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Examples of finance instruments affected by credit risk

◮ bond portfolios

◮ OTC (“over the counter”) transactions

◮ trades with credit derivatives

◮ ...
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respectively, set up at time T0.

pi : the probability that (the issuer of) bond i defaults until time T ,
T > T0
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1− λi : percentage of lost value of bond i in case of default until time T

The loss given default for bond i at time T : LGDi = (1− λi )Li

Model the default of bond i until time T by a Bernoulli distributed r.v. Xi

with with pi = P(Xi = 1):

Xi =

{

1 bond i defaults
0 otherwise

Total loss at time T : L =
∑n

i=1 Xi · LGDi =
∑n

i=1 Xi (1− λi )Li .

L is a r.v. and its distribution depends from the c.d.f. of
(X1, . . . ,Xn, λ1, . . . , λn)

T ab.
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T , e.g. Yi could be the value of the assets of obligor

i (firm value models).

Let dij , i = 1, 2, . . . , n, j = 0, 1, . . . ,m + 1 be threshold values such that
di ,0 = −∞ und di ,m+1 = ∞ and Si = j ⇐⇒ Yi ∈ (di ,j , di ,j+1].

Let Fi be the distribution function of Yi . The probability of default for
obligor i is pi = Fi (di ,1).

The probability that the fisrt k obligors default:

p1,2,...,k := P(Y1 ≤ d1,1,Y2 ≤ d2,1, . . . ,Yk ≤ dk,1)

= C (F1(d1,1),F2(d2,1), . . . ,Fk (dk,1), 1, 1, . . . , 1) = C (p1, p2, . . . , pk , 1, . . . , 1)

Thus the totalt defalut probability depends essentially on the copula C of
(Y1,Y2, . . . ,Yn).
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The status variables S = (S1, S2, . . . , Sn) can only take two values 0 or 1,
i.e. m = 1.

The latent variables Y = (Y1,Y2, . . . ,Yn)
T depend on the value of the

assets of the obligors as follows.

Merton’s model
The balance sheet of each firm consists of assets and liabilities. The
latter are devided in debt and equities.

Notations:

VA,i (T ): value of assets of firm i at time point T

Ki := Ki(T ): value of the debt of firm i at time point T

VE ,i (T ): value of equity of firm i at time point T

Assumption: future asset value is modelled by a geometric Brownian
motion
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DDi is called distance-to-default.
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VA, i(t), µA,i and σA,i are needed.
Difficulty: VA,i (t) can not be observed directly.

However VE ,i(t) can be observed by looking at the market stock prices.

KMVs viewpoint: the equity holders have the right, but not the
obligation, to pay off the holders of the other liabilities and take over the
remaining assets of the firm.

This can be seen as a call option on the firms assets with a strike price
equal to the book value of the firms liabilities.

Thus VE ,i (T ) = max{VA,i(T )− Ki , 0}.

The Black-Scholes formula implies (option price theory):

VE ,i (t) = C (VA,i (t), r , σA,i ) = VA,i (t)φ(e1)− Kie
−r(T−t)φ(e2), where

e1 =
ln(VA,i (t)−lnKi+(r+σ2

A,i/2)(T−t)

σA,i (T−t) , e2 = e1 − σA,i (T − t),

φ is the the standard normal distribution function and r is the risk free
interest rate.
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VE ,i (t) = C (VA,i (t), r , σA,i )
σE ,i = g(VA,i(t), σA,i , r)

The values obtained for VA,i(t) and σA,i are used to compute DDi :

DDi =
lnVA,i (t)−lnKi+(µA,i−

σ
2
A,i
2 )(T−t)

σA,i

√
T−t

.

Then P(VA,i (T ) < Ki) = P(Yi < −DDi) and in the general setup of the
latent variable model with m = 1 we have di1 = −DDi .
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The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting
pi := P(Yi < −DDi).

Alternative: historical data are used to identify companies which at some
stage in their history had the same distance to default DDi .

Then the observed default frequency is used as an estimator for the
default probability pi . This estimator is called expected default frequency,
(EDF).

Summary of the univariate KMV model to compute the default
probability of a company:

◮ Estimate the asset value VA,i and the volatilty σA,i by using
observations of the market value and the volatility of equity VE ,i ,
σE ,i , the book of liabilities Ki , and by solving the system of
equations above.

◮ Compute the distance-to-default DDi by means of the
corresponding formula.

◮ Estimate the default probability pi in terms of the empirical
distribution which relates the distance to default with the expected
default frequency.
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Let Wj(t) be independent standard Brownian motions for 0 ≤ t ≤ T ,
j = 1, 2, . . . ,m.

Basic model:VA,i(T ) =

VA,i (t) exp

{

(

µA,i −
σ2
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(
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,

where

µA,i is the drift, σ2
A,i =

∑m
j=1 σ

2
A,i ,j is the volatility, and σA,i ,j quantifies

the impact of the jth Brownian motion on the asset value of firm i .

Set Yi :=
∑m

j=1 σA,i,j (Wj (T )−Wj (t))

σA,i

√
T−t

. Then Y = (Y1,Y2, . . . ,Yn) ∼ N(0,Σ),

where Σij =
∑m

k=1 σA,i,kσA,j,k

σA,iσA,j
.

We get VA,i (T ) < Ki ⇐⇒ Yi < −DDi with

DDi =

lnVA,i (t)−lnKi+

(

−σ
2
A,i
2 +µA,i

)

(T−t)

σA,i

√
T−t

.
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The multivariate KMV model (contd.)

The probability that the k first firms default:

P(X1 = 1,X2 = 1, . . . ,Xk = 1) = P(Y1 < −DD1, . . . ,Yk < −DDk)
= CGa

Σ (φ(−DD1), . . . , φ(−DDk), 1, . . . , 1),

where CGa
Σ is the copula of a multivariate normal distribution with

covariance matrix Σ.

Joint default frequency:

JDF1,2,...,k = CGa
Σ (EDF1,EDF2, . . . ,EDFk , 1, . . . , 1),

where EDFi is the default frequency for firm i , i = 1, 2, . . . , k .


