What is credit risk?

What is credit risk?

Citation from McNeil, Frey und Embrechts (2005):
Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners. This subsumes both losses due to defaults and losses caused by changes in credit quality such as the downgrading of a counterparty in an internal or external rating system

What is credit risk?

Citation from McNeil, Frey und Embrechts (2005):
Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners. This subsumes both losses due to defaults and losses caused by changes in credit quality such as the downgrading of a counterparty in an internal or external rating system

Examples of finance instruments affected by credit risk

- bond portfolios
- OTC ("over the counter") transactions
- trades with credit derivatives

A simple model of credit risk

A simple model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.

A simple model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$

A simple model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T

A simple model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$

A simple model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$
Model the default of bond i until time T by a Bernoulli distributed r.v. X_{i} with with $p_{i}=P\left(X_{i}=1\right)$:

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { bond } i \text { defaults } \\
0 & \text { otherwise }
\end{array}\right.
$$

A simple model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$
Model the default of bond i until time T by a Bernoulli distributed r.v. X_{i} with with $p_{i}=P\left(X_{i}=1\right)$:

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { bond } i \text { defaults } \\
0 & \text { otherwise }
\end{array}\right.
$$

Total loss at time $T: L=\sum_{i=1}^{n} X_{i} \cdot L G D_{i}=\sum_{i=1}^{n} X_{i}\left(1-\lambda_{i}\right) L_{i}$.

A simple model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$
Model the default of bond i until time T by a Bernoulli distributed r.v. X_{i} with with $p_{i}=P\left(X_{i}=1\right)$:

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { bond } i \text { defaults } \\
0 & \text { otherwise }
\end{array}\right.
$$

Total loss at time $T: L=\sum_{i=1}^{n} X_{i} \cdot L G D_{i}=\sum_{i=1}^{n} X_{i}\left(1-\lambda_{i}\right) L_{i}$.
L is a r.v. and its distribution depends from the c.d.f. of $\left(X_{1}, \ldots, X_{n}, \lambda_{1}, \ldots, \lambda_{n}\right)^{T} \mathrm{ab}$.

The simplest model

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=i$ for all i, for some $p \in(0,1)$.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=i$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=i$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=i$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability. Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=i$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability. Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=i$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability. Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j (e.g. categories could be the rating classes).

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=i$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability. Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j (e.g. categories could be the rating classes).
$S_{i}=0$ corresponds to default.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=i$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.
Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j (e.g. categories could be the rating classes).
$S_{i}=0$ corresponds to default.
Then we have $X_{i}=\left\{\begin{array}{cc}0 & S_{i} \neq 0 \\ 1 & S_{i}=0\end{array}\right.$

Models with latent variables (contd.)

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables
$Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i (firm value models).

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i (firm value models).
Let $d_{i j}, i=1,2, \ldots, n, j=0,1, \ldots, m+1$ be threshold values such that $d_{i, 0}=-\infty$ und $d_{i, m+1}=\infty$ and $S_{i}=j \Longleftrightarrow Y_{i} \in\left(d_{i, j}, d_{i, j+1}\right]$.

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i (firm value models).
Let $d_{i j}, i=1,2, \ldots, n, j=0,1, \ldots, m+1$ be threshold values such that $d_{i, 0}=-\infty$ und $d_{i, m+1}=\infty$ and $S_{i}=j \Longleftrightarrow Y_{i} \in\left(d_{i, j}, d_{i, j+1}\right]$.

Let F_{i} be the distribution function of Y_{i}. The probability of default for obligor i is $p_{i}=F_{i}\left(d_{i, 1}\right)$.

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables
$Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i (firm value models).
Let $d_{i j}, i=1,2, \ldots, n, j=0,1, \ldots, m+1$ be threshold values such that $d_{i, 0}=-\infty$ und $d_{i, m+1}=\infty$ and $S_{i}=j \Longleftrightarrow Y_{i} \in\left(d_{i, j}, d_{i, j+1}\right]$.

Let F_{i} be the distribution function of Y_{i}. The probability of default for obligor i is $p_{i}=F_{i}\left(d_{i, 1}\right)$.
The probability that the fisrt k obligors default:

$$
\begin{gather*}
p_{1,2, \ldots, k}:=P\left(Y_{1} \leq d_{1,1}, Y_{2} \leq d_{2,1}, \ldots, Y_{k} \leq d_{k, 1}\right) \\
=C\left(F_{1}\left(d_{1,1}\right), F_{2}\left(d_{2,1}\right), \ldots, F_{k}\left(d_{k, 1}\right), 1,1, \ldots, 1\right)=C\left(p_{1}, p_{2}, \ldots, p_{k}, 1,\right.
\end{gather*}
$$

Thus the totalt defalut probability depends essentially on the copula C of $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$.

The KMV model (see www.moodysanalytics.com)

The KMV model (see www.moodysanalytics.com)
The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The KMV model (see www.moodysanalytics.com)

The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$ depend on the value of the assets of the obligors as follows.

The KMV model (see www.moodysanalytics.com)

The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$ depend on the value of the assets of the obligors as follows.

Merton's model

The balance sheet of each firm consists of assets and liabilities. The latter are devided in debt and equities.

The KMV model (see www.moodysanalytics.com)

The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$ depend on the value of the assets of the obligors as follows.

Merton's model

The balance sheet of each firm consists of assets and liabilities. The latter are devided in debt and equities.
Notations:
$V_{A, i}(T)$: value of assets of firm i at time point T
$K_{i}:=K_{i}(T)$: value of the debt of firm i at time point T
$V_{E, i}(T)$: value of equity of firm i at time point T
Assumption: future asset value is modelled by a geometric Brownian motion

The KMV model (contd.)

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$,

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.
Set $Y_{i}=\frac{W_{i}(T)-W_{i}(t)}{\sqrt{T-t}} \sim N(0,1)$.

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a
standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.
Set $Y_{i}=\frac{W_{i}(T)-W_{i}(t)}{\sqrt{T-t}} \sim N(0,1)$.
Then we get: $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)=I_{\left(-\infty,-D D_{i}\right)}\left(Y_{i}\right)$ where
$D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}}$

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a
standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.
Set $Y_{i}=\frac{W_{i}(T)-W_{i}(t)}{\sqrt{T-t}} \sim N(0,1)$.
Then we get: $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)=I_{\left(-\infty,-D D_{i}\right)}\left(Y_{i}\right)$ where
$D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}}$
$D D_{i}$ is called distance-to-default.

The KMV model (contd.)

The KMV model (contd.)

Computation of the "distance to default"

The KMV model (contd.)

Computation of the "distance to default" $V_{A}, i(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.

The KMV model (contd.)

Computation of the "distance to default" $V_{A}, i(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.

The KMV model (contd.)

Computation of the "distance to default"
$V_{A}, i(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.

The KMV model (contd.)

Computation of the "distance to default"
$V_{A}, i(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.

The KMV model (contd.)

Computation of the "distance to default"
$V_{A}, i(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.
This can be seen as a call option on the firms assets with a strike price equal to the book value of the firms liabilities.

The KMV model (contd.)

Computation of the "distance to default"
$V_{A}, i(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.
This can be seen as a call option on the firms assets with a strike price equal to the book value of the firms liabilities.
Thus $V_{E, i}(T)=\max \left\{V_{A, i}(T)-K_{i}, 0\right\}$.

The KMV model (contd.)

Computation of the "distance to default"
$V_{A}, i(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.
This can be seen as a call option on the firms assets with a strike price equal to the book value of the firms liabilities.
Thus $V_{E, i}(T)=\max \left\{V_{A, i}(T)-K_{i}, 0\right\}$.
The Black-Scholes formula implies (option price theory):

The KMV model (contd.)

Computation of the "distance to default"
$V_{A}, i(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.
This can be seen as a call option on the firms assets with a strike price equal to the book value of the firms liabilities.
Thus $V_{E, i}(T)=\max \left\{V_{A, i}(T)-K_{i}, 0\right\}$.
The Black-Scholes formula implies (option price theory):
$V_{E, i}(t)=C\left(V_{A, i}(t), r, \sigma_{A, i}\right)=V_{A, i}(t) \phi\left(e_{1}\right)-K_{i} e^{-r(T-t)} \phi\left(e_{2}\right)$,

The KMV model (contd.)

Computation of the "distance to default"
$V_{A}, i(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.
This can be seen as a call option on the firms assets with a strike price equal to the book value of the firms liabilities.
Thus $V_{E, i}(T)=\max \left\{V_{A, i}(T)-K_{i}, 0\right\}$.
The Black-Scholes formula implies (option price theory):
$V_{E, i}(t)=C\left(V_{A, i}(t), r, \sigma_{A, i}\right)=V_{A, i}(t) \phi\left(e_{1}\right)-K_{i} e^{-r(T-t)} \phi\left(e_{2}\right)$, where
$e_{1}=\frac{\ln \left(V_{A, i}(t)-\ln K_{i}+\left(r+\sigma_{A, i}^{2} / 2\right)(T-t)\right.}{\sigma_{A, i}(T-t)}, e_{2}=e_{1}-\sigma_{A, i}(T-t)$,
ϕ is the the standard normal distribution function and r is the risk free interest rate.

Computation of the "distance to default" (contd.)

Computation of the "distance to default" (contd.)

The KMV model also postulates
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$, where g is some suitably selected proprietary function.

Computation of the "distance to default" (contd.)

The KMV model also postulates
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$, where g is some suitably selected proprietary function.
$V_{E, i}(t)$ and $\sigma_{E, i}$ are estimated based on historical data and the system of equalities below is solved w.r.t. $V_{A, i}(t)$ and $\sigma_{A, i}$:

Computation of the "distance to default" (contd.)

The KMV model also postulates
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$, where g is some suitably selected proprietary function.
$V_{E, i}(t)$ and $\sigma_{E, i}$ are estimated based on historical data and the system of equalities below is solved w.r.t. $V_{A, i}(t)$ and $\sigma_{A, i}$:

$$
\begin{aligned}
& V_{E, i}(t)=C\left(V_{A, i}(t), r, \sigma_{A, i}\right) \\
& \sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)
\end{aligned}
$$

Computation of the "distance to default" (contd.)

The KMV model also postulates
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$, where g is some suitably selected proprietary function.
$V_{E, i}(t)$ and $\sigma_{E, i}$ are estimated based on historical data and the system of equalities below is solved w.r.t. $V_{A, i}(t)$ and $\sigma_{A, i}$:
$V_{E, i}(t)=C\left(V_{A, i}(t), r, \sigma_{A, i}\right)$
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$
The values obtained for $V_{A, i}(t)$ and $\sigma_{A, i}$ are used to compute $D D_{i}$:
$D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}}$.

Computation of the "distance to default" (contd.)

The KMV model also postulates
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$, where g is some suitably selected proprietary function.
$V_{E, i}(t)$ and $\sigma_{E, i}$ are estimated based on historical data and the system of equalities below is solved w.r.t. $V_{A, i}(t)$ and $\sigma_{A, i}$:
$V_{E, i}(t)=C\left(V_{A, i}(t), r, \sigma_{A, i}\right)$
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$
The values obtained for $V_{A, i}(t)$ and $\sigma_{A, i}$ are used to compute $D D_{i}$:
$D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}}$.
Then $P\left(V_{A, i}(T)<K_{i}\right)=P\left(Y_{i}<-D D_{i}\right)$ and in the general setup of the latent variable model with $m=1$ we have $d_{i 1}=-D D_{i}$.

The expected default frequency (EDF)

The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting $p_{i}:=P\left(Y_{i}<-D D_{i}\right)$.

The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting $p_{i}:=P\left(Y_{i}<-D D_{i}\right)$. Alternative: historical data are used to identify companies which at some stage in their history had the same distance to default $D D_{i}$.

The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting $p_{i}:=P\left(Y_{i}<-D D_{i}\right)$.
Alternative: historical data are used to identify companies which at some stage in their history had the same distance to default $D D_{i}$.
Then the observed default frequency is used as an estimator for the default probability p_{i}.

The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting $p_{i}:=P\left(Y_{i}<-D D_{i}\right)$.
Alternative: historical data are used to identify companies which at some stage in their history had the same distance to default $D D_{i}$.
Then the observed default frequency is used as an estimator for the default probability p_{i}. This estimator is called expected default frequency, (EDF).

The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting $p_{i}:=P\left(Y_{i}<-D D_{i}\right)$.
Alternative: historical data are used to identify companies which at some stage in their history had the same distance to default $D D_{i}$.
Then the observed default frequency is used as an estimator for the default probability p_{i}. This estimator is called expected default frequency, (EDF).
Summary of the univariate KMV model to compute the default probability of a company:

- Estimate the asset value $V_{A, i}$ and the volatilty $\sigma_{A, i}$ by using observations of the market value and the volatility of equity $V_{E, i}$, $\sigma_{E, i}$, the book of liabilities K_{i}, and by solving the system of equations above.
- Compute the distance-to-default $D D_{i}$ by means of the corresponding formula.
- Estimate the default probability p_{i} in terms of the empirical distribution which relates the distance to default with the expected default frequency.

The multivariate KMV model: computation of multivariate default probabilities

The multivariate KMV model: computation of multivariate default probabilities
Let $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, m$.

The multivariate KMV model: computation of multivariate default probabilities
Let $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, m$.
Basic model: $V_{A, i}(T)=$
$V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sum_{j=1}^{m} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)\right\}$,
where

The multivariate KMV model: computation of multivariate default probabilities

Let $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, m$.
Basic model: $V_{A, i}(T)=$
$V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sum_{j=1}^{m} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)\right\}$,
where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}^{2}=\sum_{j=1}^{m} \sigma_{A, i, j}^{2}$ is the volatility, and $\sigma_{A, i, j}$ quantifies the impact of the j th Brownian motion on the asset value of firm i.

The multivariate KMV model: computation of multivariate default probabilities

Let $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, m$.
Basic model: $V_{A, i}(T)=$
$V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sum_{j=1}^{m} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)\right\}$,
where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}^{2}=\sum_{j=1}^{m} \sigma_{A, i, j}^{2}$ is the volatility, and $\sigma_{A, i, j}$ quantifies the impact of the j th Brownian motion on the asset value of firm i.
Set $Y_{i}:=\frac{\sum_{j=1}^{m} \sigma_{A, i j}\left(W_{j}(T)-W_{j}(t)\right)}{\sigma_{A, i} \sqrt{T-t}}$. Then $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right) \sim N(0, \Sigma)$,

The multivariate KMV model: computation of multivariate default probabilities

Let $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, m$.
Basic model: $V_{A, i}(T)=$
$V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sum_{j=1}^{m} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)\right\}$,
where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}^{2}=\sum_{j=1}^{m} \sigma_{A, i, j}^{2}$ is the volatility, and $\sigma_{A, i, j}$ quantifies the impact of the j th Brownian motion on the asset value of firm i.
Set $Y_{i}:=\frac{\sum_{j=1}^{m} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)}{\sigma_{A, i} \sqrt{T-t}}$. Then $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right) \sim N(0, \Sigma)$, where $\Sigma_{i j}=\frac{\sum_{k=1}^{m} \sigma_{A, i, k} \sigma_{A, j, k}}{\sigma_{A, i} \sigma_{A, j}}$.

The multivariate KMV model: computation of multivariate default probabilities

Let $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, m$.
Basic model: $V_{A, i}(T)=$
$V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sum_{j=1}^{m} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)\right\}$,
where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}^{2}=\sum_{j=1}^{m} \sigma_{A, i, j}^{2}$ is the volatility, and $\sigma_{A, i, j}$ quantifies the impact of the j th Brownian motion on the asset value of firm i.
Set $Y_{i}:=\frac{\sum_{j=1}^{m} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)}{\sigma_{A, i} \sqrt{T-t}}$. Then $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right) \sim N(0, \Sigma)$, where $\sum_{i j}=\frac{\sum_{k=1}^{m} \sigma_{A, i, k} \sigma_{A, j, k}}{\sigma_{A, i} \sigma_{A, j}}$.
We get $V_{A, i}(T)<K_{i} \Longleftrightarrow Y_{i}<-D D_{i}$ with

$$
D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\frac{-\sigma_{A, i}^{2}}{2}+\mu_{A, i}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}} .
$$

The multivariate KMV model (contd.)

The multivariate KMV model (contd.)

The probability that the k first firms default:

$$
\begin{aligned}
& P\left(X_{1}=1, X_{2}=1, \ldots, X_{k}=1\right)=P\left(Y_{1}<-D D_{1}, \ldots, Y_{k}<-D D_{k}\right) \\
& =C_{\Sigma}^{G a}\left(\phi\left(-D D_{1}\right), \ldots, \phi\left(-D D_{k}\right), 1, \ldots, 1\right),
\end{aligned}
$$

The multivariate KMV model (contd.)

The probability that the k first firms default:
$P\left(X_{1}=1, X_{2}=1, \ldots, X_{k}=1\right)=P\left(Y_{1}<-D D_{1}, \ldots, Y_{k}<-D D_{k}\right)$
$=C_{\Sigma}^{G a}\left(\phi\left(-D D_{1}\right), \ldots, \phi\left(-D D_{k}\right), 1, \ldots, 1\right)$,
where $C_{\Sigma}^{G a}$ is the copula of a multivariate normal distribution with covariance matrix Σ.

The multivariate KMV model (contd.)

The probability that the k first firms default:
$P\left(X_{1}=1, X_{2}=1, \ldots, X_{k}=1\right)=P\left(Y_{1}<-D D_{1}, \ldots, Y_{k}<-D D_{k}\right)$
$=C_{\Sigma}^{G a}\left(\phi\left(-D D_{1}\right), \ldots, \phi\left(-D D_{k}\right), 1, \ldots, 1\right)$,
where $C_{\Sigma}^{G a}$ is the copula of a multivariate normal distribution with covariance matrix Σ.
Joint default frequency:
$J D F_{1,2, \ldots, k}=C_{\Sigma}^{G a}\left(E D F_{1}, E D F_{2}, \ldots, E D F_{k}, 1, \ldots, 1\right)$,
where $E D F_{i}$ is the default frequency for firm $i, i=1,2, \ldots, k$.

