## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.
Definition: A risk measure $\rho$ in $M$ is called coherent iff it has the following properties

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.
Definition: A risk measure $\rho$ in $M$ is called coherent iff it has the following properties
(C1) Invariance with respect to translation:

$$
\rho(X+r)=\rho(X)+r, \forall r \in \mathbb{R} \text { and } \forall X \in M .
$$

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.
Definition: A risk measure $\rho$ in $M$ is called coherent iff it has the following properties
(C1) Invariance with respect to translation:

$$
\rho(X+r)=\rho(X)+r, \forall r \in \mathbb{R} \text { and } \forall X \in M
$$

(C2) Subadditivity:

$$
\forall X_{1}, X_{2} \in M \text { it holds } \rho\left(X_{1}+X_{2}\right) \leq \rho\left(X_{1}\right)+\rho\left(X_{2}\right)
$$

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.
Definition: A risk measure $\rho$ in $M$ is called coherent iff it has the following properties
(C1) Invariance with respect to translation:

$$
\rho(X+r)=\rho(X)+r, \forall r \in \mathbb{R} \text { and } \forall X \in M
$$

(C2) Subadditivity:

$$
\forall X_{1}, X_{2} \in M \text { it holds } \rho\left(X_{1}+X_{2}\right) \leq \rho\left(X_{1}\right)+\rho\left(X_{2}\right)
$$

(C3) Positive homogeneity:

$$
\rho(\lambda X)=\lambda \rho(X), \forall \lambda \geq 0, \forall X \in M
$$

## Coherent risk measures

Let $(\Omega, \mathcal{F}, P)$ be a probability space with a sample space $\Omega$, a $\sigma$-algebra of events $\mathcal{F}$ and a probability measure $P$.
Let $L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of almost surely finite random variables in $(\Omega, \mathcal{F})$. Let $M \subseteq L^{(0)}$ and $\rho: M \rightarrow \mathbb{R}$ a risk measure in $M$.
Definition: A risk measure $\rho$ in $M$ is called coherent iff it has the following properties
(C1) Invariance with respect to translation:

$$
\rho(X+r)=\rho(X)+r, \forall r \in \mathbb{R} \text { and } \forall X \in M .
$$

(C2) Subadditivity:
$\forall X_{1}, X_{2} \in M$ it holds $\rho\left(X_{1}+X_{2}\right) \leq \rho\left(X_{1}\right)+\rho\left(X_{2}\right)$.
(C3) Positive homogeneity:
$\rho(\lambda X)=\lambda \rho(X), \forall \lambda \geq 0, \forall X \in M$.
(C4) Monotonicity:
$\forall X_{1}, X_{2} \in M$ the implication $X_{1} \stackrel{\text { a.s. }}{\leq} X_{2} \Longrightarrow \rho\left(X_{1}\right) \leq \rho\left(X_{2}\right)$ holds.

## Convex risk measures

Consider the property:
(C5) Convexity:

$$
\begin{aligned}
& \forall X_{1}, X_{2} \in M, \forall \lambda \in[0,1] \\
& \rho\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda \rho\left(X_{1}\right)+(1-\lambda) \rho\left(X_{2}\right) \text { holds. }
\end{aligned}
$$

## Convex risk measures

Consider the property:
(C5) Convexity:

$$
\begin{aligned}
& \forall X_{1}, X_{2} \in M, \forall \lambda \in[0,1] \\
& \rho\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda \rho\left(X_{1}\right)+(1-\lambda) \rho\left(X_{2}\right) \text { holds. }
\end{aligned}
$$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice versa.

## Convex risk measures

Consider the property:
(C5) Convexity:

$$
\begin{aligned}
& \forall X_{1}, X_{2} \in M, \forall \lambda \in[0,1] \\
& \rho\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda \rho\left(X_{1}\right)+(1-\lambda) \rho\left(X_{2}\right) \text { holds. }
\end{aligned}
$$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice versa.
Definition: A risk measure $\rho$ in $M$ with the properties (C1),(C4) and (C5) is called convex in $M$.

## Convex risk measures

Consider the property:
(C5) Convexity:

$$
\begin{aligned}
& \forall X_{1}, X_{2} \in M, \forall \lambda \in[0,1] \\
& \rho\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda \rho\left(X_{1}\right)+(1-\lambda) \rho\left(X_{2}\right) \text { holds. }
\end{aligned}
$$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice versa.
Definition: A risk measure $\rho$ in $M$ with the properties (C1),(C4) and (C5) is called convex in $M$.
Observation: VaR is not coherent in general.

## Convex risk measures

Consider the property:
(C5) Convexity:

$$
\begin{aligned}
& \forall X_{1}, X_{2} \in M, \forall \lambda \in[0,1] \\
& \rho\left(\lambda X_{1}+(1-\lambda) X_{2}\right) \leq \lambda \rho\left(X_{1}\right)+(1-\lambda) \rho\left(X_{2}\right) \text { holds. }
\end{aligned}
$$

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply (C5), but not vice versa.
Definition: A risk measure $\rho$ in $M$ with the properties (C1),(C4) and (C5) is called convex in $M$.
Observation: VaR is not coherent in general.
Let the probability measure $P$ be defined by some continuous or discrete probabilty distribution $F$.
$\mathrm{Va}_{\alpha}(F)=F^{\leftarrow}(\alpha)$ has the properties (C1), (C3) and (C4), whereas the subadditivity (C2) is not fulfilled in general.

Coherent risk measure (contd.)

## Coherent risk measure (contd.)

Example: Let the probability measure $P$ be defined by the binomial distribution $B(p, n)$ for $n \in \mathbb{N}, p \in(0,1)$. We show that $\operatorname{Va} R_{\alpha}(B(p, n))$ is not subadditive.

## Coherent risk measure (contd.)

Example: Let the probability measure $P$ be defined by the binomial distribution $B(p, n)$ for $n \in \mathbb{N}, p \in(0,1)$. We show that $\operatorname{Va} R_{\alpha}(B(p, n))$ is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently with probability $p$. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

## Coherent risk measure (contd.)

Example: Let the probability measure $P$ be defined by the binomial distribution $B(p, n)$ for $n \in \mathbb{N}, p \in(0,1)$. We show that $\operatorname{Va} R_{\alpha}(B(p, n))$ is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently with probability $p$. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

Theorem: Let $(\Omega, \mathcal{F}, P)$ be a probability space and $M \subseteq L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of the random variables with a continuous distribution in $(\Omega, \mathcal{F}, P) . C V_{a} R_{\alpha}$ is a coherent risk measure in $M, \forall \alpha \in(0,1)$.

## Coherent risk measure (contd.)

Example: Let the probability measure $P$ be defined by the binomial distribution $B(p, n)$ for $n \in \mathbb{N}, p \in(0,1)$. We show that $\operatorname{Va} R_{\alpha}(B(p, n))$ is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently with probability $p$. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

Theorem: Let $(\Omega, \mathcal{F}, P)$ be a probability space and $M \subseteq L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of the random variables with a continuous distribution in $(\Omega, \mathcal{F}, P) . C V_{a} R_{\alpha}$ is a coherent risk measure in $M, \forall \alpha \in(0,1)$.
Sketch of the proof:
(C1),(C3), (C4) follow from $\mathrm{CVaR}_{\alpha}(F)=\frac{1}{1-\alpha} \int_{\alpha}^{1} \operatorname{Var}_{\rho}(F) d p$.

## Coherent risk measure (contd.)

Example: Let the probability measure $P$ be defined by the binomial distribution $B(p, n)$ for $n \in \mathbb{N}, p \in(0,1)$. We show that $\operatorname{Va}_{\alpha}(B(p, n))$ is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently with probability $p$. Observe that the VaR of the portfolio loss is larger than 100 times the VaR of the loss of a single bond.

Theorem: Let $(\Omega, \mathcal{F}, P)$ be a probability space and $M \subseteq L^{(0)}(\Omega, \mathcal{F}, P)$ be the set of the random variables with a continuous distribution in $(\Omega, \mathcal{F}, P) . C V_{a} R_{\alpha}$ is a coherent risk measure in $M, \forall \alpha \in(0,1)$.

## Sketch of the proof:

(C1),(C3), (C4) follow from $\mathrm{CVaR}_{\alpha}(F)=\frac{1}{1-\alpha} \int_{\alpha}^{1} \operatorname{Var}_{p}(F) d p$.
To show (C2) observe that for a sequence of i.i.d. r.v. $L_{1}, L_{2}, \ldots, L_{n}$ with order statistics $L_{1, n} \geq L_{2, n} \geq \ldots \geq L_{n, n}$ and for any $m \in\{1,2, \ldots, n\}$

$$
\sum_{i=1}^{m} L_{i, n}=\sup \left\{L_{i_{1}}+L_{i_{2}}+\ldots+L_{i_{m}}: 1 \leq i_{1}<\ldots<i_{m} \leq n\right\} \text { holds } .
$$

The mean-risk portfolio optimization model

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.
Let $\mathcal{P}$ be the family of all portfolios consisting of the above $d$ assets

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.
Let $\mathcal{P}$ be the family of all portfolios consisting of the above $d$ assets Any (long-short) portfolio in $\mathcal{P}$ is uniquelly determined by its weight vector $w=\left(w_{i}\right) \in \mathbb{R}^{d}$ with $\sum_{i=1^{d}}\left|w_{i}\right|=1 . w_{i}>0\left(w_{i}<0\right)$ represents a long (short) investment.

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.
Let $\mathcal{P}$ be the family of all portfolios consisting of the above $d$ assets Any (long-short) portfolio in $\mathcal{P}$ is uniquelly determined by its weight vector $w=\left(w_{i}\right) \in \mathbb{R}^{d}$ with $\sum_{i=1^{d}}\left|w_{i}\right|=1$. $w_{i}>0\left(w_{i}<0\right)$ represents a long (short) investment.
The return of portfolio $w$ is the r.v. $Z(w)=\sum_{i=1}^{d} w_{i} X_{i}$. The expected portfolio return is $E(Z(w))=w^{\top} \mu$.

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.
Let $\mathcal{P}$ be the family of all portfolios consisting of the above $d$ assets Any (long-short) portfolio in $\mathcal{P}$ is uniquelly determined by its weight vector $w=\left(w_{i}\right) \in \mathbb{R}^{d}$ with $\sum_{i=1^{d}}\left|w_{i}\right|=1 . w_{i}>0\left(w_{i}<0\right)$ represents a long (short) investment.
The return of portfolio $w$ is the r.v. $Z(w)=\sum_{i=1}^{d} w_{i} X_{i}$. The expected portfolio return is $E(Z(w))=w^{\top} \mu$.
Let $\mathcal{P}_{m}$ be the family of portfolios in $\mathcal{P}$ with $E(Z(w))=m$, for some $m \in \mathbb{R}, m>0$.
$\mathcal{P}_{m}:=\left\{w=\left(w_{i}\right) \in \mathbb{R}^{d}, \sum_{i=1}^{d}\left|w_{i}\right|=1, w^{T} \mu=m\right\}$

## The mean-risk portfolio optimization model

Consider a portfolio of $d$ risky assets and the random vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ of their returns. Let $E(X)=\mu$.
Let $\mathcal{P}$ be the family of all portfolios consisting of the above $d$ assets Any (long-short) portfolio in $\mathcal{P}$ is uniquelly determined by its weight vector $w=\left(w_{i}\right) \in \mathbb{R}^{d}$ with $\sum_{i=1^{d}}\left|w_{i}\right|=1 . w_{i}>0\left(w_{i}<0\right)$ represents a long (short) investment.
The return of portfolio $w$ is the r.v. $Z(w)=\sum_{i=1}^{d} w_{i} X_{i}$. The expected portfolio return is $E(Z(w))=w^{\top} \mu$.
Let $\mathcal{P}_{m}$ be the family of portfolios in $\mathcal{P}$ with $E(Z(w))=m$, for some $m \in \mathbb{R}, m>0$.
$\mathcal{P}_{m}:=\left\{w=\left(w_{i}\right) \in \mathbb{R}^{d}, \sum_{i=1}^{d}\left|w_{i}\right|=1, w^{T} \mu=m\right\}$
For a risk measure $\rho$ the mean- $\rho$ portfolio optimization model is:

$$
\begin{equation*}
\min _{w \in \mathcal{P}_{m}} \rho(Z(w)) \tag{1}
\end{equation*}
$$

The mean-risk portfolio optimization model (contd.)

The mean-risk portfolio optimization model (contd.)
If $\rho$ equals the portfolio variance we get $\min _{w \in \mathcal{P}_{m}} \operatorname{var}(Z(w))$

## The mean-risk portfolio optimization model (contd.)

If $\rho$ equals the portfolio variance we get $\min _{w \in \mathcal{P}_{m}} \operatorname{var}(Z(w))$
With $\Sigma:=\operatorname{Cov}(X)$ and nonnegative weights $w_{i} \geq 0, i \in \overline{1, d}$, (long-only portfolio) we get the Markovitz portfolio optimization model (Markowitz 1952):
$\min _{w} \quad w^{T} \Sigma w$
s.t.

$$
\begin{aligned}
& w^{\top} \mu=m \\
& \sum_{i=1}^{d} w_{i}=1 \quad w_{i} \geq 0, i \in \overline{1, d}
\end{aligned}
$$

## The mean-risk portfolio optimization model (contd.)

If $\rho$ equals the portfolio variance we get $\min _{w \in \mathcal{P}_{m}} \operatorname{var}(Z(w))$
With $\Sigma:=\operatorname{Cov}(X)$ and nonnegative weights $w_{i} \geq 0, i \in \overline{1, d}$, (long-only portfolio) we get the Markovitz portfolio optimization model (Markowitz 1952):

$$
\min _{w} \quad w^{T} \Sigma w
$$

s.t.

$$
\begin{aligned}
& w^{\top} \mu=m \\
& \sum_{i=1}^{d} w_{i}=1 \quad w_{i} \geq 0, i \in \overline{1, d}
\end{aligned}
$$

If $\rho=V_{a} R_{\alpha}, \alpha \in(0,1)$ we get the mean-VaR pf. optimization model

$$
\min _{w \in \mathcal{P}_{m}} \operatorname{Va}_{\alpha}(Z(w))
$$

Question: What is the relationship between these three portfolio optimization models?
Answer: In general the three models yield different optimal portfolios!

Mean-risk portfolio optimization in the case of elliptically distributed asset returns

Mean-risk portfolio optimization in the case of elliptically distributed asset returns
Theorem: (Embrechts et al., 2002)
Let $M$ be the set of returns of the portfolii in
$\mathcal{P}:=\left\{w=\left(w_{i}\right) \in \mathbb{R}^{d}, \sum_{i=1}^{d}\left|w_{i}\right|=1\right\}$. Let the asset returns $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ be elliptically distributed, $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right) \sim E_{d}(\mu, \Sigma, \psi)$ for some $\mu \in \mathbb{R}^{d}, \Sigma \in \mathbb{R}^{d \times d}$ and $\psi: \mathbb{R} \rightarrow \mathbb{R}$. Then $V_{a} R_{\alpha}$ ist coherent in $M$, for any $\alpha \in(0.5,1)$.

## Mean-risk portfolio optimization in the case of elliptically distributed asset returns

Theorem: (Embrechts et al., 2002)
Let $M$ be the set of returns of the portfolii in
$\mathcal{P}:=\left\{w=\left(w_{i}\right) \in \mathbb{R}^{d}, \sum_{i=1}^{d}\left|w_{i}\right|=1\right\}$. Let the asset returns
$X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ be elliptically distributed,
$X=\left(X_{1}, X_{2}, \ldots, X_{d}\right) \sim E_{d}(\mu, \Sigma, \psi)$ for some $\mu \in \mathbb{R}^{d}, \Sigma \in \mathbb{R}^{d \times d}$ and $\psi: \mathbb{R} \rightarrow \mathbb{R}$. Then $V_{a} R_{\alpha}$ ist coherent in $M$, for any $\alpha \in(0.5,1)$.
Theorem: (Embrechts et al., 2002)
Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)=\mu+A Y$ be elliptically distributed with $\mu \in \mathbb{R}^{d}, A \in \mathbb{R}^{d \times k}$ and a spherically distributed vector $Y \sim S_{k}(\psi)$. Assume that $0<E\left(X_{k}^{2}\right)<\infty$ holds $\forall k$. If the risk measure $\rho$ has the properties (C1) and (C3) and $\rho\left(Y_{1}\right)>0$ for the first component $Y_{1}$ of $Y$, then

$$
\arg \min \left\{\rho(Z(w)): w \in \mathcal{P}_{m}\right\}=\arg \min \left\{\operatorname{var}(Z(w)): w \in \mathcal{P}_{m}\right\}
$$

## Copulas: Definition and basic properties

## Copulas: Definition and basic properties

Definition: A $d$-dimensional copula is a distribution function on $[0,1]^{d}$ with uniform marginal distributions on $[0,1]$.

## Copulas: Definition and basic properties

Definition: A $d$-dimensional copula is a distribution function on $[0,1]^{d}$ with uniform marginal distributions on $[0,1]$.
Equivalently, a copula $C$ is a function $C:[0,1]^{d} \rightarrow[0,1]$, with the following properties:

1. $C\left(u_{1}, u_{2}, \ldots, u_{d}\right)$ is mon. increasing in each variable $u_{i}, 1 \leq i \leq d$.
2. $C\left(1,1, \ldots, 1, u_{k}, 1, \ldots, 1\right)=u_{k}$ for any $k \in\{1, \ldots, d\}$ and $\forall u_{k} \in[0,1]$.
3. The rectangle inequality holds $\forall\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in[0,1]^{d}$, $\forall\left(b_{1}, b_{2}, \ldots, b_{d}\right) \in[0,1]^{d}$ with $a_{k} \leq b_{k}, \forall k \in\{1,2, \ldots, d\}$ :

$$
\sum_{k_{1}=1}^{2} \ldots \sum_{k_{d}=1}^{2}(-1)^{k_{1}+k_{2}+\ldots+k_{d}} C\left(u_{1 k_{1}}, u_{2 k_{2}}, \ldots, u_{d k_{d}}\right) \geq 0
$$

where $u_{j 1}=a_{j}$ and $u_{j 2}=b_{j}$.

## Copulas: Definition and basic properties

Definition: A $d$-dimensional copula is a distribution function on $[0,1]^{d}$ with uniform marginal distributions on $[0,1]$.
Equivalently, a copula $C$ is a function $C:[0,1]^{d} \rightarrow[0,1]$, with the following properties:

1. $C\left(u_{1}, u_{2}, \ldots, u_{d}\right)$ is mon. increasing in each variable $u_{i}, 1 \leq i \leq d$.
2. $C\left(1,1, \ldots, 1, u_{k}, 1, \ldots, 1\right)=u_{k}$ for any $k \in\{1, \ldots, d\}$ and $\forall u_{k} \in[0,1]$.
3. The rectangle inequality holds $\forall\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in[0,1]^{d}$, $\forall\left(b_{1}, b_{2}, \ldots, b_{d}\right) \in[0,1]^{d}$ with $a_{k} \leq b_{k}, \forall k \in\{1,2, \ldots, d\}$ :

$$
\sum_{k_{1}=1}^{2} \ldots \sum_{k_{d}=1}^{2}(-1)^{k_{1}+k_{2}+\ldots+k_{d}} C\left(u_{1 k_{1}}, u_{2 k_{2}}, \ldots, u_{d k_{d}}\right) \geq 0
$$

where $u_{j 1}=a_{j}$ and $u_{j 2}=b_{j}$.
Remark: The $k$-dimensional marginal distributions of a $d$-dimensional copula are $k$-dimensional copulas, for all $2 \leq k \leq d$.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of $h$. Then the following statements hold:

1. $h \leftarrow$ is a monotone increasing left continuous function.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of $h$. Then the following statements hold:

1. $h \leftarrow$ is a monotone increasing left continuous function.
2. $h$ is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of $h$. Then the following statements hold:

1. $h \leftarrow$ is a monotone increasing left continuous function.
2. $h$ is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. $h$ is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of $h$. Then the following statements hold:

1. $h \leftarrow$ is a monotone increasing left continuous function.
2. $h$ is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. $h$ is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.
4. $h \leftarrow(h(x)) \leq x$

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of $h$. Then the following statements hold:

1. $h \leftarrow$ is a monotone increasing left continuous function.
2. $h$ is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. $h$ is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.
4. $h^{\leftarrow}(h(x)) \leq x$
5. $h\left(h^{\leftarrow}(y)\right) \geq y$

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of $h$. Then the following statements hold:

1. $h \leftarrow$ is a monotone increasing left continuous function.
2. $h$ is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. $h$ is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.
4. $h^{\leftarrow}(h(x)) \leq x$
5. $h(h \leftarrow(y)) \geq y$
6. $h$ is strictly monotone increasing $\Longrightarrow h^{\leftarrow}(h(x))=x$.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of $h$. Then the following statements hold:

1. $h \leftarrow$ is a monotone increasing left continuous function.
2. $h$ is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. $h$ is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.
4. $h^{\leftarrow}(h(x)) \leq x$
5. $h\left(h^{\leftarrow}(y)\right) \geq y$
6. $h$ is strictly monotone increasing $\Longrightarrow h^{\leftarrow}(h(x))=x$.
7. $h$ is continuous $\Longrightarrow h\left(h^{\leftarrow}(y)\right)=y$.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of $h$. Then the following statements hold:

1. $h \leftarrow$ is a monotone increasing left continuous function.
2. $h$ is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. $h$ is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.
4. $h^{\leftarrow}(h(x)) \leq x$
5. $h\left(h^{\leftarrow}(y)\right) \geq y$
6. $h$ is strictly monotone increasing $\Longrightarrow h^{\leftarrow}(h(x))=x$.
7. $h$ is continuous $\Longrightarrow h\left(h^{\leftarrow}(y)\right)=y$.

Lemma: Let $X$ be a r.v. with continuous distribution function $F$. Then $\mathbb{P}\left(F^{\leftarrow}(F(x))=x\right)=1$, i.e. $F^{\leftarrow}(F(X)) \stackrel{\text { a.s. }}{=} X$

Copulas: existence and uniqueness

## Copulas: existence and uniqueness

Theorem: Let $G$ be a d.f. in $\mathbb{R}$. The following statements holds

1. Quantile transformation:

If $U \sim U(0,1)$, then $\mathbb{P}\left(G^{\leftarrow}(U) \leq x\right)=G(x)$.

## Copulas: existence and uniqueness

Theorem: Let $G$ be a d.f. in $\mathbb{R}$. The following statements holds

1. Quantile transformation:

If $U \sim U(0,1)$, then $\mathbb{P}(G \leftarrow(U) \leq x)=G(x)$.
2. Probability transformation: Let $Y$ be a r.v. with continuous d.f. $G$. Then $G(Y) \sim U(0,1)$.

## Copulas: existence and uniqueness

Theorem: Let $G$ be a d.f. in $\mathbb{R}$. The following statements holds

1. Quantile transformation:

If $U \sim U(0,1)$, then $\mathbb{P}\left(G^{\leftarrow}(U) \leq x\right)=G(x)$.
2. Probability transformation: Let $Y$ be a r.v. with continuous d.f. $G$. Then $G(Y) \sim U(0,1)$.

Theorem: (Sklar, 1959)
Let $F: \mathbb{R}^{d} \rightarrow[0,1]$ a c.d.f. with marginal d.f. $F_{1}, \ldots, F_{d}$. There exists a copula $C$, such that for all $x_{1}, x_{2}, \ldots, x_{d} \in \overline{\mathbb{R}}=[-\infty, \infty]$ the equality

$$
F\left(x_{1}, x_{2}, \ldots, x_{d}\right)=C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \ldots, F_{d}\left(x_{d}\right)\right) \text { holds. }
$$

If $F_{1}, \ldots, F_{d}$ are continuous, then $C$ is unique.

## Copulas: existence and uniqueness

Theorem: Let $G$ be a d.f. in $\mathbb{R}$. The following statements holds

1. Quantile transformation:

If $U \sim U(0,1)$, then $\mathbb{P}\left(G^{\leftarrow}(U) \leq x\right)=G(x)$.
2. Probability transformation: Let $Y$ be a r.v. with continuous d.f. $G$. Then $G(Y) \sim U(0,1)$.

Theorem: (Sklar, 1959)
Let $F: \mathbb{R}^{d} \rightarrow[0,1]$ a c.d.f. with marginal d.f. $F_{1}, \ldots, F_{d}$. There exists a copula $C$, such that for all $x_{1}, x_{2}, \ldots, x_{d} \in \overline{\mathbb{R}}=[-\infty, \infty]$ the equality

$$
F\left(x_{1}, x_{2}, \ldots, x_{d}\right)=C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \ldots, F_{d}\left(x_{d}\right)\right) \text { holds. }
$$

If $F_{1}, \ldots, F_{d}$ are continuous, then $C$ is unique. Vice-versa, if $C$ is a copula and $F_{1}, \ldots, F_{d}$ are d.f., then the function $F$ defined by the equality above is a joint d.f. with marginal d.f. $F_{1}, \ldots, F_{d}$.

## Copulas: existence and uniqueness

Theorem: Let $G$ be a d.f. in $\mathbb{R}$. The following statements holds

1. Quantile transformation:

If $U \sim U(0,1)$, then $\mathbb{P}\left(G^{\leftarrow}(U) \leq x\right)=G(x)$.
2. Probability transformation: Let $Y$ be a r.v. with continuous d.f. $G$. Then $G(Y) \sim U(0,1)$.

Theorem: (Sklar, 1959)
Let $F: \mathbb{R}^{d} \rightarrow[0,1]$ a c.d.f. with marginal d.f. $F_{1}, \ldots, F_{d}$. There exists a copula $C$, such that for all $x_{1}, x_{2}, \ldots, x_{d} \in \overline{\mathbb{R}}=[-\infty, \infty]$ the equality

$$
F\left(x_{1}, x_{2}, \ldots, x_{d}\right)=C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \ldots, F_{d}\left(x_{d}\right)\right) \text { holds. }
$$

If $F_{1}, \ldots, F_{d}$ are continuous, then $C$ is unique. Vice-versa, if $C$ is a copula and $F_{1}, \ldots, F_{d}$ are d.f., then the function $F$ defined by the equality above is a joint d.f. with marginal d.f. $F_{1}, \ldots, F_{d}$. $C$ as above is called the copula of $F$. For a random vector $X \in \mathbb{R}^{d}$ with c.d.f. $F$ we say that $C$ is the copula of $X$.

# Copulas: invariance property 

## Copulas: invariance property

Corollary: Let $F$ be a c.d.f. with continuous marginal d.f. $F_{1}, \ldots, F_{d}$. The unique copula $C$ of $F$ is given as :

$$
C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), F_{2}^{\leftarrow}\left(u_{2}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)
$$

## Copulas: invariance property

Corollary: Let $F$ be a c.d.f. with continuous marginal d.f. $F_{1}, \ldots, F_{d}$. The unique copula $C$ of $F$ is given as :

$$
C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), F_{2}^{\leftarrow}\left(u_{2}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)
$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ be a random vector with continuous marginal d.f. $F_{1}, F_{2}, \ldots, F_{d}$ and copula $C$. Let $T_{1}, T_{2}, \ldots, T_{d}$ be strictly monotone increasing functions in $\mathbb{R}$. Then $C$ is also the copula of $\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right), \ldots, T_{d}\left(X_{d}\right)\right)^{T}$.

## Copulas: invariance property

Corollary: Let $F$ be a c.d.f. with continuous marginal d.f. $F_{1}, \ldots, F_{d}$. The unique copula $C$ of $F$ is given as :

$$
C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), F_{2}^{\leftarrow}\left(u_{2}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)
$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ be a random vector with continuous marginal d.f. $F_{1}, F_{2}, \ldots, F_{d}$ and copula $C$. Let $T_{1}, T_{2}, \ldots, T_{d}$ be strictly monotone increasing functions in $\mathbb{R}$. Then $C$ is also the copula of $\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right), \ldots, T_{d}\left(X_{d}\right)\right)^{T}$.
Example: Let $X=\left(X_{1}, \ldots, X_{d}\right) \sim N_{d}(0, \Sigma)$ with $\Sigma=R$ being the correlation matrix of $X$. Let $\phi_{R}$ and $\phi$ be the c.d.f of $X$ and $X_{1}$, resp.. The copula of $X$ is called a Gaussian copula and is denoted by $C_{R}^{G a}$ :

$$
C_{R}^{G a}\left(u_{1}, u_{2}, \ldots, u_{d}\right)=\phi_{R}\left(\phi^{-1}\left(u_{1}\right), \phi^{-1}\left(u_{2}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right) .
$$

## Copulas: invariance property

Corollary: Let $F$ be a c.d.f. with continuous marginal d.f. $F_{1}, \ldots, F_{d}$. The unique copula $C$ of $F$ is given as :

$$
C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), F_{2}^{\leftarrow}\left(u_{2}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)
$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ be a random vector with continuous marginal d.f. $F_{1}, F_{2}, \ldots, F_{d}$ and copula $C$. Let $T_{1}, T_{2}, \ldots, T_{d}$ be strictly monotone increasing functions in $\mathbb{R}$. Then $C$ is also the copula of $\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right), \ldots, T_{d}\left(X_{d}\right)\right)^{T}$.
Example: Let $X=\left(X_{1}, \ldots, X_{d}\right) \sim N_{d}(0, \Sigma)$ with $\Sigma=R$ being the correlation matrix of $X$. Let $\phi_{R}$ and $\phi$ be the c.d.f of $X$ and $X_{1}$, resp.. The copula of $X$ is called a Gaussian copula and is denoted by $C_{R}^{G a}$ :

$$
C_{R}^{G a}\left(u_{1}, u_{2}, \ldots, u_{d}\right)=\phi_{R}\left(\phi^{-1}\left(u_{1}\right), \phi^{-1}\left(u_{2}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right) .
$$

$C_{R}^{G a}$ is the copula of any non-degenerate normal distribution $N_{d}(\mu, \Sigma)$ with correlation matrix $R$.

## Copulas: invariance property

Corollary: Let $F$ be a c.d.f. with continuous marginal d.f. $F_{1}, \ldots, F_{d}$. The unique copula $C$ of $F$ is given as :

$$
C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), F_{2}^{\leftarrow}\left(u_{2}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)
$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations)
Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ be a random vector with continuous marginal d.f. $F_{1}, F_{2}, \ldots, F_{d}$ and copula $C$. Let $T_{1}, T_{2}, \ldots, T_{d}$ be strictly monotone increasing functions in $\mathbb{R}$. Then $C$ is also the copula of $\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right), \ldots, T_{d}\left(X_{d}\right)\right)^{T}$.
Example: Let $X=\left(X_{1}, \ldots, X_{d}\right) \sim N_{d}(0, \Sigma)$ with $\Sigma=R$ being the correlation matrix of $X$. Let $\phi_{R}$ and $\phi$ be the c.d.f of $X$ and $X_{1}$, resp..
The copula of $X$ is called a Gaussian copula and is denoted by $C_{R}^{G a}$ :

$$
C_{R}^{G a}\left(u_{1}, u_{2}, \ldots, u_{d}\right)=\phi_{R}\left(\phi^{-1}\left(u_{1}\right), \phi^{-1}\left(u_{2}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right) .
$$

$C_{R}^{G a}$ is the copula of any non-degenerate normal distribution $N_{d}(\mu, \Sigma)$ with correlation matrix $R$.
For $d=2$ and $\rho=R_{12} \in(-1,1)$ we have :

$$
C_{R}^{G a}\left(u_{1}, u_{2}\right)=\int_{-\infty}^{\phi^{-1}\left(u_{1}\right)} \int_{-\infty}^{\phi^{-1}\left(u_{2}\right)} \frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{\frac{-\left(x_{1}^{2}-2 \rho x_{1} x_{2}+x_{2}^{2}\right)}{2\left(1-\rho^{2}\right)}\right\} d x_{1} d x_{2}
$$

Copulas: lower and upper bounds

## Copulas: lower and upper bounds

## Theorem: (Fréchet bounds)

The following inequalities hold for any $d$-dimensional copula $C$ and any $\left(u_{1}, u_{2}, \ldots, u_{d}\right) \in[0,1]^{d}$, where $d \in \mathbb{N}$ :

$$
\max \left\{\sum_{k=1}^{d} u_{k}-d+1,0\right\} \leq C\left(u_{1}, u_{2}, \ldots, u_{d}\right) \leq \min \left\{u_{1}, u_{2}, \ldots, u_{d}\right\} .
$$

## Copulas: lower and upper bounds

## Theorem: (Fréchet bounds)

The following inequalities hold for any $d$-dimensional copula $C$ and any $\left(u_{1}, u_{2}, \ldots, u_{d}\right) \in[0,1]^{d}$, where $d \in \mathbb{N}$ :

$$
\max \left\{\sum_{k=1}^{d} u_{k}-d+1,0\right\} \leq C\left(u_{1}, u_{2}, \ldots, u_{d}\right) \leq \min \left\{u_{1}, u_{2}, \ldots, u_{d}\right\} .
$$

Notation: Lower bound $=: W_{d}$, upper bound $=: M_{d}$, for $d \geq 2$.
For $d=2$ we write $M:=M_{2}, W:=W_{2}$.

## Copulas: lower and upper bounds

## Theorem: (Fréchet bounds)

The following inequalities hold for any $d$-dimensional copula $C$ and any $\left(u_{1}, u_{2}, \ldots, u_{d}\right) \in[0,1]^{d}$, where $d \in \mathbb{N}$ :

$$
\max \left\{\sum_{k=1}^{d} u_{k}-d+1,0\right\} \leq C\left(u_{1}, u_{2}, \ldots, u_{d}\right) \leq \min \left\{u_{1}, u_{2}, \ldots, u_{d}\right\} .
$$

Notation: Lower bound $=: W_{d}$, upper bound $=: M_{d}$, for $d \geq 2$.
For $d=2$ we write $M:=M_{2}, W:=W_{2}$.
Remark: Analogous inequalities hold for any general c.d.f. $F$ with marginal d.f. $F_{i}, 1 \leq i \leq d$ :
$\max \left\{\sum_{k=1}^{d} F_{k}\left(x_{k}\right)-d+1,0\right\} \leq F\left(x_{1}, x_{2}, \ldots, x_{d}\right) \leq \min \left\{F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \ldots, F_{d}\left(x_{d}\right)\right\}$.

## Copulas: lower and upper bounds

## Theorem: (Fréchet bounds)

The following inequalities hold for any $d$-dimensional copula $C$ and any $\left(u_{1}, u_{2}, \ldots, u_{d}\right) \in[0,1]^{d}$, where $d \in \mathbb{N}$ :

$$
\max \left\{\sum_{k=1}^{d} u_{k}-d+1,0\right\} \leq C\left(u_{1}, u_{2}, \ldots, u_{d}\right) \leq \min \left\{u_{1}, u_{2}, \ldots, u_{d}\right\} .
$$

Notation: Lower bound $=: W_{d}$, upper bound $=: M_{d}$, for $d \geq 2$.
For $d=2$ we write $M:=M_{2}, W:=W_{2}$.
Remark: Analogous inequalities hold for any general c.d.f. $F$ with marginal d.f. $F_{i}, 1 \leq i \leq d$ :
$\max \left\{\sum_{k=1}^{d} F_{k}\left(x_{k}\right)-d+1,0\right\} \leq F\left(x_{1}, x_{2}, \ldots, x_{d}\right) \leq \min \left\{F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \ldots, F_{d}\left(x_{d}\right)\right\}$.
Exercise: The Fréchet lower bound $W_{d}$ is not a copula for $d \geq 3$.
Hint: Check that the rectangle inequality
$\sum_{k_{1}=1}^{2} \sum_{k_{2}=1}^{2} \ldots \sum_{k_{d}=1}^{2}(-1)^{k_{1}+k_{2}+\ldots+k_{d}} W_{d}\left(u_{1 k_{1}}, u_{2 k_{2}}, \ldots, u_{d k_{d}}\right) \geq 0$ with $u_{j 1}=a_{j}$ and $u_{j 2}=b_{j}$ for $j \in\{1,2, \ldots, d\}$, is not fulfilled for $d \geq 3$ and $a_{i}=\frac{1}{2}, b_{i}=1$, for $i=1,2, \ldots, d$.

Copulas: lower and upper bounds (contd.)

Copulas: lower and upper bounds (contd.)
Theorem: (for a proof see Nelsen 1999)
For any $d \in \mathbb{N}, d \geq 3$, and any $u \in[0,1]^{d}$, there exists a copula $C_{d, u}$ such that $C_{d, u}(u)=W_{d}(u)$.

## Copulas: lower and upper bounds (contd.)

Theorem: (for a proof see Nelsen 1999)
For any $d \in \mathbb{N}, d \geq 3$, and any $u \in[0,1]^{d}$, there exists a copula $C_{d, u}$ such that $C_{d, u}(u)=W_{d}(u)$.

Remark 1: The Fréchet upper bound $M_{d}$ is a copula for any $d \in \mathbb{N}$, $d \geq 2$.

## Copulas: lower and upper bounds (contd.)

Theorem: (for a proof see Nelsen 1999)
For any $d \in \mathbb{N}, d \geq 3$, and any $u \in[0,1]^{d}$, there exists a copula $C_{d, u}$ such that $C_{d, u}(u)=W_{d}(u)$.

Remark 1: The Fréchet upper bound $M_{d}$ is a copula for any $d \in \mathbb{N}$, $d \geq 2$.
The fulfillment of the three copula axioms is simple to check.

## Copulas: lower and upper bounds (contd.)

Theorem: (for a proof see Nelsen 1999)
For any $d \in \mathbb{N}, d \geq 3$, and any $u \in[0,1]^{d}$, there exists a copula $C_{d, u}$ such that $C_{d, u}(u)=W_{d}(u)$.

Remark 1: The Fréchet upper bound $M_{d}$ is a copula for any $d \in \mathbb{N}$, $d \geq 2$.
The fulfillment of the three copula axioms is simple to check.
Remark 2: $M$ and $W$ are copulas.

## Copulas: lower and upper bounds (contd.)

Theorem: (for a proof see Nelsen 1999)
For any $d \in \mathbb{N}, d \geq 3$, and any $u \in[0,1]^{d}$, there exists a copula $C_{d, u}$ such that $C_{d, u}(u)=W_{d}(u)$.

Remark 1: The Fréchet upper bound $M_{d}$ is a copula for any $d \in \mathbb{N}$, $d \geq 2$.
The fulfillment of the three copula axioms is simple to check.
Remark 2: $M$ and $W$ are copulas.
Hint: Let $X$ be a r.v. eine with d.f. $F_{X}$, let $T$ be a strictly monotone increasing function, and let $S$ be a strictly monotone decreasing function. Consider the r.v. $Y:=T(X)$ and $Z:=S(X)$.

## Copulas: lower and upper bounds (contd.)

Theorem: (for a proof see Nelsen 1999)
For any $d \in \mathbb{N}, d \geq 3$, and any $u \in[0,1]^{d}$, there exists a copula $C_{d, u}$ such that $C_{d, u}(u)=W_{d}(u)$.

Remark 1: The Fréchet upper bound $M_{d}$ is a copula for any $d \in \mathbb{N}$, $d \geq 2$.
The fulfillment of the three copula axioms is simple to check.
Remark 2: $M$ and $W$ are copulas.
Hint: Let $X$ be a r.v. eine with d.f. $F_{X}$, let $T$ be a strictly monotone increasing function, and let $S$ be a strictly monotone decreasing function.
Consider the r.v. $Y:=T(X)$ and $Z:=S(X)$.
Then $M$ is the copula of $(X, T(X))^{T}$ and $W$ is the copula of $(X, S(X))^{T}$.

Copulas: co-monotonicity and anti-monotonicity

## Copulas: co-monotonicity and anti-monotonicity

Definition: $X_{1}$ and $X_{2}$ are called co-monotone if $M$ is a copula of $\left(X_{1}, X_{2}\right)^{T}$. $X_{1}$ snd $X_{2}$ are called anti-monotone if $W$ is a copula of $\left(X_{1}, X_{2}\right)^{T}$.

## Copulas: co-monotonicity and anti-monotonicity

Definition: $X_{1}$ and $X_{2}$ are called co-monotone if $M$ is a copula of $\left(X_{1}, X_{2}\right)^{T} . X_{1}$ snd $X_{2}$ are called anti-monotone if $W$ is a copula of $\left(X_{1}, X_{2}\right)^{T}$.
Theorem: Assume that $W$ or $M$ is a copula of $\left(X_{1}, X_{2}\right)^{T}$. Then there exist two monotone functions $\alpha, \beta: \mathbb{R} \rightarrow \mathbb{R}$ and a r.v. $Z$, such that

$$
\left(X_{1}, X_{2}\right) \stackrel{d}{=}(\alpha(Z), \beta(Z)) .
$$

If $M$ is the copula of $\left(X_{1}, X_{2}\right)^{T}$, then both $\alpha$ and $\beta$ are monotone increasing, if $W$ is the copula of $\left(X_{1}, X_{2}\right)^{T}$, then one of the functions $\alpha$, $\beta$ is monotone increasing and the other one is monotone decreasing.

## Copulas: co-monotonicity and anti-monotonicity

Definition: $X_{1}$ and $X_{2}$ are called co-monotone if $M$ is a copula of $\left(X_{1}, X_{2}\right)^{T} . X_{1}$ snd $X_{2}$ are called anti-monotone if $W$ is a copula of $\left(X_{1}, X_{2}\right)^{T}$.
Theorem: Assume that $W$ or $M$ is a copula of $\left(X_{1}, X_{2}\right)^{T}$. Then there exist two monotone functions $\alpha, \beta: \mathbb{R} \rightarrow \mathbb{R}$ and a r.v. $Z$, such that

$$
\left(X_{1}, X_{2}\right) \stackrel{d}{=}(\alpha(Z), \beta(Z)) .
$$

If $M$ is the copula of $\left(X_{1}, X_{2}\right)^{T}$, then both $\alpha$ and $\beta$ are monotone increasing, if $W$ is the copula of $\left(X_{1}, X_{2}\right)^{T}$, then one of the functions $\alpha$, $\beta$ is monotone increasing and the other one is monotone decreasing. If $C$ is the copula of $\left(X_{1}, X_{2}\right)$ and the marginal d.f. $F_{1}$ and $F_{2}$ of $\left(X_{1}, X_{2}\right)$ are continuous, then the following hold:
$C=W$ iff $X_{2} \stackrel{\text { a.s. }}{=} T\left(X_{1}\right)$ with $T=F_{2}^{\leftarrow} \circ\left(1-F_{1}\right)$ monotone decreasing, $C=M$ iff $X_{2} \stackrel{\text { a.s. }}{=} T\left(X_{1}\right)$ with $T=F_{2}^{\leftarrow} \circ F_{1}$ monotone increasing.

## Copulas: co-monotonicity and anti-monotonicity

Definition: $X_{1}$ and $X_{2}$ are called co-monotone if $M$ is a copula of $\left(X_{1}, X_{2}\right)^{T} . X_{1}$ snd $X_{2}$ are called anti-monotone if $W$ is a copula of $\left(X_{1}, X_{2}\right)^{T}$.
Theorem: Assume that $W$ or $M$ is a copula of $\left(X_{1}, X_{2}\right)^{T}$. Then there exist two monotone functions $\alpha, \beta: \mathbb{R} \rightarrow \mathbb{R}$ and a r.v. $Z$, such that

$$
\left(X_{1}, X_{2}\right) \stackrel{d}{=}(\alpha(Z), \beta(Z)) .
$$

If $M$ is the copula of $\left(X_{1}, X_{2}\right)^{T}$, then both $\alpha$ and $\beta$ are monotone increasing, if $W$ is the copula of $\left(X_{1}, X_{2}\right)^{T}$, then one of the functions $\alpha$, $\beta$ is monotone increasing and the other one is monotone decreasing. If $C$ is the copula of $\left(X_{1}, X_{2}\right)$ and the marginal d.f. $F_{1}$ and $F_{2}$ of $\left(X_{1}, X_{2}\right)$ are continuous, then the following hold:
$C=W$ iff $X_{2} \stackrel{\text { a.s. }}{=} T\left(X_{1}\right)$ with $T=F_{2}^{\leftarrow} \circ\left(1-F_{1}\right)$ monotone decreasing, $C=M$ iff $X_{2} \stackrel{\text { a.s. }}{=} T\left(X_{1}\right)$ with $T=F_{2}^{\leftarrow} \circ F_{1}$ monotone increasing.
Proof: In McNeil et al., 2005.

Copulas: bounds for the linear correlation

## Copulas: bounds for the linear correlation

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal d.f. $F_{1}, F_{2}$ and some unknown copula. Let $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$ hold. Then the following statements hold:

## Copulas: bounds for the linear correlation

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal d.f. $F_{1}, F_{2}$ and some unknown copula. Let $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$ hold. Then the following statements hold:

1. The possible values of the linear correlation coefficient of $X_{1}$ and $X_{2}$ build a closed interval $\left[\rho_{L, \min } ; \rho_{L, \max }\right]$ with $0 \in\left[\rho_{L, \min ;} ; \rho_{L, \max }\right]$.

## Copulas: bounds for the linear correlation

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal d.f. $F_{1}, F_{2}$ and some unknown copula. Let $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$ hold. Then the following statements hold:

1. The possible values of the linear correlation coefficient of $X_{1}$ and $X_{2}$ build a closed interval $\left[\rho_{L, \min } ; \rho_{L, \max }\right]$ with $0 \in\left[\rho_{L, \min ;} ; \rho_{L, \max }\right]$.
2. The minimal linear correlation $\rho_{L, \text { min }}$ is reached iff $X_{1}$ and $X_{2}$ are anti-monotone. The maximal linear correlation $\rho_{L, \max }$ is reached iff $X_{1}$ and $X_{2}$ are co-monotone.

## Copulas: bounds for the linear correlation

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal d.f. $F_{1}, F_{2}$ and some unknown copula. Let $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$ hold. Then the following statements hold:

1. The possible values of the linear correlation coefficient of $X_{1}$ and $X_{2}$ build a closed interval $\left[\rho_{L, \text { min }} ; \rho_{L, \max }\right]$ with $0 \in\left[\rho_{L, \min ;} ; \rho_{L, \max }\right]$.
2. The minimal linear correlation $\rho_{L, \text { min }}$ is reached iff $X_{1}$ and $X_{2}$ are anti-monotone. The maximal linear correlation $\rho_{L, \max }$ is reached iff $X_{1}$ and $X_{2}$ are co-monotone.

The proof uses the equality of Höffding:
Lemma: (The Höffding equality)
Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with c.d.f. $F$ and marginal d.f. $F_{1}, F_{2}$. If $\operatorname{cov}\left(X_{1}, X_{2}\right)<\infty$ then the following equality holds:

$$
\operatorname{cov}\left(X_{1}, X_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(F\left(x_{1}, x_{2}\right)-F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right)\right) d x_{1} d x_{2}
$$

## Copulas: bounds for the linear correlation

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with marginal d.f. $F_{1}, F_{2}$ and some unknown copula. Let $\operatorname{var}\left(X_{1}\right), \operatorname{var}\left(X_{2}\right) \in(0, \infty)$ hold. Then the following statements hold:

1. The possible values of the linear correlation coefficient of $X_{1}$ and $X_{2}$ build a closed interval $\left[\rho_{L, \text { min }} ; \rho_{L, \max }\right]$ with $0 \in\left[\rho_{L, \min ;} ; \rho_{L, \max }\right]$.
2. The minimal linear correlation $\rho_{L, \text { min }}$ is reached iff $X_{1}$ and $X_{2}$ are anti-monotone. The maximal linear correlation $\rho_{L, \max }$ is reached iff $X_{1}$ and $X_{2}$ are co-monotone.

The proof uses the equality of Höffding:
Lemma: (The Höffding equality)
Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with c.d.f. $F$ and marginal d.f. $F_{1}, F_{2}$. If $\operatorname{cov}\left(X_{1}, X_{2}\right)<\infty$ then the following equality holds:

$$
\operatorname{cov}\left(X_{1}, X_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(F\left(x_{1}, x_{2}\right)-F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right)\right) d x_{1} d x_{2}
$$

Proof in McNeil et al., 2005.

Copulas: bounds for the linear correlation (examples)

## Copulas: bounds for the linear correlation (examples)

Example: Let $X_{1}, X_{2}$ be two random variables with
$X_{1} \sim \operatorname{Lognormal}(0,1), X_{2} \sim \operatorname{Lognormal}\left(0, \sigma^{2}\right), \sigma>0$. Determine Sie $\rho_{L, \min }\left(X_{1}, X_{2}\right)$ und $\rho_{L, \max }\left(X_{1}, X_{2}\right)$.

## Copulas: bounds for the linear correlation (examples)

Example: Let $X_{1}, X_{2}$ be two random variables with
$X_{1} \sim \operatorname{Lognormal}(0,1), X_{2} \sim \operatorname{Lognormal}\left(0, \sigma^{2}\right), \sigma>0$. Determine Sie $\rho_{L, \text { min }}\left(X_{1}, X_{2}\right)$ und $\rho_{L, \max }\left(X_{1}, X_{2}\right)$.
Hint: Observe that $X_{1} \stackrel{d}{=} \exp (Z)$ and $X_{2} \stackrel{d}{=} \exp (\sigma Z) \stackrel{d}{=} \exp (-\sigma Z)$.
Moreover $e^{Z}, e^{\sigma Z}$ are co-monotone and $e^{Z}, e^{-\sigma Z}$ are anti-monotone.

## Copulas: bounds for the linear correlation (examples)

Example: Let $X_{1}, X_{2}$ be two random variables with
$X_{1} \sim \operatorname{Lognormal}(0,1), X_{2} \sim \operatorname{Lognormal}\left(0, \sigma^{2}\right), \sigma>0$. Determine Sie $\rho_{L, \text { min }}\left(X_{1}, X_{2}\right)$ und $\rho_{L, \max }\left(X_{1}, X_{2}\right)$.
Hint: Observe that $X_{1} \stackrel{d}{=} \exp (Z)$ and $X_{2} \stackrel{d}{=} \exp (\sigma Z) \stackrel{d}{=} \exp (-\sigma Z)$.
Moreover $e^{Z}, e^{\sigma Z}$ are co-monotone and $e^{Z}, e^{-\sigma Z}$ are anti-monotone.
Example: Determine two random vectors $\left(X_{1}, X_{2}\right)^{T}$ and $\left(Y_{1}, Y_{2}\right)^{T}$ with different c.d.f.s such that $F_{\overleftarrow{X_{1}}+X_{2}}^{\overleftarrow{ }}(\alpha) \neq F_{\overleftarrow{Y_{1}}+Y_{2}}^{\leftarrow}(\alpha)$ holds while $X_{1}, X_{2}, Y_{1}, Y_{2} \sim N(0,1)$ and $\rho_{L}\left(X_{1}, X_{2}\right)=0, \rho_{L}\left(Y_{1}, Y_{2}\right)=0$ also hold.

## Copulas: bounds for the linear correlation (examples)

Example: Let $X_{1}, X_{2}$ be two random variables with
$X_{1} \sim \operatorname{Lognormal}(0,1), X_{2} \sim \operatorname{Lognormal}\left(0, \sigma^{2}\right), \sigma>0$. Determine Sie $\rho_{L, \min }\left(X_{1}, X_{2}\right)$ und $\rho_{L, \max }\left(X_{1}, X_{2}\right)$.
Hint: Observe that $X_{1} \stackrel{d}{=} \exp (Z)$ and $X_{2} \stackrel{d}{=} \exp (\sigma Z) \stackrel{d}{\stackrel{d}{e}} \exp (-\sigma Z)$. Moreover $e^{Z}, e^{\sigma Z}$ are co-monotone and $e^{Z}, e^{-\sigma Z}$ are anti-monotone.
Example: Determine two random vectors $\left(X_{1}, X_{2}\right)^{T}$ and $\left(Y_{1}, Y_{2}\right)^{T}$ with different c.d.f.s such that $F_{\overleftarrow{X_{1}}+X_{2}}^{\overleftarrow{ }}(\alpha) \neq F_{\overleftarrow{Y_{1}}+Y_{2}}^{\overleftarrow{( })}(\alpha)$ holds while $X_{1}, X_{2}, Y_{1}, Y_{2} \sim N(0,1)$ and $\rho_{L}\left(X_{1}, X_{2}\right)=0, \rho_{L}\left(Y_{1}, Y_{2}\right)=0$ also hold.
If $\left(X_{1}, X_{2}\right)^{T},\left(Y_{1}, Y_{2}\right)^{T}$ represent the asset returns of two different portfolios consisting of two assets each, then we have two portfolios with the same marginal distributions of their assets and the same linear correlation coefficient, respectively, but having different value at risk.

## Copulas: bounds for the linear correlation (examples)

Example: Let $X_{1}, X_{2}$ be two random variables with
$X_{1} \sim \operatorname{Lognormal}(0,1), X_{2} \sim \operatorname{Lognormal}\left(0, \sigma^{2}\right), \sigma>0$. Determine Sie $\rho_{L, \min }\left(X_{1}, X_{2}\right)$ und $\rho_{L, \max }\left(X_{1}, X_{2}\right)$.
Hint: Observe that $X_{1} \stackrel{d}{=} \exp (Z)$ and $X_{2} \stackrel{d}{=} \exp (\sigma Z) \stackrel{d}{=} \exp (-\sigma Z)$. Moreover $e^{Z}, e^{\sigma Z}$ are co-monotone and $e^{Z}, e^{-\sigma Z}$ are anti-monotone.
Example: Determine two random vectors $\left(X_{1}, X_{2}\right)^{T}$ and $\left(Y_{1}, Y_{2}\right)^{T}$ with different c.d.f.s such that $F_{X_{1}+X_{2}}(\alpha) \neq F_{\overleftarrow{Y_{1}}+Y_{2}}(\alpha)$ holds while $X_{1}, X_{2}, Y_{1}, Y_{2} \sim N(0,1)$ and $\rho_{L}\left(X_{1}, X_{2}\right)=0, \rho_{L}\left(Y_{1}, Y_{2}\right)=0$ also hold.
If $\left(X_{1}, X_{2}\right)^{T},\left(Y_{1}, Y_{2}\right)^{T}$ represent the asset returns of two different portfolios consisting of two assets each, then we have two portfolios with the same marginal distributions of their assets and the same linear correlation coefficient, respectively, but having different value at risk.
Conclusion: The marginal distributions of the assets in a portfolio and the linear correlation between the assets do not determine the loss distribution, in particular, they do not determine the risk measure of the portfolio.

The rang correlation Kendall's Tau

## The rang correlation Kendall's Tau

Let $(x, y)^{T}$ and $(\tilde{x}, \tilde{y})^{T}$ be two samples of a random vector $(X, Y)^{T}$. $(x, y)^{T}$ und $(\tilde{x}, \tilde{y})^{T}$ are called concordant if $(x-\tilde{x})(y-\tilde{y})>0$ and discordant if $(x-\tilde{x})(y-\tilde{y})<0$.

## The rang correlation Kendall's Tau

Let $(x, y)^{T}$ and $(\tilde{x}, \tilde{y})^{T}$ be two samples of a random vector $(X, Y)^{T}$. $(x, y)^{T}$ und $(\tilde{x}, \tilde{y})^{T}$ are called concordant if $(x-\tilde{x})(y-\tilde{y})>0$ and discordant if $(x-\tilde{x})(y-\tilde{y})<0$.
Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Kendall's Tau of $\left(X_{1}, X_{2}\right)^{T}$ is defined as $\rho_{\tau}\left(X_{1}, X_{2}\right)=\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)>0\right)-\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)<0\right)$, where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T}$ is an independent copy of $\left(X_{1}, X_{2}\right)^{T}$.

## The rang correlation Kendall's Tau

Let $(x, y)^{T}$ and $(\tilde{x}, \tilde{y})^{T}$ be two samples of a random vector $(X, Y)^{T}$. $(x, y)^{T}$ und $(\tilde{x}, \tilde{y})^{T}$ are called concordant if $(x-\tilde{x})(y-\tilde{y})>0$ and discordant if $(x-\tilde{x})(y-\tilde{y})<0$.
Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Kendall's Tau of $\left(X_{1}, X_{2}\right)^{T}$ is defined as $\rho_{\tau}\left(X_{1}, X_{2}\right)=\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)>0\right)-\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)<0\right)$, where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T}$ is an independent copy of $\left(X_{1}, X_{2}\right)^{T}$.
Equivalently: $\rho_{\tau}\left(X_{1}, X_{2}\right)=E\left(\operatorname{sign}\left[\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)\right]\right)$.

## The rang correlation Kendall's Tau

Let $(x, y)^{T}$ and $(\tilde{x}, \tilde{y})^{T}$ be two samples of a random vector $(X, Y)^{T}$. $(x, y)^{T}$ und $(\tilde{x}, \tilde{y})^{T}$ are called concordant if $(x-\tilde{x})(y-\tilde{y})>0$ and discordant if $(x-\tilde{x})(y-\tilde{y})<0$.
Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Kendall's Tau of $\left(X_{1}, X_{2}\right)^{T}$ is defined as $\rho_{\tau}\left(X_{1}, X_{2}\right)=\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)>0\right)-\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)<0\right)$, where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T}$ is an independent copy of $\left(X_{1}, X_{2}\right)^{T}$.
Equivalently: $\rho_{\tau}\left(X_{1}, X_{2}\right)=E\left(\operatorname{sign}\left[\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)\right]\right)$. In the $d$-dimensional case $X \in \mathbb{R}^{d}: \rho_{\tau}(X)=\operatorname{cov}\left(\operatorname{sign}\left(X-X^{\prime}\right)\right)$, where $X^{\prime} \in \mathbb{R}^{D}$ is an independent copy of $X \in \mathbb{R}^{d}$.

## The rang correlation Kendall's Tau

Let $(x, y)^{T}$ and $(\tilde{x}, \tilde{y})^{T}$ be two samples of a random vector $(X, Y)^{T}$. $(x, y)^{T}$ und $(\tilde{x}, \tilde{y})^{T}$ are called concordant if $(x-\tilde{x})(y-\tilde{y})>0$ and discordant if $(x-\tilde{x})(y-\tilde{y})<0$.
Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Kendall's Tau of $\left(X_{1}, X_{2}\right)^{T}$ is defined as
$\rho_{\tau}\left(X_{1}, X_{2}\right)=\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)>0\right)-\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)<0\right)$, where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T}$ is an independent copy of $\left(X_{1}, X_{2}\right)^{T}$.
Equivalently: $\rho_{\tau}\left(X_{1}, X_{2}\right)=E\left(\operatorname{sign}\left[\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime}\right)\right]\right)$. In the $d$-dimensional case $X \in \mathbb{R}^{d}: \rho_{\tau}(X)=\operatorname{cov}\left(\operatorname{sign}\left(X-X^{\prime}\right)\right)$, where $X^{\prime} \in \mathbb{R}^{D}$ is an independent copy of $X \in \mathbb{R}^{d}$.

## The sample Kendall's Tau:

Let $\left\{\left(x_{1}, y_{1}\right)^{T},\left(x_{2}, y_{2}\right)^{T}, \ldots,\left(x_{n}, y_{n}\right)^{T}\right\}$ be a sample of size $n$ of the random vector $(X, Y)^{T}$ with continuous marginal distributions. Let $c$ be the number concordant pairs in the sample and let $d$ be the number of discordant pairs. Then the sample Kendall's Tau is given as

$$
\tilde{\rho}_{\tau}(X, Y)=\frac{c-d}{c+d} \stackrel{\text { a.s. }}{=} \frac{c-d}{n(n-1) / 2}
$$

The rang correlation Spearman's Rho

## The rang correlation Spearman's Rho

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Spearman's Rho of $\left(X_{1}, X_{2}\right)^{T}$ is defined as:
$\rho_{S}\left(X_{1}, X_{2}\right)=3\left(\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)>0\right)-\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)<0\right)\right)$, where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T},\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)^{T}$ are i.i.d. copies of $\left(X_{1}, X_{2}\right)^{T}$.

## The rang correlation Spearman's Rho

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Spearman's Rho of $\left(X_{1}, X_{2}\right)^{T}$ is defined as:
$\rho_{S}\left(X_{1}, X_{2}\right)=3\left(\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)>0\right)-\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)<0\right)\right)$,
where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T},\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)^{T}$ are i.i.d. copies of $\left(X_{1}, X_{2}\right)^{T}$.
Equivalent definition (without a proof):
Let $F_{1}$ und $F_{2}$ be the continuous marginal distributions of $\left(X_{1}, X_{2}\right)^{T}$. Then $\rho_{S}\left(X_{1}, X_{2}\right)=\rho_{L}\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right)$ holds, i.e. the Spearman's Rho is the linear correlation of the unique copula of $\left(X_{1}, X_{2}\right)^{T}$.

## The rang correlation Spearman's Rho

Definition: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions. The Spearman's Rho of $\left(X_{1}, X_{2}\right)^{T}$ is defined as:
$\rho_{S}\left(X_{1}, X_{2}\right)=3\left(\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)>0\right)-\mathbb{P}\left(\left(X_{1}-X_{1}^{\prime}\right)\left(X_{2}-X_{2}^{\prime \prime}\right)<0\right)\right)$,
where $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)^{T},\left(X_{1}^{\prime \prime}, X_{2}^{\prime \prime}\right)^{T}$ are i.i.d. copies of $\left(X_{1}, X_{2}\right)^{T}$.
Equivalent definition (without a proof):
Let $F_{1}$ und $F_{2}$ be the continuous marginal distributions of $\left(X_{1}, X_{2}\right)^{T}$. Then $\rho_{S}\left(X_{1}, X_{2}\right)=\rho_{L}\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right)$ holds, i.e. the Spearman's Rho is the linear correlation of the unique copula of $\left(X_{1}, X_{2}\right)^{T}$.
In the $d$-dimensional case $X \in \mathbb{R}^{d}$ :
$\rho_{S}(X)=\rho\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right), \ldots, F_{d}\left(X_{d}\right)\right)$ is the correlation matrix of the unique copula of $X$, where $F_{1}, F_{2}, \ldots, F_{d}$ are the continuous marginal distributions of $X$.

Properties of $\rho_{\tau}$ and $\rho_{S}$.

## Properties of $\rho_{\tau}$ and $\rho_{S}$.

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and unique copula $C$. The following equalities hold:

$$
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1
$$

## Properties of $\rho_{\tau}$ and $\rho_{S}$.

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and unique copula $C$. The following equalities hold:

$$
\begin{gathered}
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1 \\
\rho_{S}\left(X_{1}, X_{2}\right)=12 \int_{0}^{1} \int_{0}^{1}\left(C\left(u_{1}, u_{2}\right)-u_{1} u_{2}\right) d u_{1} d u_{2}= \\
12 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d u_{1} d u_{2}-3
\end{gathered}
$$

## Properties of $\rho_{\tau}$ and $\rho_{S}$.

Theorem: Let $\left(X_{1}, X_{2}\right)^{\top}$ be a random vector with continuous marginal distributions and unique copula $C$. The following equalities hold:

$$
\begin{gathered}
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1 \\
\rho_{S}\left(X_{1}, X_{2}\right)=12 \int_{0}^{1} \int_{0}^{1}\left(C\left(u_{1}, u_{2}\right)-u_{1} u_{2}\right) d u_{1} d u_{2}= \\
12 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d u_{1} d u_{2}-3
\end{gathered}
$$

- $\rho_{\tau}$ and $\rho_{S}$ are symmetric and take their values on $[-1,1]$.


## Properties of $\rho_{\tau}$ and $\rho_{S}$.

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and unique copula $C$. The following equalities hold:

$$
\begin{gathered}
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1 \\
\rho_{S}\left(X_{1}, X_{2}\right)=12 \int_{0}^{1} \int_{0}^{1}\left(C\left(u_{1}, u_{2}\right)-u_{1} u_{2}\right) d u_{1} d u_{2}= \\
12 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d u_{1} d u_{2}-3
\end{gathered}
$$

- $\rho_{\tau}$ and $\rho_{S}$ are symmetric and take their values on $[-1,1]$.
- If $X_{1}, X_{2}$ are independent, then $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=0$. In general the converse does not hold.


## Properties of $\rho_{\tau}$ and $\rho_{S}$.

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and unique copula $C$. The following equalities hold:

$$
\begin{gathered}
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1 \\
\rho_{S}\left(X_{1}, X_{2}\right)=12 \int_{0}^{1} \int_{0}^{1}\left(C\left(u_{1}, u_{2}\right)-u_{1} u_{2}\right) d u_{1} d u_{2}= \\
12 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d u_{1} d u_{2}-3
\end{gathered}
$$

- $\rho_{\tau}$ and $\rho_{S}$ are symmetric and take their values on $[-1,1]$.
- If $X_{1}, X_{2}$ are independent, then $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=0$. In general the converse does not hold.
- $X_{1}, X_{2}$ are co-monotone iff $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=1$. $X_{1}, X_{2} . X_{1}, X_{2}$ are anti-monotone iff $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=-1$.


## Properties of $\rho_{\tau}$ and $\rho_{S}$.

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and unique copula $C$. The following equalities hold:

$$
\begin{gathered}
\rho_{\tau}\left(X_{1}, X_{2}\right)=4 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d C\left(u_{1}, u_{2}\right)-1 \\
\rho_{S}\left(X_{1}, X_{2}\right)=12 \int_{0}^{1} \int_{0}^{1}\left(C\left(u_{1}, u_{2}\right)-u_{1} u_{2}\right) d u_{1} d u_{2}= \\
12 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d u_{1} d u_{2}-3
\end{gathered}
$$

- $\rho_{\tau}$ and $\rho_{S}$ are symmetric and take their values on $[-1,1]$.
- If $X_{1}, X_{2}$ are independent, then $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=0$.

In general the converse does not hold.

- $X_{1}, X_{2}$ are co-monotone iff $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=1$. $X_{1}, X_{2} . X_{1}, X_{2}$ are anti-monotone iff $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{S}\left(X_{1}, X_{2}\right)=-1$.
- Let $F_{1}, F_{2}$ be the continuous marginal distributions of $\left(X_{1}, X_{2}\right)^{T}$ and let $T_{1}, T_{2}$ be strictly monotone functions on $[-\infty, \infty]$. Then the following equalities hold $\rho_{\tau}\left(X_{1}, X_{2}\right)=\rho_{\tau}\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right)\right)$ and $\rho_{S}\left(X_{1}, X_{2}\right)=\rho_{S}\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right)\right)$.
(See Embrechts et al., 2002).

