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(C3) Positive homogeneity:

ρ(λX ) = λρ(X ), ∀λ ≥ 0, ∀X ∈ M .

(C4) Monotonicity:
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a.s.
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(C5) Convexity:

∀X1,X2 ∈ M , ∀λ ∈ [0, 1]

ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2) holds.

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply
(C5), but not vice versa.

Definition: A risk measure ρ in M with the properties (C1),(C4) and
(C5) is called convex in M .

Observation: VaR is not coherent in general.
Let the probability measure P be defined by some continuous or discrete
probabilty distribution F .
VaRα(F ) = F←(α) has the properties (C1), (C3) and (C4), whereas the
subadditivity (C2) is not fulfilled in general.



Coherent risk measure (contd.)



Coherent risk measure (contd.)

Example: Let the probability measure P be defined by the binomial
distribution B(p, n) for n ∈ IN, p ∈ (0, 1). We show that VaRα(B(p, n))
is not subadditive.



Coherent risk measure (contd.)

Example: Let the probability measure P be defined by the binomial
distribution B(p, n) for n ∈ IN, p ∈ (0, 1). We show that VaRα(B(p, n))
is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently
with probability p. Observe that the VaR of the portfolio loss is larger
than 100 times the VaR of the loss of a single bond.



Coherent risk measure (contd.)

Example: Let the probability measure P be defined by the binomial
distribution B(p, n) for n ∈ IN, p ∈ (0, 1). We show that VaRα(B(p, n))
is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently
with probability p. Observe that the VaR of the portfolio loss is larger
than 100 times the VaR of the loss of a single bond.

Theorem: Let (Ω,F ,P) be a probability space and M ⊆ L(0)(Ω,F ,P)
be the set of the random variables with a continuous distribution in
(Ω,F ,P). CVaRα is a coherent risk measure in M , ∀α ∈ (0, 1).



Coherent risk measure (contd.)

Example: Let the probability measure P be defined by the binomial
distribution B(p, n) for n ∈ IN, p ∈ (0, 1). We show that VaRα(B(p, n))
is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently
with probability p. Observe that the VaR of the portfolio loss is larger
than 100 times the VaR of the loss of a single bond.

Theorem: Let (Ω,F ,P) be a probability space and M ⊆ L(0)(Ω,F ,P)
be the set of the random variables with a continuous distribution in
(Ω,F ,P). CVaRα is a coherent risk measure in M , ∀α ∈ (0, 1).

Sketch of the proof:

(C1),(C3), (C4) follow from CVaRα(F ) =
1

1−α

∫ 1

α
Varp(F )dp.



Coherent risk measure (contd.)

Example: Let the probability measure P be defined by the binomial
distribution B(p, n) for n ∈ IN, p ∈ (0, 1). We show that VaRα(B(p, n))
is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently
with probability p. Observe that the VaR of the portfolio loss is larger
than 100 times the VaR of the loss of a single bond.

Theorem: Let (Ω,F ,P) be a probability space and M ⊆ L(0)(Ω,F ,P)
be the set of the random variables with a continuous distribution in
(Ω,F ,P). CVaRα is a coherent risk measure in M , ∀α ∈ (0, 1).

Sketch of the proof:

(C1),(C3), (C4) follow from CVaRα(F ) =
1

1−α

∫ 1

α
Varp(F )dp.

To show (C2) observe that for a sequence of i.i.d. r.v. L1, L2, . . ., Ln with
order statistics L1,n ≥ L2,n ≥ . . . ≥ Ln,n and for any m ∈ {1, 2, . . . , n}

m
∑

i=1

Li ,n = sup{Li1 + Li2 + . . .+ Lim : 1 ≤ i1 < . . . < im ≤ n} holds.
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The return of portfolio w is the r.v. Z (w) =
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i=1 wiXi . The expected
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Let Pm be the family of portfolios in P with E (Z (w)) = m, for some
m ∈ IR, m > 0.
Pm := {w = (wi) ∈ IR

d ,
∑d

i=1 |wi | = 1,wTµ = m}

For a risk measure ρ the mean-ρ portfolio optimization model is:

min
w∈Pm

ρ(Z (w)) (1)
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The mean-risk portfolio optimization model (contd.)
If ρ equals the portfolio variance we get minw∈Pm

var(Z (w))

With Σ := Cov(X ) and nonnegative weights wi ≥ 0, i ∈ 1, d , (long-only
portfolio) we get the Markovitz portfolio optimization model
(Markowitz 1952):

min
w

wTΣw

s.t.

wTµ = m
∑d

i=1 wi = 1 wi ≥ 0, i ∈ 1, d

If ρ = VaRα, α ∈ (0, 1) we get the mean-VaR pf. optimization model

min
w∈Pm

VaRα(Z (w)).

Question: What is the relationship between these three portfolio
optimization models?
Answer: In general the three models yield different optimal portfolios!
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Theorem: (Embrechts et al., 2002)
Let X = (X1,X2, . . . ,Xd ) = µ+ AY be elliptically distributed with
µ ∈ IR

d , A ∈ IR
d×k and a spherically distributed vector Y ∼ Sk(ψ).

Assume that 0 < E (X 2
k ) <∞ holds ∀k . If the risk measure ρ has the

properties (C1) and (C3) and ρ(Y1) > 0 for the first component Y1 of Y ,
then

argmin{ρ(Z (w)) : w ∈ Pm} = argmin{var(Z (w)) : w ∈ Pm}
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Remark: The k-dimensional marginal distributions of a d-dimensional
copula are k-dimensional copulas, for all 2 ≤ k ≤ d .
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Lemma: Let h : IR → IR be a monotone increasing function with
h(IR) = IR and h← : IR → IR be the generalized inverse function of h.
Then the following statements hold:

1. h← is a monotone increasing left continuous function.

2. h is continuous ⇐⇒ h← is strictly monotone increasing.

3. h is strictly monotone increasing ⇐⇒ h← is continuous.

4. h←(h(x)) ≤ x

5. h(h←(y)) ≥ y

6. h is strictly monotone increasing =⇒ h←(h(x)) = x .

7. h is continuous =⇒ h(h←(y)) = y .

Lemma: Let X be a r.v. with continuous distribution function F . Then
P (F←(F (x)) = x) = 1, i.e. F←(F (X ))

a.s.
= X
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Theorem: Let G be a d.f. in IR. The following statements holds

1. Quantile transformation:
If U ∼ U(0, 1), then P(G←(U) ≤ x) = G(x).

2. Probability transformation: Let Y be a r.v. with continuous d.f. G .
Then G(Y ) ∼ U(0, 1).

Theorem: (Sklar, 1959)
Let F : IRd → [0, 1] a c.d.f. with marginal d.f. F1,. . .,Fd . There exists a
copula C , such that for all x1, x2, . . . , xd ∈ ĪR = [−∞,∞] the equality

F (x1, x2, . . . , xd) = C (F1(x1),F2(x2), . . . ,Fd(xd )) holds.

If F1,. . .,Fd are continuous, then C is unique.
Vice-versa, if C is a copula and F1,. . .,Fd are d.f., then the function F

defined by the equality above is a joint d.f. with marginal d.f. F1,. . .,Fd .

C as above is called the copula of F . For a random vector X ∈ IR
d with

c.d.f. F we say that C is the copula of X .
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correlation matrix of X . Let φR and φ be the c.d.f of X and X1, resp..
The copula of X is called a Gaussian copula and is denoted by CGa
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For d = 2 and ρ = R12 ∈ (−1, 1) we have :

CGa
R (u1, u2) =

∫ φ−1(u1)

−∞

∫ φ−1(u2)

−∞

1

2π
√

1− ρ2
exp

{

−(x21 − 2ρx1x2 + x22 )

2(1− ρ2)

}

dx1dx2
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The following inequalities hold for any d-dimensional copula C and any
(u1, u2, . . . , ud) ∈ [0, 1]d , where d ∈ IN:

max

{

d
∑

k=1

uk − d + 1, 0

}

≤ C (u1, u2, . . . , ud) ≤ min{u1, u2, . . . , ud}.

Notation: Lower bound =: Wd , upper bound =: Md , for d ≥ 2.
For d = 2 we write M := M2, W := W2.

Remark: Analogous inequalities hold for any general c.d.f. F with
marginal d.f. Fi , 1 ≤ i ≤ d :

max

{

d
∑

k=1

Fk(xk )− d + 1, 0

}

≤ F (x1, x2, . . . , xd ) ≤ min{F1(x1),F2(x2), . . . ,Fd(xd )}.

Exercise: The Fréchet lower bound Wd is not a copula for d ≥ 3.

Hint: Check that the rectangle inequality
∑2

k1=1

∑2
k2=1 . . .

∑2
kd=1(−1)k1+k2+...+kdWd (u1k1 , u2k2 , . . . , udkd ) ≥ 0 with

uj1 = aj and uj2 = bj for j ∈ {1, 2, . . . , d}, is not fulfilled for d ≥ 3 and
ai =

1
2 , bi = 1, for i = 1, 2, . . . , d .
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Copulas: lower and upper bounds (contd.)

Theorem: (for a proof see Nelsen 1999)
For any d ∈ IN, d ≥ 3, and any u ∈ [0, 1]d , there exists a copula Cd,u

such that Cd,u(u) = Wd (u).

Remark 1: The Fréchet upper bound Md is a copula for any d ∈ IN,
d ≥ 2.
The fulfillment of the three copula axioms is simple to check.

Remark 2: M and W are copulas.
Hint: Let X be a r.v. eine with d.f. FX , let T be a strictly monotone
increasing function, and let S be a strictly monotone decreasing function.
Consider the r.v. Y := T (X ) and Z := S(X ).

Then M is the copula of (X ,T (X ))T and W is the copula of (X , S(X ))T .
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Definition: X1 and X2 are called co-monotone if M is a copula of
(X1,X2)

T . X1 snd X2 are called anti-monotone if W is a copula of
(X1,X2)
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Theorem: Assume that W or M is a copula of (X1,X2)
T . Then there

exist two monotone functions α, β : IR → IR and a r.v. Z , such that

(X1,X2)
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If M is the copula of (X1,X2)
T , then both α and β are monotone

increasing, if W is the copula of (X1,X2)
T , then one of the functions α,

β is monotone increasing and the other one is monotone decreasing.

If C is the copula of (X1,X2) and the marginal d.f. F1 and F2 of (X1,X2)
are continuous, then the following hold:

C = W iff X2
a.s.
= T (X1) with T = F←2 ◦ (1 − F1) monotone decreasing,

C = M iff X2
a.s.
= T (X1) with T = F←2 ◦ F1 monotone increasing.

Proof: In McNeil et al., 2005.
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T be a random vector with c.d.f. F and marginal d.f. F1, F2.
If cov(X1,X2) <∞ then the following equality holds:

cov(X1,X2) =

∫ ∞

−∞

∫ ∞

−∞

(F (x1, x2)− F1(x1)F2(x2))dx1dx2 .

Proof in McNeil et al., 2005.
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(α) holds while
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If (X1,X2)
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T represent the asset returns of two different
portfolios consisting of two assets each, then we have two portfolios with
the same marginal distributions of their assets and the same linear
correlation coefficient, respectively, but having different value at risk.
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Example: Let X1, X2 be two random variables with
X1 ∼ Lognormal(0, 1), X2 ∼ Lognormal(0, σ2), σ > 0. Determine Sie
ρL,min(X1,X2) und ρL,max(X1,X2).

Hint: Observe that X1
d
= exp(Z ) and X2

d
= exp(σZ )

d
= exp(−σZ ).

Moreover eZ , eσZ are co-monotone and eZ ,e−σZ are anti-monotone.

Example: Determine two random vectors (X1,X2)
T and (Y1,Y2)

T with
different c.d.f.s such that F←X1+X2

(α) 6= F←Y1+Y2
(α) holds while

X1,X2,Y1,Y2 ∼ N(0, 1) and ρL(X1,X2) = 0, ρL(Y1,Y2) = 0 also hold.

If (X1,X2)
T , (Y1,Y2)

T represent the asset returns of two different
portfolios consisting of two assets each, then we have two portfolios with
the same marginal distributions of their assets and the same linear
correlation coefficient, respectively, but having different value at risk.

Conclusion: The marginal distributions of the assets in a portfolio and
the linear correlation between the assets do not determine the loss
distribution, in particular, they do not determine the risk measure of the
portfolio.
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(x , y)T und (x̃ , ỹ)T are called concordant if (x − x̃)(y − ỹ) > 0 and
discordant if (x − x̃)(y − ỹ ) < 0.
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Let (x , y)T and (x̃ , ỹ)T be two samples of a random vector (X ,Y )T .
(x , y)T und (x̃ , ỹ)T are called concordant if (x − x̃)(y − ỹ) > 0 and
discordant if (x − x̃)(y − ỹ ) < 0.

Definition: Let (X1,X2)
T be a random vector with continuous marginal

distributions. The Kendall’s Tau of (X1,X2)
T is defined as

ρτ (X1,X2) = P((X1 − X ′1)(X2 − X ′2) > 0)− P((X1 − X ′1)(X2 − X ′2) < 0),
where (X ′1,X

′
2)

T is an independent copy of (X1,X2)
T .

Equivalently: ρτ (X1,X2) = E (sign[(X1 − X ′1)(X2 − X ′2)]). In the

d-dimensional case X ∈ IR
d : ρτ (X ) = cov(sign(X − X ′)), where

X ′ ∈ IR
D is an independent copy of X ∈ IR

d .

The sample Kendall’s Tau:
Let {(x1, y1)

T , (x2, y2)
T , . . . , (xn, yn)

T} be a sample of size n of the
random vector (X ,Y )T with continuous marginal distributions. Let c be
the number concordant pairs in the sample and let d be the number of
discordant pairs. Then the sample Kendall’s Tau is given as

ρ̃τ (X ,Y ) =
c − d

c + d

a.s.
=

c − d

n(n − 1)/2
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The rang correlation Spearman’s Rho

Definition: Let (X1,X2)
T be a random vector with continuous marginal

distributions. The Spearman’s Rho of (X1,X2)
T is defined as:
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Then ρS (X1,X2) = ρL(F1(X1),F2(X2)) holds, i.e. the Spearman’s Rho is
the linear correlation of the unique copula of (X1,X2)

T .

In the d-dimensional case X ∈ IR
d :

ρS (X ) = ρ(F1(X1),F2(X2), . . . ,Fd(Xd )) is the correlation matrix of the
unique copula of X , where F1,F2,. . .,Fd are the continuous marginal
distributions of X .
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0
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12
∫ 1

0

∫ 1

0 C (u1, u2)du1du2 − 3

◮ ρτ and ρS are symmetric and take their values on [−1, 1].

◮ If X1, X2 are independent, then ρτ (X1,X2) = ρS (X1,X2) = 0.
In general the converse does not hold.

◮ X1,X2 are co-monotone iff ρτ (X1,X2) = ρS (X1,X2) = 1.
X1,X2. X1,X2 are anti-monotone iff ρτ (X1,X2) = ρS(X1,X2) = −1.

◮ Let F1, F2 be the continuous marginal distributions of (X1,X2)
T

and let T1, T2 be strictly monotone functions on [−∞,∞]. Then
the following equalities hold ρτ (X1,X2) = ρτ (T1(X1),T2(X2)) and
ρS (X1,X2) = ρS (T1(X1),T2(X2)).

(See Embrechts et al., 2002).


