^{t}\Sigma^{-1}Z + \frac{1}{2}\mu^{t}\Sigma^{1}\mu\}$$

Algorithm: complete IS for Bernoulli mixture models with Gaussian factors

- (1) Generate $z_1,z_2,\ldots,z_n\!\sim \mathrm{N}_p(\mu,\Sigma)$ (n is the number of the simulation rounds)
- (2) For each z_i compute $\hat{\theta}_{n_i}^{(IS)}(z_i)$ by applying the IS algorithm for the conditional loss.
- (3) compute the IS estimator for the independent excess probability:

$$\hat{\theta}_{n}^{(IS)} = \frac{1}{n} \sum_{i=1}^{n} r_{\mu}(z_{i}) \hat{\theta}_{n_{i}}^{(IS)}(z_{i})$$

The choice of $\boldsymbol{\mu}$

 $\boldsymbol{\mu}$ should be chosen such that the variance of the estimator is small.

 $\boldsymbol{\mu}$ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

 μ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since $\hat{\theta}_{n_i}^{(IS)}(z) \approx P(L \ge c | Z = z)$, search for an appropriate IS density for the function $z \mapsto P(L \ge c | Z = z)$.

 μ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since $\hat{\theta}_{n_i}^{(IS)}(z) \approx P(L \ge c | Z = z)$, search for an appropriate IS density for the function $z \mapsto P(L \ge c | Z = z)$.

Approach:

a) the optimal IS denstity \mathbf{g}^{\ast} is proportional to

$$P(L \ge c | Z = z) \exp\{-\frac{1}{2}z^{t}\Sigma^{-1}z\}.$$

 μ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since $\hat{\theta}_{n_i}^{(IS)}(z) \approx P(L \ge c | Z = z)$, search for an appropriate IS density for the function $z \mapsto P(L \ge c | Z = z)$.

Approach:

- a) the optimal IS denstity $g^{\,\ast}$ is proportional to
- $P(L \ge c | Z = z) \exp\{-\frac{1}{2}z^t \Sigma^{-1}z\}.$
- b) use as IS density a multivariate normal distribution with the same mode as the optimal IS density \mathbf{g}^* .

 μ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since $\hat{\theta}_{n_i}^{(IS)}(z) \approx P(L \ge c | Z = z)$, search for an appropriate IS density for the function $z \mapsto P(L \ge c | Z = z)$.

Approach:

a) the optimal IS denstity g^{\ast} is proportional to

$$P(L \ge c | Z = z) \exp\{-\frac{1}{2}z^{t}\Sigma^{-1}z\}.$$

b) use as IS density a multivariate normal distribution with the same mode as the optimal IS density $\mathbf{g}^{\ast}.$

The mode of a multivariate normal distribution $N_p(\mu, \Sigma)$ equals the expected vector μ , thus determining μ leads to the following optimization problem:

$$\mu = \operatorname{argmax}_{\mathbf{Z}} \left\{ P\left(\mathbf{L} \geq \mathbf{c} \left| \mathbf{Z} = \mathbf{z} \right. \right) \exp \left\{ -\frac{1}{2} \mathbf{z}^t \mathbf{\Sigma}^{-1} \mathbf{z} \right. \right\} \right\}.$$

 μ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since $\hat{\theta}_{n_i}^{(IS)}(z) \approx P(L \ge c | Z = z)$, search for an appropriate IS density for the function $z \mapsto P(L \ge c | Z = z)$.

Approach:

- a) the optimal IS denstity $g^{\,\ast}$ is proportional to
- $P(L \ge c | Z = z) \exp\{-\frac{1}{2}z^{t}\Sigma^{-1}z\}.$
- b) use as IS density a multivariate normal distribution with the same mode as the optimal IS density $g^{\ast}.$

The mode of a multivariate normal distribution $N_p(\mu, \Sigma)$ equals the expected vector μ , thus determining μ leads to the following optimization problem:

$$\overset{\cdot}{\mu} = \mathsf{argmax}_{\mathbf{Z}} \left\{ P\left(\mathbf{L} \geq \mathbf{c} \left| \mathbf{Z} = \mathbf{z} \right. \right) \mathsf{exp} \{ -\frac{1}{2} \mathbf{z}^{t} \mathbf{\Sigma}^{-1} \mathbf{z} . \right\} \right\}.$$

This problem is hard to solve exactly; in general $P\big(L \geq c \,| Z = z \,\big)$ is not available in analytical form.

 μ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since $\hat{\theta}_{n_i}^{(IS)}(z) \approx P(L \ge c | Z = z)$, search for an appropriate IS density for the function $z \mapsto P(L \ge c | Z = z)$.

Approach:

a) the optimal IS denstity g^{\ast} is proportional to

$$P(L \ge c | Z = z) \exp\{-\frac{1}{2}z^{t}\Sigma^{-1}z\}.$$

b) use as IS density a multivariate normal distribution with the same mode as the optimal IS density $\mathrm{g}^*.$

The mode of a multivariate normal distribution $N_p(\mu, \Sigma)$ equals the expected vector μ , thus determining μ leads to the following optimization problem:

$$\mu = \operatorname{argmax}_{\mathbf{Z}} \left\{ P\left(\mathbf{L} \geq \mathbf{c} \left| \mathbf{Z} = \mathbf{z} \right. \right) \exp\left\{ -\frac{1}{2} \mathbf{z}^{t} \mathbf{\Sigma}^{-1} \mathbf{z} \right. \right\} \right\}.$$

This problem is hard to solve exactly; in general $P\big(L \geq c \,| Z = z\big)$ is not available in analytical form.

Glasserman und Li (2003) propose some solution approaches.