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In case of rare events, e.g. h(x) = I

A
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g is called importance sampling density (IS density).

Goal: choose an IS density g such that the variance of the IS estimator is
much smaller than the variance of the standard MC-estimator.

var

(

θ̂(IS)
n

)

=
1

n

2
(E
g

(h2(X )r2(X )) − θ2)

var

(

θ̂(MC)
n

)

=
1

n

2
(E (h2(X )) − θ2)
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(A unique solution of the above equality exists for all relevant values of 
 ,
see e.g. Embrechts et al. for a proof).
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The IS algorithm does not change: Simulate independent realisations of

X

i

in (Ω,F ,Q
t

) and set θ̂
(IS)
n

= (1/n)
∑

n

i=1Xirt(Xi).
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Simplified case: Y
i

are independent for i = 1, 2, . . . ,m.
Let Ω = {0, 1}mbe the state space of the random vector Y .
Consider the probability measure P in Ω:

P({y}) =

m

∏

i=1

p̄

y

i

i

(1− p̄

i

)1−yi, y ∈ {0, 1}m.

The moment generating function of L is M
L

(t) =
∏

m

i=1(e
te

i

p̄

i

+ 1− p̄

i

).
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i=1 eiq̄t,i= 
 .
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The solution t = t(
 , z) specifies the correct degree of tilting.

(2) Generate n1 conditional realisations of the vector of default
indicators (Y1, . . . ,Ym), Yi are simulated from Bernoulli(q

i

),
i = 1, 2, . . . ,m, with

q

i

=
exp{t(
 , z)e

i

}p
i

(z)

exp{t(
 , z)e
i

}p
i

(z) + 1− p

i

(z)
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A better alternative: IS for the impact factors.
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(3) compute the IS estimator for the independent excess probability:

θ̂(IS)
n

=
1

n

n

∑

i=1

rµ(zi)θ̂
(IS)
n1

(z
i

)
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Glasserman und Li (2003) propose some solution approaches.


