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Remark: The k-dimensional marginal distributions of a d-dimensional
copula are k-dimensional copulas, for all 2 ≤ k ≤ d .
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h(IR) = IR and h← : IR → IR be the generalized inverse function of h.
Then the following statements hold:

1. h← is a monotone increasing left continuous function.

2. h is continuous ⇐⇒ h← is strictly monotone increasing.

3. h is strictly monotone increasing ⇐⇒ h← is continuous.

4. h←(h(x)) ≤ x

5. h(h←(y)) ≥ y

6. h is strictly monotone increasing =⇒ h←(h(x)) = x .

7. h is continuous =⇒ h(h←(y)) = y .

Lemma: Let X be a r.v. with continuous distribution function F . Then
P (F←(F (x)) = x) = 1, i.e. F←(F (X ))

a.s.
= X
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If F1,. . .,Fd are continuous, then C is unique.
Vice-versa, if C is a copula and F1,. . .,Fd are d.f., then the function F

defined by the equality above is a joint d.f. with marginal d.f. F1,. . .,Fd .

C as above is called the copula of F . For a random vector X ∈ IR
d with

c.d.f. F we say that C is the copula of X .
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For d = 2 and ρ = R12 ∈ (−1, 1) we have :

CGa
R (u1, u2) =

∫ φ−1(u1)

−∞

∫ φ−1(u2)

−∞

1

2π
√

1− ρ2
exp

{

−(x21 − 2ρx1x2 + x22 )

2(1− ρ2)

}

dx1dx2
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Exercise: The Fréchet lower bound Wd is not a copula for d ≥ 3.

Hint: Check that the rectangle inequality
∑2

k1=1

∑2
k2=1 . . .

∑2
kd=1(−1)k1+k2+...+kdWd (u1k1 , u2k2 , . . . , udkd ) ≥ 0 with

uj1 = aj and uj2 = bj for j ∈ {1, 2, . . . , d}, is not fulfilled for d ≥ 3 and
ai =

1
2 , bi = 1, for i = 1, 2, . . . , d .


