Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Example: Gaussian copulas are elliptical copulas

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Example: Gaussian copulas are elliptical copulas Let C_R^{Ga} be the copula of a *d*-dimensional normal distribution with correlation matrix *R*. Then $C_R^{Ga}(u) = \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d))$ holds, where ϕ_R^d is the c.d.f. of a *d*-dimensional normal distribution with expected vector 0 and correlaton matrix *R*, and ϕ^{-1} is the inverse of the standard normal distribution function.

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Example: Gaussian copulas are elliptical copulas

Let C_R^{Ga} be the copula of a *d*-dimensional normal distribution with correlation matrix *R*. Then $C_R^{Ga}(u) = \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d))$ holds, where ϕ_R^d is the c.d.f. of a *d*-dimensional normal distribution with expected vector 0 and correlaton matrix *R*, and ϕ^{-1} is the inverse of the standard normal distribution function.

Since the normal distribuion is elliptic, the Gaussian copula C_R^{Ga} is by definition an elliptic copula.

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Example: Gaussian copulas are elliptical copulas

Let C_R^{Ga} be the copula of a *d*-dimensional normal distribution with correlation matrix *R*. Then $C_R^{Ga}(u) = \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d))$ holds, where ϕ_R^d is the c.d.f. of a *d*-dimensional normal distribution with expected vector 0 and correlaton matrix *R*, and ϕ^{-1} is the inverse of the standard normal distribution function.

Since the normal distribuion is elliptic, the Gaussian copula C_R^{Ga} is by definition an elliptic copula.

In the bivariate case we have:

$$\begin{split} C^{Ga}_{R}(u_{1}, u_{2}) &= \int_{-\infty}^{\phi^{-1}(u_{1})} \int_{-\infty}^{\phi^{-1}(u_{2})} \frac{1}{2\pi (1-\rho^{2})^{1/2}} \exp\left\{\frac{-(x_{1}^{2}-2\rho x_{1} x_{2}+x_{2}^{2})}{2(1-\rho^{2})}\right\} dx_{1} dx_{2},\\ \text{where } \rho \in (-1, 1). \end{split}$$

Another example of elliptical copulas: the t-copula

<ロ> <@> < E> < E> E のQの

Another example of elliptical copulas: the t-copula Definition: Let $X \stackrel{d}{=} \mu + \frac{\sqrt{\alpha}}{\sqrt{S}}AZ \sim t_d(\alpha, \mu, \Sigma)$, where $\mu \in \mathbb{R}^d$, $\alpha \in \mathbb{N}$, $\alpha > 1$, $S \sim \chi^2_{\alpha}$, $A \in \mathbb{R}^{d \times k}$ with $AA^t = \Sigma$, $Z \sim N_k(0, I_k)$, and S and Z independent. We say that X has a d-dimensional t-distribution with expectation μ (for $\alpha > 1$) and covariance matrix $Cov(X) = \frac{\alpha}{\alpha-2}\Sigma$. ($\alpha > 2$ should hold, Cov(X) does not exist for $\alpha \leq 2$.)

Another example of elliptical copulas: the t-copula **Definition:** Let $X \stackrel{d}{=} \mu + \frac{\sqrt{\alpha}}{\sqrt{5}} AZ \sim t_d(\alpha, \mu, \Sigma)$, where $\mu \in \mathbb{R}^d$, $\alpha \in \mathbb{N}$, $\alpha > 1$, $S \sim \chi^2_{\alpha}$, $A \in \mathbb{R}^{d \times k}$ with $AA^t = \Sigma$, $Z \sim N_k(0, I_k)$, and S and Z independent. We say that X has a d-dimensional t-distribution with expectation μ (for $\alpha > 1$) and covariance matrix $Cov(X) = \frac{\alpha}{\alpha - 2} \Sigma$. $(\alpha > 2 \text{ should hold}, Cov(X) \text{ does not exist for } \alpha \leq 2.)$

Definition: The (unique) copula $C_{\alpha,R}^t$ of X is called *t*-copula:

$$C^t_{\alpha,R}(u) = t^d_{\alpha,R}(t^{-1}_{\alpha}(u_1),\ldots,t^{-1}_{\alpha}(u_d)).$$

 $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{ii}}}, i, j = 1, 2..., d$, is the correlation matrix of Z, $t_{\alpha,R}^d$ is the cdf of $\frac{\sqrt{\alpha}}{\sqrt{5}}RZ$ and t_{α} are the marginal distributions of $t_{\alpha,R}^d$.

Another example of elliptical copulas: the t-copula Definition: Let $X \stackrel{d}{=} \mu + \frac{\sqrt{\alpha}}{\sqrt{S}}AZ \sim t_d(\alpha, \mu, \Sigma)$, where $\mu \in \mathbb{R}^d$, $\alpha \in \mathbb{N}$, $\alpha > 1$, $S \sim \chi^2_{\alpha}$, $A \in \mathbb{R}^{d \times k}$ with $AA^t = \Sigma$, $Z \sim N_k(0, I_k)$, and S and Zindependent. We say that X has a d-dimensional t-distribution with expectation μ (for $\alpha > 1$) and covariance matrix $Cov(X) = \frac{\alpha}{\alpha - 2}\Sigma$. ($\alpha > 2$ should hold, Cov(X) does not exist for $\alpha \leq 2$.) Definition: The (unique) copula C^t of X is called t copula:

Definition: The (unique) copula $C_{\alpha,R}^t$ of X is called *t*-copula:

$$\mathcal{C}^t_{lpha,\mathcal{R}}(u) = t^d_{lpha,\mathcal{R}}(t^{-1}_{lpha}(u_1),\ldots,t^{-1}_{lpha}(u_d)).$$

 $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{ji}}}, i, j = 1, 2..., d, \text{ is the correlation matrix of } Z,$ $t_{\alpha,R}^{d} \text{ is the cdf of } \frac{\sqrt{\alpha}}{\sqrt{S}}RZ \text{ and } t_{\alpha} \text{ are the marginal distributions of } t_{\alpha,R}^{d}.$ In the bivariate case (d = 2):

$$C_{\alpha,R}^{t}(u_{1},u_{2}) = \int_{-\infty}^{t_{\alpha}^{-1}(u_{1})} \int_{-\infty}^{t_{\alpha}^{-1}(u_{2})} \frac{1}{2\pi(1-\rho^{2})^{1/2}} \left\{ 1 + \frac{x_{1}^{2} - 2\rho x_{1}x_{2} + x_{2}^{2}}{\alpha(1-\rho^{2})} \right\}^{-\frac{\alpha+2}{2}} dx_{1} dx_{2}$$

for $\rho \in (-1, 1)$. R_{12} is the linear correlation coefficient of the corresponding bivariate t_{α} -distribution for $\alpha > 2$.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

called *radial symmetric around a*, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

called *radial symmetric around a*, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is

called *radial symmetric around a*, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry of copulas) A copula *C* is called radial symmetric iff

$$(U_1 - 0.5, \ldots, U_d - 0.5) \stackrel{d}{=} (0.5 - U_1, \ldots, 0.5 - U_d) \iff U \stackrel{d}{=} 1 - U,$$

where $(U_1, U_2, ..., U_d)$ is a random vector with distribution function *C*. For a radial symmetric copula $C = \hat{C}$ holds.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is

called *radial symmetric around a*, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry of copulas) A copula *C* is called radial symmetric iff

$$(U_1 - 0.5, \ldots, U_d - 0.5) \stackrel{d}{=} (0.5 - U_1, \ldots, 0.5 - U_d) \iff U \stackrel{d}{=} 1 - U,$$

where $(U_1, U_2, ..., U_d)$ is a random vector with distribution function C. For a radial symmetric copula $C = \hat{C}$ holds.

Example: Elliptical copulas are radial symmetric.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is

called *radial symmetric around a*, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry of copulas) A copula *C* is called radial symmetric iff

$$(U_1 - 0.5, \ldots, U_d - 0.5) \stackrel{d}{=} (0.5 - U_1, \ldots, 0.5 - U_d) \iff U \stackrel{d}{=} 1 - U,$$

where $(U_1, U_2, ..., U_d)$ is a random vector with distribution function *C*. For a radial symmetric copula $C = \hat{C}$ holds.

(日) (周) (三) (三) (三) (○) (○)

Example: Elliptical copulas are radial symmetric.

The Gumbel and Clayton Copulas are not radial symmetric. Why?

▲□▶▲圖▶▲圖▶▲圖▶ ▲□▶

Not every copula has a density function. For example the co-monotonie copula M and the anti-monotonie copula W do not have a density function.

Not every copula has a density function. For example the co-monotonie copula M and the anti-monotonie copula W do not have a density function.

If the density function c of a copula C exists, then we have

$$c(u_1, u_2, \ldots, u_d) = \frac{\partial C(u_1, u_2, \ldots, u_d)}{\partial u_1 \partial u_2 \ldots \partial u_d}.$$

Not every copula has a density function. For example the co-monotonie copula M and the anti-monotonie copula W do not have a density function.

If the density function c of a copula C exists, then we have

$$c(u_1, u_2, \ldots, u_d) = \frac{\partial C(u_1, u_2, \ldots, u_d)}{\partial u_1 \partial u_2 \ldots \partial u_d}.$$

Let C be the copula of a distribution F with marginal distributions F_1, \ldots, F_d . By differentiating

$$C(u_1,\ldots,u_d)=F(F_1^{\leftarrow}(u_1),\ldots,F_d^{\leftarrow}(u_d))$$

we obtain the density c of C:

$$c(u_1,\ldots,u_d) = \frac{f(F_1^{-1}(u_1),\ldots,F_d^{-1}(u_d))}{f_1(F_1^{-1}(u_1))\ldots f_d(F_d^{-1}(u_d))}$$

where f is the density function of F, f_i are the marginal density functions, and F_i^{-1} are the inverse functions of F_i , for $1 \le i \le d$,

Definition:

A random vector X is called 'exchangeable iff

 $(X_1,\ldots,X_d) \stackrel{d}{=} (X_{\pi(1)},\ldots,X_{\pi(d)})$ for any permutation $(\pi(1),\pi(2),\ldots,\pi(d))$ of $(1,2,\ldots,d)$.

A copula C is called 'exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0, 1]).

Definition:

A random vector X is called 'exchangeable iff

 $(X_1, ..., X_d) \stackrel{d}{=} (X_{\pi(1)}, ..., X_{\pi(d)})$ for any permutation $(\pi(1), \pi(2), ..., \pi(d))$ of (1, 2, ..., d).

A copula C is called 'exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0, 1]).

For such a copula $C(u_1, u_2, \ldots, u_d) = C(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)})$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1, 2, \ldots, d)$.

Definition:

A random vector X is called 'exchangeable iff

 $(X_1,\ldots,X_d) \stackrel{d}{=} (X_{\pi(1)},\ldots,X_{\pi(d)})$ for any permutation $(\pi(1),\pi(2),\ldots,\pi(d))$ of $(1,2,\ldots,d)$.

A copula C is called 'exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0, 1]).

For such a copula $C(u_1, u_2, \ldots, u_d) = C(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)})$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1, 2, \ldots, d)$.

Examples of exchangeable copulas:

Gumbel, Clayton, and also the Gaussian copula C_P^{Ga} and the t-Copula $C_{\nu,P}^{t}$, if P is an *equicorrelation matrix*, i.e. $R = \rho J_d + (1 - \rho)I_d$. $J_d \in \mathbb{R}^{d \times d}$ is a matrix consisting only of ones, and $I_d \in \mathbb{R}^{d \times d}$ is the *d*-dimensional identity matrix.

Definition:

A random vector X is called 'exchangeable iff

 $(X_1,\ldots,X_d) \stackrel{d}{=} (X_{\pi(1)},\ldots,X_{\pi(d)})$ for any permutation $(\pi(1),\pi(2),\ldots,\pi(d))$ of $(1,2,\ldots,d)$.

A copula C is called 'exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0, 1]).

For such a copula $C(u_1, u_2, \ldots, u_d) = C(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)})$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1, 2, \ldots, d)$.

Examples of exchangeable copulas:

Gumbel, Clayton, and also the Gaussian copula C_P^{Ga} and the t-Copula $C_{\nu,P}^{t}$, if P is an *equicorrelation matrix*, i.e. $R = \rho J_d + (1 - \rho)I_d$. $J_d \in \mathbb{R}^{d \times d}$ is a matrix consisting only of ones, and $I_d \in \mathbb{R}^{d \times d}$ is the *d*-dimensional identity matrix.

For bivariate exchangeable copulas we have:

$$P(U_2 \leq u_2 | U_1 = u_1) = P(U_1 \leq u_2 | U_2 = u_1).$$

▲□▶ ▲□▶ ▲国▶ ▲国▶ 国 - のへの

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_{ρ}^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_{ρ}^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T \sim t_2(0, \nu, R)$ be a random vector with a *t*-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix *R*. For $R_{12} > -1$ we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1-R_{12}}} \right)$$

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_{ρ}^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T \sim t_2(0, \nu, R)$ be a random vector with a *t*-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix *R*. For $R_{12} > -1$ we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2 \bar{t}_{\nu+1} \left(\sqrt{\nu+1} rac{\sqrt{1-R_{12}}}{\sqrt{1-R_{12}}}
ight)$$

The proof is similar to the proof of the analogous theorem about the Gaussian copulas.

Hint:

$$X_2|X_1 = x \sim \left(\frac{\nu+1}{\nu+x^2}\right)^{1/2} \frac{X_2 - \rho x}{\sqrt{1-\rho^2}} \sim t_{\nu+1}$$

- 1-

<□ > < @ > < E > < E > E - のQ @

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a *t*-copula $C_{\nu,R}^t$ with ν degrees of freedom and and correlation matrix *R*. Then we have

 $\lambda_{U}(X_{1}, X_{2}) = \lambda_{L}(X_{1}, X_{2}) = 2\bar{t}_{\nu+1}\left(\sqrt{\nu+1}\frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right).$

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a *t*-copula $C_{\nu,R}^t$ with ν degrees of freedom and and correlation matrix *R*. Then we have

 $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right).$

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin \rho$ und $\rho_{S}(X_1, X_2) = \frac{6}{\pi} \arcsin \frac{\rho}{2}$.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a *t*-copula $C_{\nu,R}^t$ with ν degrees of freedom and and correlation matrix *R*. Then we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right)$$

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin \rho$ und $\rho_S(X_1, X_2) = \frac{6}{\pi} \arcsin \frac{\rho}{2}$.

Theorem: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$, with $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_i \Sigma_{jj}}}$ for i, j = 1, 2, ..., d.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a *t*-copula $C_{\nu,R}^t$ with ν degrees of freedom and and correlation matrix *R*. Then we have

 $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}} \right).$

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin \rho$ und $\rho_S(X_1, X_2) = \frac{6}{\pi} \arcsin \frac{\rho}{2}$.

Theorem: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$, with $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{ij}}}$ for i, j = 1, 2, ..., d.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and an elliptical copula copula $C^{E}_{\mu,\Sigma,\psi}$. Then we have $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin R_{12}$, with $R_{12} = \frac{\Sigma_{12}}{\sqrt{\Sigma_{11}\Sigma_{22}}}$.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a *t*-copula $C_{\nu,R}^t$ with ν degrees of freedom and and correlation matrix *R*. Then we have

 $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}} \right).$

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin \rho$ und $\rho_S(X_1, X_2) = \frac{6}{\pi} \arcsin \frac{\rho}{2}$.

Theorem: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$, with $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{ij}}}$ for i, j = 1, 2, ..., d.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and an elliptical copula copula $C^E_{\mu,\Sigma,\psi}$. Then we have $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin R_{12}$, with $R_{12} = \frac{\Sigma_{12}}{\sqrt{\Sigma_{11}\Sigma_{22}}}$.

See McNeil et al. (2005) for a proof of the three last results.

Disadvantages of elliptical copulas:

no closed form representation in general,

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

radial symmetry

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi: [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$. The pseudo-inverse function $\phi^{[-1]}: [0,\infty] \to [0,1]$ of ϕ is defined by

$$\phi^{[-1]}(t)=\left\{egin{array}{cc} \phi^{-1}(t) & 0\leq t\leq \phi(0)\ 0 & \phi(0)\leq t\leq \infty \end{array}
ight.$$

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi: [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$. The pseudo-inverse function $\phi^{[-1]}: [0,\infty] \to [0,1]$ of ϕ is defined by

$$\phi^{[-1]}(t)=\left\{egin{array}{cc} \phi^{-1}(t) & 0\leq t\leq \phi(0)\ 0 & \phi(0)\leq t\leq \infty \end{array}
ight.$$

 $\phi^{[-1]}$ is continuous and monotone decreasing on $[0, \infty]$, strictly monotone decreasing on $[0, \phi(0)]$ and $\phi^{[-1]}(\phi(u)) = u$ for $u \in [0, 1]$ holds. Moreover

$$\phi(\phi^{[-1]}(t)=\left\{egin{array}{cc}t&0\leq t\leq \phi(0)\ \phi(0)&\phi(0)\leq t\leq+\infty\end{array}
ight.$$

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi: [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$. The pseudo-inverse function $\phi^{[-1]}: [0,\infty] \to [0,1]$ of ϕ is defined by

$$\phi^{[-1]}(t)=\left\{egin{array}{cc} \phi^{-1}(t) & 0\leq t\leq \phi(0)\ 0 & \phi(0)\leq t\leq \infty \end{array}
ight.$$

 $\phi^{[-1]}$ is continuous and monotone decreasing on $[0,\infty]$, strictly monotone decreasing on $[0,\phi(0)]$ and $\phi^{[-1]}(\phi(u))=u$ for $u\in[0,1]$ holds. Moreover

$$\phi(\phi^{[-1]}(t)=\left\{egin{array}{cc}t&0\leq t\leq \phi(0)\ \phi(0)&\phi(0)\leq t\leq+\infty\end{array}
ight.$$

If $\phi(\mathbf{0}) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Theorem: Let $\phi: [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \to [0,1]$, with $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex.

Theorem: Let $\phi: [0,1] \rightarrow [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \rightarrow [0,1]$, with $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex. A copula *C* generated as above is called an *Archimedian copula* with generator ϕ .

Theorem: Let $\phi: [0,1] \rightarrow [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \rightarrow [0,1]$, with $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex. A copula *C* generated as above is called an *Archimedian copula* with generator ϕ .

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$.

Theorem: Let $\phi: [0,1] \rightarrow [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \rightarrow [0,1]$, with $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex. A copula *C* generated as above is called an *Archimedian copula* with generator ϕ .

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$. See Nelsen 1999 for a proof

Theorem: Let $\phi: [0,1] \rightarrow [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \rightarrow [0,1]$, with $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex. A copula *C* generated as above is called an *Archimedian copula* with generator ϕ .

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$. See Nelsen 1999 for a proof

Examples: Gumbel Copulas: $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0, 1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$ is the Gumbel copula with parameter θ .

Theorem: Let $\phi: [0,1] \rightarrow [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \rightarrow [0,1]$, with $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex. A copula *C* generated as above is called an *Archimedian copula* with generator ϕ .

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$. See Nelsen 1999 for a proof

Examples: <u>Gumbel Copulas:</u> $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0, 1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta})$ is the Gumbel copula with parameter θ . For $\theta = 1$: $C_1^{Gu} = u_1 u_2$.

Theorem: Let $\phi: [0,1] \rightarrow [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \rightarrow [0,1]$, with $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex. A copula *C* generated as above is called an *Archimedian copula* with generator ϕ .

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$. See Nelsen 1999 for a proof

Examples: <u>Gumbel Copulas:</u> $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0, 1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp\left(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta}\right)$ is the Gumbel copula with parameter θ . For $\theta = 1$: $C_1^{Gu} = u_1 u_2.\lim_{\theta \to \infty} C_{\theta}^{Gu} = M(u_1, u_2) = \min\{u_1, u_2\}.$

Theorem: Let $\phi: [0, 1] \rightarrow [0, +\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0, 1]^2 \rightarrow [0, 1]$, with $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex. A copula C generated as above is called an *Archimedian copula* with

generator ϕ . If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$. See Nelsen 1999 for a proof

Examples: Gumbel Copulas: $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0, 1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta})$ is the Gumbel copula with parameter θ . For $\theta = 1$: $C_1^{Gu} = u_1 u_2$.lim $_{\theta \to \infty} C_{\theta}^{Gu} = M(u_1, u_2) = \min\{u_1, u_2\}$. The Gumbel Copulas have an upper tail dependence.

Theorem: Let $\phi: [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \to [0,1]$, with $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex. A copula *C* generated as above is called an *Archimedian copula* with

generator ϕ .

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$. See Nelsen 1999 for a proof

Examples: <u>Gumbel Copulas:</u> $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0, 1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta})$ is the Gumbel copula with parameter θ . For $\theta = 1$: $C_1^{Gu} = u_1 u_2 \cdot \lim_{\theta \to \infty} C_{\theta}^{Gu} = M(u_1, u_2) = \min\{u_1, u_2\}$. The Gumbel Copulas have an upper tail dependence. <u>Clayton Copulas:</u> $\phi(t) = (t^{-\theta} - 1)/\theta$, $\theta > 0$. Then $C_{\theta}^{Cl}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}$ is the Clayton copula with parameter θ .

Theorem: Let $\phi: [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \to [0,1]$, with $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex. A copula *C* generated as above is called an *Archimedian copula* with

generator ϕ .

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$. See Nelsen 1999 for a proof

Examples: <u>Gumbel Copulas:</u> $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0, 1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta})$ is the Gumbel copula with parameter θ . For $\theta = 1$: $C_1^{Gu} = u_1 u_2$. $\lim_{\theta \to \infty} C_{\theta}^{Gu} = M(u_1, u_2) = \min\{u_1, u_2\}$. The Gumbel Copulas have an upper tail dependence. <u>Clayton Copulas:</u> $\phi(t) = (t^{-\theta} - 1)/\theta$, $\theta > 0$. Then $C_{\theta}^{Cl}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}$ is the Clayton copula with parameter θ . $\lim_{\theta \to 0} C_{\theta}^{Cl} = u_1 u_2$ and $\lim_{\theta \to \infty} C_{\theta}^{Cl} = M = \min\{u_1, u_2\}$.

Theorem: Let $\phi: [0,1] \to [0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1) = 0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ . The function $C: [0,1]^2 \to [0,1]$, with $C(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2))$ is a copula iff ϕ is convex. A copula C generated as above is called an *Archimedian copula* with

generator ϕ .

If $\phi(0) = +\infty$, then $\phi^{[-1]} = \phi^{-1}$ and $C(u_1, u_2) = \phi^{-1}(\phi(u_1) + \phi(u_2))$. See Nelsen 1999 for a proof

Examples: <u>Gumbel Copulas:</u> $\phi(t) = (-\ln t)^{\theta}$, $\theta \ge 1$, $t \in [0, 1]$. Then $C_{\theta}^{Gu}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = \exp(-[(-\ln u_1)^{\theta} + (-\ln u_2)^{\theta}]^{1/\theta})$ is the Gumbel copula with parameter θ . For $\theta = 1$: $C_1^{Gu} = u_1 u_2$. $\lim_{\theta \to \infty} C_{\theta}^{Gu} = M(u_1, u_2) = \min\{u_1, u_2\}$. The Gumbel Copulas have an upper tail dependence. <u>Clayton Copulas:</u> $\phi(t) = (t^{-\theta} - 1)/\theta$, $\theta > 0$. Then $C_{\theta}^{CI}(u_1, u_2) = \phi^{[-1]}(\phi(u_1) + \phi(u_2)) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{-1/\theta}$ is the Clayton copula with parameter θ . $\lim_{\theta \to 0} C_{\theta}^{CI} = u_1 u_2$ and $\lim_{\theta \to \infty} C_{\theta}^{CI} = M = \min\{u_1, u_2\}$. The Clayton copulas have a lower tail depencence.