Copulas: bounds for the linear correlation

Copulas: bounds for the linear correlation

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal d.f. F_{1}, F_{2} and some unknown copula. Let $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$ hold. Then the following statements hold:

Copulas: bounds for the linear correlation

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal d.f. F_{1}, F_{2} and some unknown copula. Let $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$ hold. Then the following statements hold:

1. The possible values of the linear correlation coefficient of X_{1} and X_{2} build a closed interval $\left[\rho_{L, \min } ; \rho_{L, \max }\right]$ with $0 \in\left[\rho_{L, \min ;} ; \rho_{L, \max }\right]$.

Copulas: bounds for the linear correlation

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal d.f. F_{1}, F_{2} and some unknown copula. Let $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$ hold. Then the following statements hold:

1. The possible values of the linear correlation coefficient of X_{1} and X_{2} build a closed interval $\left[\rho_{L, \min } ; \rho_{L, \max }\right]$ with $0 \in\left[\rho_{L, \min ;} ; \rho_{L, \max }\right]$.
2. The minimal linear correlation $\rho_{L, \text { min }}$ is reached iff X_{1} and X_{2} are anti-monotone. The maximal linear correlation $\rho_{L, \max }$ is reached iff X_{1} and X_{2} are co-monotone.

Copulas: bounds for the linear correlation

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal d.f. F_{1}, F_{2} and some unknown copula. Let $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$ hold. Then the following statements hold:

1. The possible values of the linear correlation coefficient of X_{1} and X_{2} build a closed interval $\left[\rho_{L, \text { min }} ; \rho_{L, \max }\right]$ with $0 \in\left[\rho_{L, \min ;} ; \rho_{L, \max }\right]$.
2. The minimal linear correlation $\rho_{L, \text { min }}$ is reached iff X_{1} and X_{2} are anti-monotone. The maximal linear correlation $\rho_{L, \max }$ is reached iff X_{1} and X_{2} are co-monotone.

The proof uses the equality of Höffding:
Lemma: (The Höffding equality)
Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with c.d.f. F and marginal d.f. F_{1}, F_{2}. If $\operatorname{cov}\left(X_{1}, X_{2}\right)<\infty$ then the following equality holds:

$$
\operatorname{cov}\left(X_{1}, X_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(F\left(x_{1}, x_{2}\right)-F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right)\right) d x_{1} d x_{2}
$$

Copulas: bounds for the linear correlation

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal d.f. F_{1}, F_{2} and some unknown copula. Let $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$ hold. Then the following statements hold:

1. The possible values of the linear correlation coefficient of X_{1} and X_{2} build a closed interval $\left[\rho_{L, \text { min }} ; \rho_{L, \max }\right]$ with $0 \in\left[\rho_{L, \min ;} ; \rho_{L, \max }\right]$.
2. The minimal linear correlation $\rho_{L, \text { min }}$ is reached iff X_{1} and X_{2} are anti-monotone. The maximal linear correlation $\rho_{L, \max }$ is reached iff X_{1} and X_{2} are co-monotone.

The proof uses the equality of Höffding:
Lemma: (The Höffding equality)
Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with c.d.f. F and marginal d.f. F_{1}, F_{2}. If $\operatorname{cov}\left(X_{1}, X_{2}\right)<\infty$ then the following equality holds:

$$
\operatorname{cov}\left(X_{1}, X_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(F\left(x_{1}, x_{2}\right)-F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right)\right) d x_{1} d x_{2}
$$

Proof in McNeil et al., 2005.

Copulas: bounds for the linear correlation (examples)

Copulas: bounds for the linear correlation (examples)

Example: Let X_{1}, X_{2} be two random variables with
$X_{1} \sim \operatorname{Lognormal}(0,1), X_{2} \sim \operatorname{Lognormal}\left(0, \sigma^{2}\right), \sigma>0$. Determine Sie $\rho_{L, \min }\left(X_{1}, X_{2}\right)$ und $\rho_{L, \max }\left(X_{1}, X_{2}\right)$.

Copulas: bounds for the linear correlation (examples)

Example: Let X_{1}, X_{2} be two random variables with
$X_{1} \sim \operatorname{Lognormal}(0,1), X_{2} \sim \operatorname{Lognormal}\left(0, \sigma^{2}\right), \sigma>0$. Determine Sie $\rho_{L, \text { min }}\left(X_{1}, X_{2}\right)$ und $\rho_{L, \max }\left(X_{1}, X_{2}\right)$.
Hint: Observe that $X_{1} \stackrel{d}{=} \exp (Z)$ and $X_{2} \stackrel{d}{=} \exp (\sigma Z) \stackrel{d}{=} \exp (-\sigma Z)$. Moreover $e^{Z}, e^{\sigma Z}$ are co-monotone and $e^{Z}, e^{\sigma Z}$ are anti-monotone.

Copulas: bounds for the linear correlation (examples)

Example: Let X_{1}, X_{2} be two random variables with
$X_{1} \sim \operatorname{Lognormal}(0,1), X_{2} \sim \operatorname{Lognormal}\left(0, \sigma^{2}\right), \sigma>0$. Determine Sie $\rho_{L, \min }\left(X_{1}, X_{2}\right)$ und $\rho_{L, \max }\left(X_{1}, X_{2}\right)$.
Hint: Observe that $X_{1} \stackrel{d}{=} \exp (Z)$ and $X_{2} \stackrel{d}{=} \exp (\sigma Z) \stackrel{d}{=} \exp (-\sigma Z)$.
Moreover $e^{Z}, e^{\sigma Z}$ are co-monotone and $e^{Z}, e^{\sigma Z}$ are anti-monotone.
Example: Determine two random vectors $\left(X_{1}, X_{2}\right)^{T}$ and $\left(Y_{1}, Y_{2}\right)^{T}$ with different c.d.f.s such that $F_{\overleftarrow{X_{1}}+X_{2}}(\alpha) \neq F_{\overleftarrow{Y_{1}}+Y_{2}}^{\leftarrow}(\alpha)$ holds while $X_{1}, X_{2}, Y_{1}, Y_{2} \sim N(0,1)$ and $\rho_{L}\left(X_{1}, X_{2}\right)=0, \rho_{L}\left(Y_{1}, Y_{2}\right)=0$ also hold.

Copulas: bounds for the linear correlation (examples)

Example: Let X_{1}, X_{2} be two random variables with
$X_{1} \sim \operatorname{Lognormal}(0,1), X_{2} \sim \operatorname{Lognormal}\left(0, \sigma^{2}\right), \sigma>0$. Determine Sie $\rho_{L, \min }\left(X_{1}, X_{2}\right)$ und $\rho_{L, \max }\left(X_{1}, X_{2}\right)$.
Hint: Observe that $X_{1} \stackrel{d}{=} \exp (Z)$ and $X_{2} \stackrel{d}{=} \exp (\sigma Z) \stackrel{d}{=} \exp (-\sigma Z)$. Moreover $e^{Z}, e^{\sigma Z}$ are co-monotone and $e^{Z}, e^{\sigma Z}$ are anti-monotone.
Example: Determine two random vectors $\left(X_{1}, X_{2}\right)^{T}$ and $\left(Y_{1}, Y_{2}\right)^{T}$ with different c.d.f.s such that $F_{\overleftarrow{X_{1}}+X_{2}}(\alpha) \neq F_{\overleftarrow{Y_{1}}+Y_{2}}(\alpha)$ holds while $X_{1}, X_{2}, Y_{1}, Y_{2} \sim N(0,1)$ and $\rho_{L}\left(X_{1}, X_{2}\right)=0, \rho_{L}\left(Y_{1}, Y_{2}\right)=0$ also hold.
If $\left(X_{1}, X_{2}\right)^{T},\left(Y_{1}, Y_{2}\right)^{T}$ represent the asset returns of two different portfolios consisting of two assets each, then we have two portfolios with the same marginal distributions of their assets and the same linear correlation coefficient, respectively, but having different value at risk.

Copulas: bounds for the linear correlation (examples)

Example: Let X_{1}, X_{2} be two random variables with
$X_{1} \sim \operatorname{Lognormal}(0,1), X_{2} \sim \operatorname{Lognormal}\left(0, \sigma^{2}\right), \sigma>0$. Determine Sie $\rho_{L, \min }\left(X_{1}, X_{2}\right)$ und $\rho_{L, \max }\left(X_{1}, X_{2}\right)$.
Hint: Observe that $X_{1} \stackrel{d}{=} \exp (Z)$ and $X_{2} \stackrel{d}{=} \exp (\sigma Z) \stackrel{d}{=} \exp (-\sigma Z)$. Moreover $e^{Z}, e^{\sigma Z}$ are co-monotone and $e^{Z}, e^{\sigma Z}$ are anti-monotone.
Example: Determine two random vectors $\left(X_{1}, X_{2}\right)^{T}$ and $\left(Y_{1}, Y_{2}\right)^{T}$ with different c.d.f.s such that $F_{\overleftarrow{X_{1}+X_{2}}}^{\overleftarrow{ }}(\alpha) \neq F_{\overleftarrow{Y_{1}}+Y_{2}}^{\overleftarrow{ }}(\alpha)$ holds while $X_{1}, X_{2}, Y_{1}, Y_{2} \sim N(0,1)$ and $\rho_{L}\left(X_{1}, X_{2}\right)=0, \rho_{L}\left(Y_{1}, Y_{2}\right)=0$ also hold.
If $\left(X_{1}, X_{2}\right)^{T},\left(Y_{1}, Y_{2}\right)^{T}$ represent the asset returns of two different portfolios consisting of two assets each, then we have two portfolios with the same marginal distributions of their assets and the same linear correlation coefficient, respectively, but having different value at risk.
Conclusion: The marginal distributions of the assets in a portfolio and the linear correlation between the assets do not determine the loss distribution, in particular, they do not determine the risk measure of the portfolio.

The rang correlation Kendall's Tau

The rang correlation Kendall's Tau

Let $(x, y)^{T}$ and $(\tilde{x}, \tilde{y})^{T}$ be two samples of a random vector $(X, Y)^{T}$. $(x, y)^{T}$ und $(\tilde{x}, \tilde{y})^{T}$ are called concordant if $(x-\tilde{x})(y-\tilde{y})>0$ and discordant if $(x-\tilde{x})(y-\tilde{y})<0$.

The rang correlation Kendall's Tau

Let $(x, y)^{T}$ and $(\tilde{x}, \tilde{y})^{T}$ be two samples of a random vector $(X, Y)^{T}$. $(x, y)^{T}$ und $(\tilde{x}, \tilde{y})^{T}$ are called concordant if $(x-\tilde{x})(y-\tilde{y})>0$ and discordant if $(x-\tilde{x})(y-\tilde{y})<0$.
Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Kendall's Tau of $\left(X_{1}, X_{2}\right)^{T}$ is defined as $\rho_{\tau}\left(X_{1}, X_{2}\right)=P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)>0\right)-P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)<0\right)$, where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T}$ is an independent copy of $\left(X_{1}, X_{2}\right)^{T}$.

The rang correlation Kendall's Tau

Let $(x, y)^{T}$ and $(\tilde{x}, \tilde{y})^{T}$ be two samples of a random vector $(X, Y)^{T}$. $(x, y)^{T}$ und $(\tilde{x}, \tilde{y})^{T}$ are called concordant if $(x-\tilde{x})(y-\tilde{y})>0$ and discordant if $(x-\tilde{x})(y-\tilde{y})<0$.
Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Kendall's Tau of $\left(X_{1}, X_{2}\right)^{T}$ is defined as $\rho_{\tau}\left(X_{1}, X_{2}\right)=P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)>0\right)-P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)<0\right)$, where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T}$ is an independent copy of $\left(X_{1}, X_{2}\right)^{T}$.
Equivalently: $\rho_{\tau}\left(X_{1}, X_{2}\right)=E\left(\operatorname{sign}\left[\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)\right]\right)$.

The rang correlation Kendall's Tau

Let $(x, y)^{T}$ and $(\tilde{x}, \tilde{y})^{T}$ be two samples of a random vector $(X, Y)^{T}$. $(x, y)^{T}$ und $(\tilde{x}, \tilde{y})^{T}$ are called concordant if $(x-\tilde{x})(y-\tilde{y})>0$ and discordant if $(x-\tilde{x})(y-\tilde{y})<0$.
Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Kendall's Tau of $\left(X_{1}, X_{2}\right)^{T}$ is defined as $\rho_{\tau}\left(X_{1}, X_{2}\right)=P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)>0\right)-P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)<0\right)$, where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T}$ is an independent copy of $\left(X_{1}, X_{2}\right)^{T}$.
Equivalently: $\rho_{\tau}\left(X_{1}, X_{2}\right)=E\left(\operatorname{sign}\left[\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)\right]\right)$. In the d-dimensional case $X \in \mathbb{R}^{d}: \rho_{\tau}(X)=\operatorname{cov}\left(\operatorname{sign}\left(X-X^{\prime}\right)\right)$, where $X^{\prime} \in \mathbb{R}^{D}$ is an independent copy of $X \in \mathbb{R}^{d}$.

The rang correlation Kendall's Tau

Let $(x, y)^{T}$ and $(\tilde{x}, \tilde{y})^{T}$ be two samples of a random vector $(X, Y)^{T}$. $(x, y)^{T}$ und $(\tilde{x}, \tilde{y})^{T}$ are called concordant if $(x-\tilde{x})(y-\tilde{y})>0$ and discordant if $(x-\tilde{x})(y-\tilde{y})<0$.
Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Kendall's Tau of $\left(X_{1}, X_{2}\right)^{T}$ is defined as
$\rho_{\tau}\left(X_{1}, X_{2}\right)=P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)>0\right)-P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)<0\right)$, where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T}$ is an independent copy of $\left(X_{1}, X_{2}\right)^{T}$.
Equivalently: $\rho_{\tau}\left(X_{1}, X_{2}\right)=E\left(\operatorname{sign}\left[\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)\right]\right)$. In the d-dimensional case $X \in \mathbb{R}^{d}: \rho_{\tau}(X)=\operatorname{cov}\left(\operatorname{sign}\left(X-X^{\prime}\right)\right)$, where $X^{\prime} \in \mathbb{R}^{D}$ is an independent copy of $X \in \mathbb{R}^{d}$.

The sample Kendall's Tau:

Let $\left\{\left(x_{1}, y_{1}\right)^{T},\left(x_{2}, y_{2}\right)^{T}, \ldots,\left(x_{n}, y_{n}\right)^{T}\right\}$ be a sample of size n of the random vector $(X, Y)^{T}$ with continuous marginal distributions. Let c be the number concordant pairs in the sample and let d be the number of discordant pairs. Then the sample Kendall's Tau is given as

$$
\tilde{\rho}_{\tau}(X, Y)=\frac{c-d}{c+d} \stackrel{\text { a.s. }}{=} \frac{c-d}{n(n-1) / 2}
$$

The rang correlation Spearman's Rho

The rang correlation Spearman's Rho

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Spearman's Rho of $\left(X_{1}, X_{2}\right)^{T}$ is defined as:
$\rho_{S}\left(X_{1}, X_{2}\right)=3\left(P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)>0\right)-P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)<0\right)\right)$, where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T},\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)^{T}$ are i.i.d. copies of $\left(X_{1}, X_{2}\right)^{T}$.

The rang correlation Spearman's Rho

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Spearman's Rho of $\left(X_{1}, X_{2}\right)^{T}$ is defined as:
$\rho_{S}\left(X_{1}, X_{2}\right)=3\left(P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)>0\right)-P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)<0\right)\right)$,
where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T},\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)^{T}$ are i.i.d. copies of $\left(X_{1}, X_{2}\right)^{T}$.
Equivalent definition (without a proof):
Let F_{1} und F_{2} be the continuous marginal distributions of $\left(X_{1}, X_{2}\right)^{T}$. Then $\rho_{S}\left(X_{1}, X_{2}\right)=\rho_{L}\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right)$ holds, i.e. the Spearman's Rho is the linear correlation of the unique copula of $\left(X_{1}, X_{2}\right)^{T}$.

The rang correlation Spearman's Rho

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Spearman's Rho of $\left(X_{1}, X_{2}\right)^{T}$ is defined as:
$\rho_{S}\left(X_{1}, X_{2}\right)=3\left(P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)>0\right)-P\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)<0\right)\right)$,
where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T},\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)^{T}$ are i.i.d. copies of $\left(X_{1}, X_{2}\right)^{T}$.
Equivalent definition (without a proof):
Let F_{1} und F_{2} be the continuous marginal distributions of $\left(X_{1}, X_{2}\right)^{T}$. Then $\rho_{S}\left(X_{1}, X_{2}\right)=\rho_{L}\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right)$ holds, i.e. the Spearman's Rho is the linear correlation of the unique copula of $\left(X_{1}, X_{2}\right)^{T}$.
In the d-dimensional case $X \in \mathbb{R}^{d}$:
$\rho_{S}(X)=\rho\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right), \ldots, F_{d}\left(X_{d}\right)\right)$ is the correlation matrix of the unique copula of X, where $F_{1}, F_{2}, \ldots, F_{d}$ are the continuous marginal distributions of X.

Properties of ρ_{τ} and ρ_{S}.

Properties of ρ_{τ} and ρ_{S}.

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and unique copula C. The following equalities hold:

$$
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1
$$

Properties of ρ_{τ} and ρ_{S}.

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and unique copula C. The following equalities hold:

$$
\begin{gathered}
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1 \\
\rho_{S}\left(X_{1}, X_{2}\right)=12 \int_{0}^{1} \int_{0}^{1}\left(C\left(u_{1}, u_{2}\right)-u_{1} u_{2}\right) d u_{1} d u_{2}= \\
12 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d u_{1} d u_{2}-3
\end{gathered}
$$

Properties of ρ_{τ} and ρ_{S}.

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and unique copula C. The following equalities hold:

$$
\begin{gathered}
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1 \\
\rho_{S}\left(X_{1}, X_{2}\right)=12 \int_{0}^{1} \int_{0}^{1}\left(C\left(u_{1}, u_{2}\right)-u_{1} u_{2}\right) d u_{1} d u_{2}= \\
12 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d u_{1} d u_{2}-3
\end{gathered}
$$

- ρ_{τ} and ρ_{S} are symmetric and take their values on $[-1,1]$.

Properties of ρ_{τ} and ρ_{S}.

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and unique copula C. The following equalities hold:

$$
\begin{gathered}
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1 \\
\rho_{S}\left(X_{1}, X_{2}\right)=12 \int_{0}^{1} \int_{0}^{1}\left(C\left(u_{1}, u_{2}\right)-u_{1} u_{2}\right) d u_{1} d u_{2}= \\
12 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d u_{1} d u_{2}-3
\end{gathered}
$$

- ρ_{τ} and ρ_{S} are symmetric and take their values on $[-1,1]$.
- If X_{1}, X_{2} are independent, then $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=0$. In general the converse does not hold.

Properties of ρ_{τ} and ρ_{S}.

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and unique copula C. The following equalities hold:

$$
\begin{gathered}
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1 \\
\rho_{S}\left(X_{1}, X_{2}\right)=12 \int_{0}^{1} \int_{0}^{1}\left(C\left(u_{1}, u_{2}\right)-u_{1} u_{2}\right) d u_{1} d u_{2}= \\
12 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d u_{1} d u_{2}-3
\end{gathered}
$$

- ρ_{τ} and ρ_{S} are symmetric and take their values on $[-1,1]$.
- If X_{1}, X_{2} are independent, then $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=0$. In general the converse does not hold.
- X_{1}, X_{2} are co-monotone iff $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=1$. $X_{1}, X_{2} . X_{1}, X_{2}$ are anti-monotone iff $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=-1$.

Properties of ρ_{τ} and ρ_{S}.

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and unique copula C. The following equalities hold:

$$
\begin{gathered}
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1 \\
\rho_{S}\left(X_{1}, X_{2}\right)=12 \int_{0}^{1} \int_{0}^{1}\left(C\left(u_{1}, u_{2}\right)-u_{1} u_{2}\right) d u_{1} d u_{2}= \\
12 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d u_{1} d u_{2}-3
\end{gathered}
$$

- ρ_{τ} and ρ_{S} are symmetric and take their values on $[-1,1]$.
- If X_{1}, X_{2} are independent, then $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=0$.

In general the converse does not hold.

- X_{1}, X_{2} are co-monotone iff $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=1$. $X_{1}, X_{2} . X_{1}, X_{2}$ are anti-monotone iff $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=-1$.
- Let F_{1}, F_{2} be the continuous marginal distributions of $\left(X_{1}, X_{2}\right)^{T}$ and let T_{1}, T_{2} be strictly monotone functions on $[-\infty, \infty]$. Then the following equalties hold $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{\tau}\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right)\right)$ and $\rho_{S}\left(X_{1}, X_{2}\right)=\rho_{S}\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right)\right)$.
(See Embrechts et al., 2002).

Tail dependence coefficients

Tail dependence coefficients

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal distributions F_{1} und F_{2}.
The coefficent $\lambda_{U}\left(X_{1}, X_{2}\right)$ of the upper tail dependency of $\left(X_{1}, X_{2}\right)^{T}$ is defined as $\lambda_{U}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 1^{-}} P\left(X_{2}>F_{2}^{\leftarrow}(u) \mid X_{1}>F_{1}^{\leftarrow}(u)\right)$, provided that the limit exists.

Tail dependence coefficients

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal distributions F_{1} und F_{2}.
The coefficent $\lambda_{U}\left(X_{1}, X_{2}\right)$ of the upper tail dependency of $\left(X_{1}, X_{2}\right)^{T}$ is defined as $\lambda_{U}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 1^{-}} P\left(X_{2}>F_{2}^{\leftarrow}(u) \mid X_{1}>F_{1}^{\leftarrow}(u)\right)$, provided that the limit exists.

The coefficent $\lambda_{L}\left(X_{1}, X_{2}\right)$ of the lower tail dependency of $\left(X_{1}, X_{2}\right)^{T}$ is defined as $\lambda_{L}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 0^{+}} P\left(X_{2} \leq F_{2}^{\leftarrow}(u) \mid X_{1} \leq F_{1}^{\leftarrow}(u)\right)$ provided that the limit exists.

Tail dependence coefficients

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal distributions F_{1} und F_{2}.
The coefficent $\lambda_{U}\left(X_{1}, X_{2}\right)$ of the upper tail dependency of $\left(X_{1}, X_{2}\right)^{T}$ is defined as $\lambda_{u}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 1^{-}} P\left(X_{2}>F_{2}^{\leftarrow}(u) \mid X_{1}>F_{1}^{\leftarrow}(u)\right)$, provided that the limit exists.

The coefficent $\lambda_{L}\left(X_{1}, X_{2}\right)$ of the lower tail dependency of $\left(X_{1}, X_{2}\right)^{T}$ is defined as $\lambda_{L}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 0^{+}} P\left(X_{2} \leq F_{2}^{\leftarrow}(u) \mid X_{1} \leq F_{1}^{\leftarrow}(u)\right)$ provided that the limit exists.

If the limit exists and $\lambda_{U}>0\left(\lambda_{L}>0\right)$ we say that $\left(X_{1}, X_{2}\right)^{T}$ have an upper (a lower) tail dependence.

Tail dependency and survival copulas

Tail dependency and survival copulas

Definition: Let the copula C be the c.d.f. of a random vector $\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with $U_{i} \sim U[0,1], i=1,2, \ldots, d$. The c.d.f. of ($1-U_{1}, 1-U_{2}, \ldots, 1-U_{d}$) is called survival copula of C and is denoted by \hat{C}.

Tail dependency and survival copulas

Definition: Let the copula C be the c.d.f. of a random vector $\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with $U_{i} \sim U[0,1], i=1,2, \ldots, d$. The c.d.f. of ($1-U_{1}, 1-U_{2}, \ldots, 1-U_{d}$) is called survival copula of C and is denoted by \hat{C}.
Lemma: Let X be a random vector with multivariate tail distribution function $\bar{F}\left(\bar{F}\left(x_{1}, x_{2}, \ldots, x_{d}\right):=\operatorname{Prob}\left(X_{1}>x_{1}, X_{2}>x_{2}, \ldots, X_{d}>x_{d}\right)\right)$ and marginal distributions $F_{i}, i=1,2, \ldots, d$. Let $\bar{F}_{i}:=1-F_{i}$, $i=1,2, \ldots, d$. Then the following holds

$$
\bar{F}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\hat{C}\left(\bar{F}_{1}\left(x_{1}\right), \bar{F}_{2}\left(x_{2}\right), \ldots, \bar{F}_{d}\left(x_{d}\right) .\right.
$$

Tail dependency and survival copulas

Definition: Let the copula C be the c.d.f. of a random vector $\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with $U_{i} \sim U[0,1], i=1,2, \ldots, d$. The c.d.f. of ($1-U_{1}, 1-U_{2}, \ldots, 1-U_{d}$) is called survival copula of C and is denoted by \hat{C}.
Lemma: Let X be a random vector with multivariate tail distribution function $\bar{F}\left(\bar{F}\left(x_{1}, x_{2}, \ldots, x_{d}\right):=\operatorname{Prob}\left(X_{1}>x_{1}, X_{2}>x_{2}, \ldots, X_{d}>x_{d}\right)\right)$ and marginal distributions $F_{i}, i=1,2, \ldots, d$. Let $\bar{F}_{i}:=1-F_{i}$, $i=1,2, \ldots, d$. Then the following holds

$$
\bar{F}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\hat{C}\left(\bar{F}_{1}\left(x_{1}\right), \bar{F}_{2}\left(x_{2}\right), \ldots, \bar{F}_{d}\left(x_{d}\right) .\right.
$$

Lemma: For any copula C and its survival copula \hat{C} the following holds $\hat{C}\left(1-u_{1}, 1-u_{2}\right)=1-u_{1}-u_{2}+C\left(u_{1}, u_{2}\right)$.

Tail dependency and survival copulas

Definition: Let the copula C be the c.d.f. of a random vector $\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with $U_{i} \sim U[0,1], i=1,2, \ldots, d$. The c.d.f. of ($1-U_{1}, 1-U_{2}, \ldots, 1-U_{d}$) is called survival copula of C and is denoted by \hat{C}.
Lemma: Let X be a random vector with multivariate tail distribution function $\bar{F}\left(\bar{F}\left(x_{1}, x_{2}, \ldots, x_{d}\right):=\operatorname{Prob}\left(X_{1}>x_{1}, X_{2}>x_{2}, \ldots, X_{d}>x_{d}\right)\right)$ and marginal distributions $F_{i}, i=1,2, \ldots, d$. Let $\bar{F}_{i}:=1-F_{i}$, $i=1,2, \ldots, d$. Then the following holds

$$
\bar{F}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\hat{C}\left(\bar{F}_{1}\left(x_{1}\right), \bar{F}_{2}\left(x_{2}\right), \ldots, \bar{F}_{d}\left(x_{d}\right) .\right.
$$

Lemma: For any copula C and its survival copula \hat{C} the following holds $\hat{C}\left(1-u_{1}, 1-u_{2}\right)=1-u_{1}-u_{2}+C\left(u_{1}, u_{2}\right)$.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a unique copula C. The following equalities hold $\lambda_{U}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 1^{-}} \frac{1-2 u+C(u, u)}{1-u}$ and $\lambda_{L}\left(X_{1}, X_{2}\right)=\lim _{u \rightarrow 0^{+}} \frac{C(u, u)}{u}$, provided that the limits exist.

Exmaples of copulas:

Exmaples of copulas:

The Gumbel family of copulas:

$$
C_{\theta}^{\mathrm{Gu}}\left(u_{1}, u_{2}\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right), \theta \geq 1
$$

We have $\lambda_{U}=2-2^{1 / \theta}, \lambda_{L}=0$.

Exmaples of copulas:

The Gumbel family of copulas:

$$
C_{\theta}^{\mathrm{Gu}}\left(u_{1}, u_{2}\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right), \theta \geq 1
$$

We have $\lambda_{U}=2-2^{1 / \theta}, \lambda_{L}=0$.
The Clayton family of copulas:

$$
C_{\theta}^{\mathrm{Cl}}\left(u_{1}, u_{2}\right)=\left(u_{1}^{-\theta}+u_{2}^{-\theta}-1\right)^{1 / \theta}, \theta>0
$$

We have $\lambda_{U}=0, \lambda_{L}=2^{-1 / \theta}$.

Elliptical distributions and copulas

Elliptical distributions and copulas

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that $\phi_{X-\mu}=\psi\left(t^{T} \Sigma t\right)$ holds for the characteristic function $\phi_{X-\mu}$ of $X-\mu$.
Then X is an elliptically distributed random vector with parameters μ, Σ, ψ. Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.

Elliptical distributions and copulas

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that $\phi_{X-\mu}=\psi\left(t^{T} \Sigma t\right)$ holds for the characteristic function $\phi_{X-\mu}$ of $X-\mu$.
Then X is an elliptically distributed random vector with parameters μ, Σ, ψ. Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.
ψ is called the generating function (or the generator) of X.

Elliptical distributions and copulas

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that $\phi_{X-\mu}=\psi\left(t^{T} \Sigma t\right)$ holds for the characteristic function $\phi_{X-\mu}$ of $X-\mu$.
Then X is an elliptically distributed random vector with parameters μ, Σ, ψ. Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.
ψ is called the generating function (or the generator) of X.
For $d=1$ the elliptical distributions coincide with the symmetric distributions. (Convince yourself! Exploit the stochastic representation of elliptical distributions.)

Elliptical distributions and copulas

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that $\phi_{X-\mu}=\psi\left(t^{T} \Sigma t\right)$ holds for the characteristic function $\phi_{X-\mu}$ of $X-\mu$. Then X is an elliptically distributed random vector with parameters μ, Σ, ψ. Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.
ψ is called the generating function (or the generator) of X.
For $d=1$ the elliptical distributions coincide with the symmetric distributions. (Convince yourself! Exploit the stochastic representation of elliptical distributions.)
Theorem:(Stochastic representation)
A d-dimensional random vector X is elliptically distributed, $X \sim E_{d}(\mu, \Sigma, \psi)$ with $\operatorname{rang}(\Sigma)=k$, iff there exist a matrix $A \in \mathbb{R}^{d \times k}$, $A^{T} A=\Sigma$, a nonnegative r.v. R and a k-dimensional random vector U unformly distributed on the unit ball $\mathcal{S}^{k-1}=\left\{z \in \mathbb{R}^{k}: z^{T} z=1\right\}$, such that R and U are independent and $X \stackrel{d}{=} \mu+R A U$.

Elliptical distributions and copulas

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that $\phi_{X-\mu}=\psi\left(t^{T} \Sigma t\right)$ holds for the characteristic function $\phi_{X-\mu}$ of $X-\mu$. Then X is an elliptically distributed random vector with parameters μ, Σ, ψ. Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.
ψ is called the generating function (or the generator) of X.
For $d=1$ the elliptical distributions coincide with the symmetric distributions. (Convince yourself! Exploit the stochastic representation of elliptical distributions.)
Theorem:(Stochastic representation)
A d-dimensional random vector X is elliptically distributed, $X \sim E_{d}(\mu, \Sigma, \psi)$ with $\operatorname{rang}(\Sigma)=k$, iff there exist a matrix $A \in \mathbb{R}^{d \times k}$, $A^{T} A=\Sigma$, a nonnegative r.v. R and a k-dimensional random vector U unformly distributed on the unit ball $\mathcal{S}^{k-1}=\left\{z \in \mathbb{R}^{k}: z^{T} z=1\right\}$, such that R and U are independent and $X \stackrel{d}{=} \mu+R A U$.
Remark: An elliptically distributed random vector X ist radial symmetric, i.e. $X-\mu \stackrel{d}{=} \mu-X$.

