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Question 2: What are the parameters of the prespecified family of
copulas used for the modelling?
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Standard empirical estimator of Kendalls Tau:

ρ̂τ ij =
(
n
2

)−1 ∑
1≤k<l≤n sign((Xk,i − Xl,i )(Xk,j − Xl,j)).
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◮ Set R∗ := DR̃D where D is a diagonal matrix with

Dk,k = 1/
√
R̃k,k .
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F̂k can be generated by :

◮ a parametric estimation method;
F̂k is assumed to be a certain parametric distribution and the
parameter is estimated by a maximum likelihood (ML) approach

◮ a non-parametric estimation method;
F̂i is the empirical distribution function F̂i (x) =

1

n+1

∑n

t=1
I{Xt,i≤x},

1 ≤ i ≤ d .
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ξ (Ûk,j)),



Estimation of the number of the degrees of freedom ν

for t-copulas (contd.)

Maximum likelihood estimator of ν: ν = argmaxξ ln L(ξ; Û1, Û2, . . . , Ûn)
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k=1c

t
ξ,R(Ûk )
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where gξ,R is the density of a d-dimensional standard t-distribution with
distribution function tdξ,R and gξ is the density of a univariate standard
t-distribution with ξ degrees of freedom.


