Risk theory and risk management in actuarial science
 Winter term 2020/2021

6 th work sheet

37. Equivalent threshold models

Let $X=\left(X_{1}, X_{2}, \ldots, X_{m}\right)^{\prime}$ be an m-dimensional random vector and let $D \in \mathbb{R}^{\mathrm{m} \times \mathrm{n}}$ be a deterministic matrix with elements $d_{i j}$ such that for every $i, 1 \leq i \leq m$, the elements of the i-th row form a set of increasing thresholds satisfying $d_{i, 1}<d_{i 2} \ldots<d_{i n}$. Introduce additionally $d_{i 0}=-\infty, d_{i, n+1}=+\infty$ and set

$$
S_{i}=j \Longleftrightarrow d_{i j}<X_{i} \leq d_{i, j+1}, \text { for } j \in\{0, \ldots, n\}, i \in\{1, \ldots, m\}
$$

Then (X, D) is said to define a threshold model for the state vector $S=\left(S_{1}, \ldots, S_{m}\right)^{\prime}$. We refere to X as the vector of critical variables and denote its marginal distribution functions by $F_{i}(x)=$ $P\left(X_{i} \leq x\right)$, for $i \in\{1,2, \ldots, m\}$. The i-th row of D contains the critical thresholds for firm i. By definition, default (corresponding to event $S_{i}=0$) occurs iff $X_{i} \leq d_{i 1}$, thus the default probability of company i is given by $\bar{p}_{i}:=F_{i}\left(d_{i 1}\right)$. Let Y_{i} be the default indicator of company i, i.e. $Y_{i} \in\{0,1\}$ with $Y_{i}=1$ iff company 1 defaults, hence $\operatorname{Prob}\left(Y_{i}=1\right)=\bar{p}_{i}$ and $\operatorname{Prob}\left(Y_{i}=0\right)=1-\bar{p}_{i}$, for $1 \leq i \leq m$. We denote by $\rho\left(Y_{i}, Y_{j}\right)$ the default correlation of two firms $i \neq j$; this quantity depends on $E\left(Y_{i}, Y_{j}\right)$ (how?) which in turn depends on the joint distribution of $\left(X_{i}, X_{j}\right)$, and hence on the copula of $\left(X_{1}, X_{2}, \ldots, X_{m}\right)^{\prime}$. (Notice that in general the latter is not fully determined by the asset correlation $\left.\rho\left(X_{i}, X_{j}\right).\right)$
Two threshold models (X, D) and (\tilde{X}, \tilde{D}) for the state vectors S and \tilde{S}, respectively, are called equivalent, iff S and \tilde{S} have the same probability distribution.
Show that two threshod models (X, D) and (\tilde{X}, \tilde{D}) with state vectors S and \tilde{S}, respectively, are equivalent if the following conditions hold:
(a) The marginal distributions of the random vectors S and \tilde{S} coincide, i.e. $P\left(S_{i}=j\right)=P\left(\tilde{S}_{i}=j\right)$, for all $j \in\{1, \ldots, n\}, i \in\{1, \ldots, m\}$.
(b) X and \tilde{X} admit the same copula C.
38. A bank has a loan portfolio of 100 loans. Let X_{k} be the default indicator for loan k such that $X_{k}=1$ in case of default and 0 otherwise, for $k \in\{1, \ldots, 100\}$.
(a) Supoose that X_{k} are independent and identically distributed with $P\left(X_{k}=1\right)=0.01$. Compute the expected value $E(N)$ of the number N of defaults and $P(N=k)$ for $k \in\{0,1, \ldots, 100\}$.
(b) Consider the risk factor Z which reflects the state of the economy. Suppose that conditional on Z the default indicators are independent and identically distributed with $P\left(X_{k}=1 \mid Z\right)=Z$, where $P(Z=0.01)=0.9$ and $P(Z=0.11)=0.1$. Compute the expected value $E(N)$ where N is defined as in (a).
(c) Consider the risk factor Z which reflects the state of the economy. Suppose that conditional on Z the default indicators are independent and identically distributed with $P\left(X_{k}=1 \mid Z\right)=Z^{9}$, where Z is uniformly distributed on $(0,1)$. Compute the expected value $E(N)$ where N is defined as in (a).
39. An m-dimensional random vector X is said to have a p-dimensional conditional independence structure with conditioning variable Ψ iff there is some $p \in \mathbb{N}, p<m$, and a p-dimensional random vector $\Psi=\left(\Psi_{1}, \ldots, \Psi_{p}\right)^{t}$, such that the random variables X_{1}, \ldots, X_{m} are independent conditional on Ψ. Consider a threshold model (X, D) as defined in Exercise 37 and assume that X has a p-dimensional conditional independence structure with conditioning variable Ψ. Show that the default indicators $Y_{i}=\mathrm{I}_{\mathrm{X}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{i} 1}}$ follow a Bernoulli mixture model with factor Ψ. How are given the conditional default probabilities for this Bernoulli mixture model?
40. Suppose that the critical variables $X=\left(X_{1}, \ldots, X_{m}\right)^{t}$ have a normal mean-variance mixture distribution, i.e. $X=m(W)+\sqrt{W} Z$ with an m-dimensional random vector Z, a positive, scalar random variable W independent of Z, and a measurable function $m:[0 ;+\infty) \rightarrow \mathbb{R}^{\mathrm{m}}$. Assume that Z (and hence X) follows a linear factor model of the form $Z=B F+\epsilon$, where $F \sim N_{p}(\overrightarrow{0}, \Omega)$ is a p-dimensional normally distributed vector with expected value $\overrightarrow{0} \in \mathbb{R}^{\mathrm{p}}$ and covariance matrix $\Omega \in \mathbb{R}^{\mathrm{p} \times \mathrm{p}}, B \in \mathbb{R}^{\mathrm{m} \times \mathrm{p}}$ is a deterministic loading matrix, and the components $\epsilon_{1}, \ldots, \epsilon_{m}$ of ϵ are i.i.d. normally distributed random variables which are also independent of F. Show that F hast a $(p+1)$ conditional independence structure (see the definition in Exercise 39). How are given the conditional default probabilities for the corresponding Bernoulli mixture model of the default indicators Y_{i} in this case (cf. Exercise 39)?
41. (Application of Archimedian copulas in threshold models)

Consider a threshold model (X, D) where X has an Archimedian copula C with generator ϕ such that ϕ^{-1} is the Laplace transform of some nonnegative distribution function G with $G(0)=0$. Let $d=\left(d_{11}, \ldots, d_{m 1}\right)^{t}$ denote the first column of D containing the default thresholds. We write then (X, d) for a threshold model of default with an Archimedian copula dependence and denote by $\bar{p}=\left(\bar{p}_{1}, \ldots, \bar{p}_{m}\right)^{t}$ the vector of default probabilities, where $\bar{p}_{i}=\mathbb{P}\left(\mathrm{X}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{i} 1}\right)$, for $i \in\{1,2, \ldots, m\}$. Consider a nonnegative random variable $\Psi \sim G$ and random variables U_{1}, \ldots, U_{m} that are conditionally independent given Ψ with conditional distribution function $\mathbb{P}\left(\mathrm{U}_{\mathrm{i}} \leq \mathrm{u} \mid \Psi=\psi\right)=\exp (-\psi \phi(\mathrm{u}))$, for $u \in[0,1]$. Check that $U=\left(U_{1}, \ldots, U_{m}\right)^{t}$ has distribution function C. Show that (X, d) and (U, \bar{p}) are two equivalent threshold models for default (cf. Exercise 37). How are given the conditional default probabilities $p_{i}(\Psi)$ in this case?
Consider the Clayton copula $C_{\theta}^{C l}$ with generator function $\phi(t)=t^{-\theta}-1$ and assume that we want to construct a Bernoulli mixture model that is equivalent to a threshold model driven by $C_{\theta}^{C l}$. In this Bernoulli mixture model all conditional default probabilites $p_{i}(\Psi)$ would coincide; such a Bernoulli mixture model is called exchangeable. Assume moreover that the probability of default for any creditor is given by π and the probability that an arbitrary pair of creditors defaults is given by π^{\prime}. What value of θ would lead to the required exchangeable Bernoulli mixture modell?
42. Apply the CreditRisk ${ }^{+}$approach for a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$. Consider the settings $\bar{\lambda}_{i}=\bar{\lambda}=0.15, \alpha_{j}=\alpha=1, \beta_{j}=\beta=1, a_{i, j}=1 / m$, for $i=1,2, \ldots, n, j=1,2, \ldots, m$. Let N be the number of defaulting creditors. Recall that $\mathbb{P}(\mathrm{N}=\mathrm{k})=\frac{1}{\mathrm{k}!} \mathrm{g}_{\mathrm{N}}^{(\mathrm{k})}(0)=\frac{1}{\mathrm{k}!} \frac{\mathrm{d}^{\mathrm{k}} \mathrm{g}_{\mathrm{N}}(0)}{\mathrm{dt} \mathrm{t}^{\mathrm{k}}}$ holds for any $k \in \overline{1 . . n}$, where g_{N} is the probability generating function (pgf) of N (cf. the lecture).
(a) Based on the closed form expressions discussed in the lecture derive concrete formulas for the probability generating functions $\tilde{g}_{N}(t)$ and $\bar{g}_{N}(t)$ of N in the cases $m=1$ and $m=5$, respectively.
(b) Show that the following recursive formula holds for $g_{N}=\tilde{g}_{N}$ and $g=\bar{g}_{N}$ and $k>1$:

$$
g_{N}^{(k)}(0)=\sum_{l=0}^{k-1}\binom{k-1}{l} g_{N}^{(k-1-l)}(0) \sum_{j=1}^{m} l!\alpha_{j} \delta_{j}^{l+1} .
$$

(c) Compute and plot $\mathbb{P}(\mathrm{N}=\mathrm{k})$, for $k \in \overline{1 . . n}$, in both cases $m=1$ and $m=5$. Compare the two plots and interprete the results.

