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ĈVaR

(MC)

α (L) is unstable, i.e. it has a very high variance, if the number
of simulation runs ist not very high.



Basics of importance sampling



Basics of importance sampling

Let X be a r.v. in a probability space (Ω,F ,P) with absolutely
continuous distribution function and density function f .

Goal: Determine θ = E (h(X )) =
∫∞

−∞ h(x)f (x)dx for some given
function h.



Basics of importance sampling

Let X be a r.v. in a probability space (Ω,F ,P) with absolutely
continuous distribution function and density function f .

Goal: Determine θ = E (h(X )) =
∫∞

−∞ h(x)f (x)dx for some given
function h.

Examples:
Set h(x) = I

A

(x) to compute the probability of an event A.

Set h(x) = xI

x>(x) with  = VaR(X ) to compute CVaR(X ).



Basics of importance sampling

Let X be a r.v. in a probability space (Ω,F ,P) with absolutely
continuous distribution function and density function f .

Goal: Determine θ = E (h(X )) =
∫∞

−∞ h(x)f (x)dx for some given
function h.

Examples:
Set h(x) = I

A

(x) to compute the probability of an event A.

Set h(x) = xI

x>(x) with  = VaR(X ) to compute CVaR(X ).

Algorithm: Monte Carlo integration

(1) Simulate X1,X2,. . . , Xn independently with density f .

(2) Compute the standard MC estimator θ̂
(MC)
n

= 1
n

∑

n

i=1h(Xi).



Basics of importance sampling

Let X be a r.v. in a probability space (Ω,F ,P) with absolutely
continuous distribution function and density function f .

Goal: Determine θ = E (h(X )) =
∫∞

−∞ h(x)f (x)dx for some given
function h.

Examples:
Set h(x) = I

A

(x) to compute the probability of an event A.

Set h(x) = xI

x>(x) with  = VaR(X ) to compute CVaR(X ).

Algorithm: Monte Carlo integration

(1) Simulate X1,X2,. . . , Xn independently with density f .

(2) Compute the standard MC estimator θ̂
(MC)
n

= 1
n

∑

n

i=1h(Xi).

The strong low of large numbers implies lim
n→∞

θ̂(MC)
n

= θ almost surely.



Basics of importance sampling

Let X be a r.v. in a probability space (Ω,F ,P) with absolutely
continuous distribution function and density function f .

Goal: Determine θ = E (h(X )) =
∫∞

−∞ h(x)f (x)dx for some given
function h.

Examples:
Set h(x) = I

A

(x) to compute the probability of an event A.

Set h(x) = xI

x>(x) with  = VaR(X ) to compute CVaR(X ).

Algorithm: Monte Carlo integration

(1) Simulate X1,X2,. . . , Xn independently with density f .

(2) Compute the standard MC estimator θ̂
(MC)
n

= 1
n

∑

n

i=1h(Xi).

The strong low of large numbers implies lim
n→∞

θ̂(MC)
n

= θ almost surely.

In case of rare events, e.g. h(x) = I

A

(x) with P(A) << 1, the
convergence is very slow.



Importance sampling (contd.)



Importance sampling (contd.)
Let g be a probability density function, such that f (x) > 0 ⇒ g(x) > 0.

We define the likelihood ratio as: r(x) :=

{

f(x)
g(x) g(x) > 0

0 g(x) = 0



Importance sampling (contd.)
Let g be a probability density function, such that f (x) > 0 ⇒ g(x) > 0.

We define the likelihood ratio as: r(x) :=

{

f(x)
g(x) g(x) > 0

0 g(x) = 0

The following equality holds:

θ =

∫ ∞

−∞

h(x)r(x)g(x)dx = E

g

(h(x)r(x))

Algorithm: Importance sampling

(1) Simulate X1,X2,. . . , Xn independently with density g .

(2) Compute the IS-estimator θ̂
(IS)
n

= 1
n

∑

n

i=1h(Xi)r(Xi).

g is called importance sampling density (IS density).



Importance sampling (contd.)
Let g be a probability density function, such that f (x) > 0 ⇒ g(x) > 0.

We define the likelihood ratio as: r(x) :=

{

f(x)
g(x) g(x) > 0

0 g(x) = 0

The following equality holds:

θ =

∫ ∞

−∞

h(x)r(x)g(x)dx = E

g

(h(x)r(x))

Algorithm: Importance sampling

(1) Simulate X1,X2,. . . , Xn independently with density g .

(2) Compute the IS-estimator θ̂
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= 1
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g is called importance sampling density (IS density).

Goal: choose an IS density g such that the variance of the IS estimator is
much smaller than the variance of the standard MC-estimator.

var

(

θ̂(IS)
n

)

=
1

n

2
(E
g

(h2(X )r2(X )) − θ2)

var

(

θ̂(MC)
n

)

=
1

n

2
(E (h2(X )) − θ2)
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(A unique solution of the above equality exists for all relevant values of  ,
see e.g. Embrechts et al. for a proof).
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The IS algorithm does not change: Simulate independent realisations of

X

i

in (Ω,F ,Q
t

) and set θ̂
(IS)
n

= (1/n)
∑

n

i=1Xirt(Xi).
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Simplified case: Y
i

are independent for i = 1, 2, . . . ,m.
Let Ω = {0, 1}mbe the state space of the random vector Y .
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(2) Generate n1 conditional realisations of the vector of default
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A better alternative: IS for the impact factors.
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n
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i
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Glasserman und Li (2003) propose some solution approaches.


