Risk theory and risk management in actuarial science Winter term 2020/2021

6th work sheet

37. Equivalent threshold models

Let $X = (X_1, X_2, \ldots, X_m)'$ be an *m*-dimensional random vector and let $D \in \mathbb{R}^{m \times n}$ be a deterministic matrix with elements d_{ij} such that for every $i, 1 \leq i \leq m$, the elements of the *i*-th row form a set of increasing thresholds satisfying $d_{i,1} < d_{i2} \ldots < d_{in}$. Introduce additionally $d_{i0} = -\infty, d_{i,n+1} = +\infty$ and set

$$S_i = j \iff d_{ij} < X_i \le d_{i,j+1}$$
, for $j \in \{0, \dots, n\}, i \in \{1, \dots, m\}$

Then (X, D) is said to define a threshold model for the state vector $S = (S_1, \ldots, S_m)'$. We refere to X as the vector of critical variables and denote its marginal distribution functions by $F_i(x) = P(X_i \leq x)$, for $i \in \{1, 2, \ldots, m\}$. The *i*-th row of D contains the critical thresholds for firm *i*. By definition, default (corresponding to event $S_i = 0$) occurs iff $X_i \leq d_{i1}$, thus the default probability of company *i* is given by $\bar{p}_i := F_i(d_{i1})$. Let Y_i be the default indicator of company *i*, i.e. $Y_i \in \{0, 1\}$ with $Y_i = 1$ iff company 1 defaults, hence $Prob(Y_i = 1) = \bar{p}_i$ and $Prob(Y_i = 0) = 1 - \bar{p}_i$, for $1 \leq i \leq m$. We denote by $\rho(Y_i, Y_j)$ the default correlation of two firms $i \neq j$; this quantity depends on $E(Y_i, Y_j)$ (how?) which in turn depends on the joint distribution of (X_i, X_j) , and hence on the copula of $(X_1, X_2, \ldots, X_m)'$. (Notice that in general the latter is not fully determined by the asset correlation $\rho(X_i, X_j)$.)

Two threshold models (X, D) and (\tilde{X}, \tilde{D}) for the state vectors S and \tilde{S} , respectively, are called equivalent, iff S and \tilde{S} have the same probability distribution.

Show that two threshod models (X, D) and (\tilde{X}, \tilde{D}) with state vectors S and \tilde{S} , respectively, are equivalent if the following conditions hold:

- (a) The marginal distributions of the random vectors S and \tilde{S} coincide, i.e. $P(S_i = j) = P(\tilde{S}_i = j)$, for all $j \in \{1, \ldots, n\}, i \in \{1, \ldots, m\}$.
- (b) X and \tilde{X} admit the same copula C.
- 38. A bank has a loan portfolio of 100 loans. Let X_k be the default indicator for loan k such that $X_k = 1$ in case of default and 0 otherwise, for $k \in \{1, ..., 100\}$.
 - (a) Suppose that X_k are independent and identically distributed with $P(X_k = 1) = 0.01$. Compute the expected value E(N) of the number N of defaults and P(N = k) for $k \in \{0, 1, ..., 100\}$.
 - (b) Consider the risk factor Z which reflects the state of the economy. Suppose that conditional on Z the default indicators are independent and identically distributed with $P(X_k = 1|Z) = Z$, where P(Z = 0.01) = 0.9 and P(Z = 0.11) = 0.1. Compute the expected value E(N) where N is defined as in (a).
 - (c) Consider the risk factor Z which reflects the state of the economy. Suppose that conditional on Z the default indicators are independent and identically distributed with $P(X_k = 1|Z) = Z^9$, where Z is uniformly distributed on (0, 1). Compute the expected value E(N) where N is defined as in (a).
- 39. An *m*-dimensional random vector X is said to have a *p*-dimensional conditional independence structure with conditioning variable Ψ iff there is some $p \in \mathbb{N}$, p < m, and a *p*-dimensional random vector $\Psi = (\Psi_1, \ldots, \Psi_p)^t$, such that the random variables X_1, \ldots, X_m are independent conditional on Ψ . Consider a threshold model (X, D) as defined in Exercise 37 and assume that X has a *p*-dimensional conditional independence structure with conditioning variable Ψ . Show that the default indicators $Y_i = \mathbb{I}_{X_i \leq d_{i1}}$ follow a Bernoulli mixture model with factor Ψ . How are given the conditional default probabilities for this Bernoulli mixture model?

- 40. Suppose that the critical variables $X = (X_1, \ldots, X_m)^t$ have a normal mean-variance mixture distribution, i.e. $X = m(W) + \sqrt{WZ}$ with an *m*-dimensional random vector *Z*, a positive, scalar random variable *W* independent of *Z*, and a measurable function $m: [0; +\infty) \to \mathbb{R}^m$. Assume that *Z* (and hence *X*) follows a linear factor model of the form $Z = BF + \epsilon$, where $F \sim N_p(\vec{0}, \Omega)$ is a *p*-dimensional normally distributed vector with expected value $\vec{0} \in \mathbb{R}^p$ and covariance matrix $\Omega \in \mathbb{R}^{p \times p}, B \in \mathbb{R}^{m \times p}$ is a deterministic loading matrix, and the components $\epsilon_1, \ldots, \epsilon_m$ of ϵ are i.i.d. normally distributed random variables which are also independent of *F*. Show that F hast a (p+1)conditional independence structure (see the definition in Exercise 39). How are given the conditional default probabilities for the corresponding Bernoulli mixture model of the default indicators Y_i in this case (cf. Exercise 39)?
- 41. (Application of Archimedian copulas in threshold models)

Consider a threshold model (X, D) where X has an Archimedian copula C with generator ϕ such that ϕ^{-1} is the Laplace transform of some nonnegative distribution function G with G(0) = 0. Let $d = (d_{11}, \ldots, d_{m1})^t$ denote the first column of D containing the default thresholds. We write then (X, d) for a threshold model of default with an Archimedian copula dependence and denote by $\bar{p} = (\bar{p}_1, \ldots, \bar{p}_m)^t$ the vector of default probabilities, where $\bar{p}_i = \mathbb{P}(X_i \leq d_{i1})$, for $i \in \{1, 2, \ldots, m\}$. Consider a nonnegative random variable $\Psi \sim G$ and random variables U_1, \ldots, U_m that are conditionally independent given Ψ with conditional distribution function $\mathbb{P}(U_i \leq u | \Psi = \psi) = \exp(-\psi\phi(u))$, for $u \in [0, 1]$. Check that $U = (U_1, \ldots, U_m)^t$ has distribution function C. Show that (X, d) and (U, \bar{p}) are two equivalent threshold models for default (cf. Exercise 37). How are given the conditional default probabilities $p_i(\Psi)$ in this case?

Consider the Clayton copula C_{θ}^{Cl} with generator function $\phi(t) = t^{-\theta} - 1$ and assume that we want to construct a Bernoulli mixture model that is equivalent to a threshold model driven by C_{θ}^{Cl} . In this Bernoulli mixture model all conditional default probabilites $p_i(\Psi)$ would coincide; such a Bernoulli mixture model is called *exchangeable*. Assume moreover that the probability of default for any creditor is given by π and the probability that an arbitrary pair of creditors defaults is given by π' . What value of θ would lead to the required exchangeable Bernoulli mixture model?

- 42. Apply the CreditRisk⁺ approach for a credit portfolio with n = 100 credits, and m risk factors, where m = 1 or m = 5. Consider the settings $\bar{\lambda}_i = \bar{\lambda} = 0.15$, $\alpha_j = \alpha = 1$, $\beta_j = \beta = 1$, $a_{i,j} = 1/m$, for i = 1, 2, ..., n, j = 1, 2, ..., m. Let N be the number of defaulting creditors. Recall that $\mathbb{P}(N = k) = \frac{1}{k!} g_N^{(k)}(0) = \frac{1}{k!} \frac{d^k g_N(0)}{dt^k}$ holds for any $k \in \overline{1..n}$, where g_N is the probability generating function (pgf) of N (cf. the lecture).
 - (a) Based on the closed form expressions discussed in the lecture derive concrete formulas for the probability generating functions $\tilde{g}_N(t)$ and $\bar{g}_N(t)$ of N in the cases m = 1 and m = 5, respectively.
 - (b) Show that the following recursive formula holds for $g_N = \tilde{g}_N$ and $g = \bar{g}_N$ and k > 1:

$$g_N^{(k)}(0) = \sum_{l=0}^{k-1} \binom{k-1}{l} g_N^{(k-1-l)}(0) \sum_{j=1}^m l! \alpha_j \delta_j^{l+1}.$$

(c) Compute and plot $\mathbb{P}(N = k)$, for $k \in \overline{1..n}$, in both cases m = 1 and m = 5. Compare the two plots and interpret the results.