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Proof in McNeil et al., 2005.
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(α) holds while
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If (X1,X2)
T , (Y1,Y2)

T represent the asset returns of two different
portfolios consisting of two assets each, then we have two portfolios with
the same marginal distributions of their assets and the same linear
correlation coefficient, respectively, but having different value at risk.

Conclusion: The marginal distributions of the assets in a portfolio and
the linear correlation between the assets do not determine the loss
distribution, in particular, they do not determine the risk measure of the
portfolio.
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(x , y)T und (x̃ , ỹ)T are called concordant if (x − x̃)(y − ỹ) > 0 and
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(x , y)T und (x̃ , ỹ)T are called concordant if (x − x̃)(y − ỹ) > 0 and
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d-dimensional case X ∈ IR
d : ρτ (X ) = cov(sign(X − X ′)), where

X ′ ∈ IR
D is an independent copy of X ∈ IR

d .

The sample Kendall’s Tau:
Let {(x1, y1)

T , (x2, y2)
T , . . . , (xn, yn)

T} be a sample of size n of the
random vector (X ,Y )T with continuous marginal distributions. Let c be
the number concordant pairs in the sample and let d be the number of
discordant pairs. Then the sample Kendall’s Tau is given as

ρ̃τ (X ,Y ) =
c − d

c + d

a.s.
=

c − d

n(n − 1)/2
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In the d-dimensional case X ∈ IR
d :

ρS (X ) = ρ(F1(X1),F2(X2), . . . ,Fd(Xd )) is the correlation matrix of the
unique copula of X , where F1,F2,. . .,Fd are the continuous marginal
distributions of X .
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◮ If X1, X2 are independent, then ρτ (X1,X2) = ρS (X1,X2) = 0.
In general the converse does not hold.

◮ X1,X2 are co-monotone iff ρτ (X1,X2) = ρS (X1,X2) = 1.
X1,X2. X1,X2 are anti-monotone iff ρτ (X1,X2) = ρS(X1,X2) = −1.

◮ Let F1, F2 be the continuous marginal distributions of (X1,X2)
T

and let T1, T2 be strictly monotone functions on [−∞,∞]. Then
the following equalties hold ρτ (X1,X2) = ρτ (T1(X1),T2(X2)) and
ρS (X1,X2) = ρS (T1(X1),T2(X2)).

(See Embrechts et al., 2002).
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The coefficent λL(X1,X2) of the lower tail dependency of (X1,X2)
T is

defined as λL(X1,X2) = limu→0+ P(X2 ≤ F←2 (u)|X1 ≤ F←1 (u)) provided
that the limit exists.

If the limit exists and λU > 0 (λL > 0) we say that (X1,X2)
T have an

upper (a lower) tail dependence.
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by Ĉ .



Tail dependency and survival copulas

Definition: Let the copula C be the c.d.f. of a random vector
(U1,U2, . . . ,Ud ) with Ui ∼ U[0, 1], i = 1, 2, . . . , d . The c.d.f. of
(1− U1, 1− U2, . . . , 1− Ud) is called survival copula of C and is denoted
by Ĉ .
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Lemma: For any copula C and its survival copula Ĉ the following holds
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Theorem: Let (X1,X2)
T be a random vector with continuous marginal

distributions and a unique copula C . The following equalities hold

λU(X1,X2) = limu→1−
1−2u+C(u,u)

1−u and λL(X1,X2) = limu→0+
C(u,u)

u
,

provided that the limits exist.
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Exmaples of copulas:
The Gumbel family of copulas:

CGu
θ (u1, u2) = exp

(

−
[

(− ln u1)
θ + (− ln u2)

θ
]1/θ

)

, θ ≥ 1

We have λU = 2− 21/θ, λL = 0.

The Clayton family of copulas:

CCl
θ (u1, u2) = (u−θ1 + u−θ2 − 1)1/θ, θ > 0

We have λU = 0, λL = 2−1/θ.
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Elliptical distributions and copulas

Definition: Let X be a d-dimensional random vector. Let µ ∈ IR
d and

Σ ∈ IR
d×d be constants, and let ψ : [0,∞) → IR be a function such that
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d×k ,
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φX−µ = ψ(tTΣt) holds for the characteristic function φX−µ of X − µ.
Then X is an elliptically distributed random vector with parameters µ, Σ,
ψ. Notation: X ∼ Ed(µ,Σ, ψ).

ψ is called the generating function (or the generator) of X .

For d = 1 the elliptical distributions coincide with the symmetric
distributions. (Convince yourself! Exploit the stochastic representation of

elliptical distributions.)

Theorem:(Stochastic representation)
A d-dimensional random vector X is elliptically distributed,
X ∼ Ed(µ,Σ, ψ) with rang(Σ) = k , iff there exist a matrix A ∈ IR

d×k ,
ATA = Σ, a nonnegative r.v. R and a k-dimensional random vector U
unformly distributed on the unit ball Sk−1 = {z ∈ IR

k : zT z = 1}, such

that R and U are independent and X
d
= µ+ RAU .

Remark: An elliptically distributed random vector X ist radial symmetric,

i.e. X − µ
d
= µ− X .


