Characterisations of MDAs (contd.)

Characterisations of MDAs (contd.)

Observation: $\Psi_{\alpha}\left(-x^{-1}\right)=\Phi_{\alpha}(x)$ holds for $x>0$ and for every $\alpha>0$. Are $\operatorname{MDA}\left(\Phi_{\alpha}\right)$ and $\operatorname{MDA}\left(\Psi_{\alpha}\right)$ "similar" somehow?

Characterisations of MDAs (contd.)

Observation: $\Psi_{\alpha}\left(-x^{-1}\right)=\Phi_{\alpha}(x)$ holds for $x>0$ and for every $\alpha>0$. Are $\operatorname{MDA}\left(\Phi_{\alpha}\right)$ and $\operatorname{MDA}\left(\Psi_{\alpha}\right)$ "similar" somehow?

Theorem: $\left(M D A\left(\Psi_{\alpha}\right)\right.$, Gnedenko 1943)
$F \in \operatorname{MDA}\left(\Psi_{\alpha}\right)(\alpha>0) \Longleftrightarrow x_{F}:=\sup \{x \in \mathbb{R}: F(x)<1\}<\infty$ and $\bar{F}\left(x_{F}-x^{-1}\right) \in R V_{-\alpha}(\alpha>0)$.
If $F \in \operatorname{MDA}\left(\Psi_{\alpha}\right)$, then $\lim _{n \rightarrow \infty} a_{n}^{-1}\left(M_{n}-x_{F}\right)=\Psi_{\alpha}$ with $a_{n}=x_{F}-F^{\leftarrow}\left(1-n^{-1}\right)$.

Characterisations of MDAs (contd.)

Observation: $\Psi_{\alpha}\left(-x^{-1}\right)=\Phi_{\alpha}(x)$ holds for $x>0$ and for every $\alpha>0$. Are $\operatorname{MDA}\left(\Phi_{\alpha}\right)$ and $\operatorname{MDA}\left(\Psi_{\alpha}\right)$ "similar" somehow?

Theorem: $\left(M D A\left(\Psi_{\alpha}\right)\right.$, Gnedenko 1943)
$F \in \operatorname{MDA}\left(\Psi_{\alpha}\right)(\alpha>0) \Longleftrightarrow x_{F}:=\sup \{x \in \mathbb{R}: F(x)<1\}<\infty$ and $\bar{F}\left(x_{F}-x^{-1}\right) \in R V_{-\alpha}(\alpha>0)$.
If $F \in M D A\left(\Psi_{\alpha}\right)$, then $\lim _{n \rightarrow \infty} a_{n}^{-1}\left(M_{n}-x_{F}\right)=\Psi_{\alpha}$ with $a_{n}=x_{F}-F^{\leftarrow}\left(1-n^{-1}\right)$.

Example: Let $X \sim U(0,1)$. it holds $X \in \operatorname{MDA}\left(\Psi_{1}\right)$ with $a_{n}=1 / n$, $n \in \mathbb{N}$.

Characterisations of MDAs (contd.)

Characterisations of MDAs (contd.)

Observation: $\lim _{x \rightarrow+\infty} \frac{\bar{\Lambda}(x)}{e^{-x}}=1, \forall \alpha>0$.
Thus for $\Lambda \in \operatorname{MDA}(\Lambda)$ we have $\bar{\Lambda} \sim e^{-x}$. Does this (or smth. similar) generally hold for members of $\operatorname{MDA}(\Lambda)$?

Characterisations of MDAs (contd.)

Observation: $\lim _{x \rightarrow+\infty} \frac{\bar{\Lambda}(x)}{e^{-x}}=1, \forall \alpha>0$.
Thus for $\Lambda \in \operatorname{MDA}(\Lambda)$ we have $\bar{\Lambda} \sim e^{-x}$. Does this (or smth. similar) generally hold for members of $\operatorname{MDA}(\Lambda)$?

Theorem: (MDA(\wedge))
Let F be a distribution function with right endpoint $x_{F} \leq \infty$.
$F \in \operatorname{MDA}(\Lambda)$ holds iff there exists a $z<x_{F}$ such that F can be represented as

$$
\bar{F}(x)=c(x) \exp \left\{-\int_{z}^{x} \frac{g(t)}{a(t)} d t\right\}, \forall x, z<x \leq x_{F}
$$

where the functions $c(x)$ and $g(x)$ fulfill $\lim _{x \uparrow \chi_{F}} c(x)=c>0$ and $\lim _{t \uparrow x_{\digamma}} g(t)=1$, and $a(t)$ is a positive absolutely continuous function with $\lim _{t \uparrow x_{F}} a^{\prime}(t)=0$.

Characterisations of MDAs (contd.)

Observation: $\lim _{x \rightarrow+\infty} \frac{\bar{\Lambda}(x)}{e^{-x}}=1, \forall \alpha>0$.
Thus for $\Lambda \in \operatorname{MDA}(\Lambda)$ we have $\bar{\Lambda} \sim e^{-x}$. Does this (or smth. similar) generally hold for members of $\operatorname{MDA}(\Lambda)$?

Theorem: (MDA(\wedge))
Let F be a distribution function with right endpoint $x_{F} \leq \infty$.
$F \in \operatorname{MDA}(\Lambda)$ holds iff there exists a $z<x_{F}$ such that F can be represented as

$$
\bar{F}(x)=c(x) \exp \left\{-\int_{z}^{x} \frac{g(t)}{a(t)} d t\right\}, \forall x, z<x \leq x_{F}
$$

where the functions $c(x)$ and $g(x)$ fulfill $\lim _{x \uparrow \chi_{F}} c(x)=c>0$ and $\lim _{t \uparrow x_{\digamma}} g(t)=1$, and $a(t)$ is a positive absolutely continuous function with $\lim _{t \uparrow x_{F}} a^{\prime}(t)=0$.

See the book by Embrechts et al. for the proofs of the above theorem and of the following theorem concerning the characterisation of $\operatorname{MDA}(\Lambda)$.

Characterisations of MDAs (contd.)

Theorem: (MDA(Λ), alternative characterisation)
A distribution function F belongs to $M D A(\Lambda)$ iff there exists a positive function ã such that

$$
\lim _{x \uparrow x_{F}} \frac{\bar{F}(x+u \tilde{a}(x))}{\bar{F}(x)}=e^{-u}, \forall u \in \mathbb{R}
$$

A possible choice for \tilde{a} is $\tilde{a}(x)=a(x)$ with $a(x):=\int_{x}^{x_{F}} \frac{\bar{F}(t)}{\bar{F}(x)} d t$.

Characterisations of MDAs (contd.)

Theorem: (MDA(Λ), alternative characterisation)
A distribution function F belongs to $M D A(\Lambda)$ iff there exists a positive function ã such that

$$
\lim _{x \uparrow x_{F}} \frac{\bar{F}(x+u \tilde{a}(x))}{\bar{F}(x)}=e^{-u}, \forall u \in \mathbb{R}
$$

A possible choice for \tilde{a} is $\tilde{a}(x)=a(x)$ with $a(x):=\int_{x}^{x_{F}} \frac{\bar{F}(t)}{\bar{F}(x)} d t$.
Definition: The function $a(x)$ above is called mean excess function and it can be alternatively represented as

$$
a(x):=E(X-x \mid X>x), \forall x \leq x_{F} .
$$

Characterisations of MDAs (contd.)

Theorem: ($M D A(\Lambda)$, alternative characterisation)

A distribution function F belongs to $\operatorname{MDA}(\Lambda)$ iff there exists a positive function ã such that

$$
\lim _{x \uparrow x_{F}} \frac{\bar{F}(x+u \tilde{a}(x))}{\bar{F}(x)}=e^{-u}, \forall u \in \mathbb{R}
$$

A possible choice for \tilde{a} is $\tilde{a}(x)=a(x)$ with $a(x):=\int_{x}^{x_{F}} \frac{\bar{F}(t)}{\bar{F}(x)} d t$.
Definition: The function $a(x)$ above is called mean excess function and it can be alternatively represented as

$$
a(x):=E(X-x \mid X>x), \forall x \leq x_{F} .
$$

Examples: The following distributions belong to $\operatorname{MDA}(\Lambda)$:

- Normal: $F(x)=(2 \pi)^{-1 / 2} \exp \left\{-x^{2} / 2\right\}, x \in \mathbb{R}$.
- Exponential: $f(x)=\lambda^{-1} \exp \{-\lambda x\}, x>0, \lambda>0$.
- Lognormal: $f(x)=\left(2 \pi x^{2}\right)^{-1 / 2} \exp \left\{-(\ln x)^{2} / 2\right\}, x>0$.
- Gamma: $f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp \{-\beta x\}, x>0, \alpha, \beta>0$.

Graphical methods for the investigation of the right tail of the distribution

Graphical methods for the investigation of the right tail of the distribution

- Histogram

Graphical methods for the investigation of the right tail of the distribution

- Histogram
- Quantile-quantile plots

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. r.v. with unknown distribution \tilde{F}. We assume that the right range of \tilde{F} can be approximated by a known distribution F.
Question: How to check whether this assumption holds?

Graphical methods for the investigation of the right tail of the distribution

- Histogram
- Quantile-quantile plots

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. r.v. with unknown distribution \tilde{F}. We assume that the right range of \tilde{F} can be approximated by a known distribution F.

Question: How to check whether this assumption holds?
Let $x_{n} \leq x_{n-1} \leq \ldots \leq x_{1}$ be a sorted sample of $X_{1}, X_{2}, \ldots, X_{n}$. qq-plot: $\left\{\left(x_{k}, F^{\leftarrow}\left(\frac{n-k+1}{n+1}\right)\right): k=1,2, \ldots, n\right\}$.

Graphical methods for the investigation of the right tail of the distribution

- Histogram
- Quantile-quantile plots

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. r.v. with unknown distribution \tilde{F}. We assume that the right range of \tilde{F} can be approximated by a known distribution F.
Question: How to check whether this assumption holds?
Let $x_{n} \leq x_{n-1} \leq \ldots \leq x_{1}$ be a sorted sample of $X_{1}, X_{2}, \ldots, X_{n}$. qq-plot: $\left\{\left(x_{k}, F^{\leftarrow}\left(\frac{n-k+1}{n+1}\right)\right): k=1,2, \ldots, n\right\}$.
If the assumption is plausible then the qq-plot is similar to the graph of a linear function. This property holds also if the reference distribution and the real distribution do not coincide but are of the same type.

Graphical methods for the investigation of the right tail of the distribution

- Histogram
- Quantile-quantile plots

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. r.v. with unknown distribution \tilde{F}. We assume that the right range of \tilde{F} can be approximated by a known distribution F.
Question: How to check whether this assumption holds?
Let $x_{n} \leq x_{n-1} \leq \ldots \leq x_{1}$ be a sorted sample of $X_{1}, X_{2}, \ldots, X_{n}$. qq-plot: $\left\{\left(x_{k}, F^{\leftarrow}\left(\frac{n-k+1}{n+1}\right)\right): k=1,2, \ldots, n\right\}$.

If the assumption is plausible then the qq-plot is similar to the graph of a linear function. This property holds also if the reference distribution and the real distribution do not coincide but are of the same type.

Rule of thumb: the larger the quantile the heavier the tails of the distribution!

The Hill estimator

The Hill estimator

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. r.v. with distribution function F, such that $\bar{F} \in R V_{-\alpha}, \alpha>0$, i.e. $\bar{F}(x)=x^{-\alpha} L(x)$ with $L \in R V_{0}$.
Goal: Estimate α !

The Hill estimator

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. r.v. with distribution function F, such that $\bar{F} \in R V_{-\alpha}, \alpha>0$, i.e. $\bar{F}(x)=x^{-\alpha} L(x)$ with $L \in R V_{0}$.
Goal: Estimate α !
Theorem: (Theorem of Karamata)
Let L be a slowly varying locally bounded function on $\left[x_{0},+\infty\right)$ for some $x_{0} \in \mathbb{R}$. Then the following holds:
(a) For $\kappa>-1: \int_{x_{0}}^{x} t^{\kappa} L(t) d t \sim K\left(x_{0}\right)+\frac{1}{\kappa+1} x^{\kappa+1} L(x)$ for $x \rightarrow \infty$, where $K\left(x_{0}\right)$ is a constant depending on x_{0}.
(b) For $\kappa<-1$: $\int_{x}^{+\infty} t^{\kappa} L(t) d t \sim-\frac{1}{\kappa+1} x^{\kappa+1} L(x)$ for $x \rightarrow \infty$.

Proof in Bingham et al. 1987.

Application of Karamata's theorem

Application of Karamata's theorem

Assumption: F is locally bounded on $[u,+\infty)$.

Application of Karamata's theorem

Assumption: F is locally bounded on $[u,+\infty)$.
The theorem of Karamata implies: $E(\ln (X)-\ln (u) \mid \ln (X)>\ln (u))=$

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{1}{\bar{F}(u)} \int_{u}^{\infty}(\ln x-\ln u) d F(x)=\alpha^{-1} \tag{8}
\end{equation*}
$$

Application of Karamata's theorem

Assumption: F is locally bounded on $[u,+\infty)$.
The theorem of Karamata implies: $E(\ln (X)-\ln (u) \mid \ln (X)>\ln (u))=$

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{1}{\bar{F}(u)} \int_{u}^{\infty}(\ln x-\ln u) d F(x)=\alpha^{-1} \tag{8}
\end{equation*}
$$

For the empirical distribution $F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} l_{\left[x_{k}, \infty\right)}(x)$ and a large threshold x_{k} depending on the sample $x_{n} \leq x_{n-1} \leq \ldots \leq x_{1}$ we get:

$$
\begin{gathered}
E\left(\ln (X)-\ln \left(x_{k}\right) \mid \ln (X)>\ln \left(x_{k}\right)\right) \approx \\
\frac{1}{\bar{F}_{n}\left(x_{k}\right)} \int_{X_{k}}^{\infty}\left(\ln x-\ln x_{k}\right) d F_{n}(x)=\frac{1}{k-1} \sum_{j=1}^{k-1}\left(\ln x_{j}-\ln x_{k}\right) .
\end{gathered}
$$

Application of Karamata's theorem

Assumption: F is locally bounded on $[u,+\infty)$.
The theorem of Karamata implies: $E(\ln (X)-\ln (u) \mid \ln (X)>\ln (u))=$

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{1}{\bar{F}(u)} \int_{u}^{\infty}(\ln x-\ln u) d F(x)=\alpha^{-1} \tag{8}
\end{equation*}
$$

For the empirical distribution $F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} l_{\left[x_{k}, \infty\right)}(x)$ and a large threshold x_{k} depending on the sample $x_{n} \leq x_{n-1} \leq \ldots \leq x_{1}$ we get:

$$
\begin{gathered}
E\left(\ln (X)-\ln \left(x_{k}\right) \mid \ln (X)>\ln \left(x_{k}\right)\right) \approx \\
\frac{1}{\bar{F}_{n}\left(x_{k}\right)} \int_{X_{k}}^{\infty}\left(\ln x-\ln x_{k}\right) d F_{n}(x)=\frac{1}{k-1} \sum_{j=1}^{k-1}\left(\ln x_{j}-\ln x_{k}\right) .
\end{gathered}
$$

If $k=k(n) \rightarrow \infty$ and $k / n \rightarrow 0$, then $x_{k} \rightarrow \infty$ for $n \rightarrow \infty$, and (8) implies:

$$
\lim _{n \rightarrow \infty} \frac{1}{k-1} \sum_{j=1}^{k-1}\left(\ln x_{j}-\ln x_{k}\right) \stackrel{d}{=} \alpha^{-1}
$$

Hill estimators for the tail distribution and the quantile

Hill estimators for the tail distribution and the quantile
Thus the following Hill estimator is consistent:

$$
\hat{\alpha}_{k, n}^{(H)}=\left(\frac{1}{k} \sum_{j=1}^{k}\left(\ln x_{j}-\ln x_{k}\right)\right)^{-1}
$$

Hill estimators for the tail distribution and the quantile

Thus the following Hill estimator is consistent:

$$
\hat{\alpha}_{k, n}^{(H)}=\left(\frac{1}{k} \sum_{j=1}^{k}\left(\ln x_{j}-\ln x_{k}\right)\right)^{-1}
$$

How to choose a suitable k for a given sample size n ?

Hill estimators for the tail distribution and the quantile

Thus the following Hill estimator is consistent:

$$
\hat{\alpha}_{k, n}^{(H)}=\left(\frac{1}{k} \sum_{j=1}^{k}\left(\ln x_{j}-\ln x_{k}\right)\right)^{-1}
$$

How to choose a suitable k for a given sample size n ? If k too small, then the estimator has a high variance.

Hill estimators for the tail distribution and the quantile

Thus the following Hill estimator is consistent:

$$
\hat{\alpha}_{k, n}^{(H)}=\left(\frac{1}{k} \sum_{j=1}^{k}\left(\ln x_{j}-\ln x_{k}\right)\right)^{-1}
$$

How to choose a suitable k for a given sample size n ? If k too small, then the estimator has a high variance. If k too large, than the estimator is based on central values of the sample distribution, and is therefore biased.

Hill estimators for the tail distribution and the quantile

Thus the following Hill estimator is consistent:

$$
\hat{\alpha}_{k, n}^{(H)}=\left(\frac{1}{k} \sum_{j=1}^{k}\left(\ln x_{j}-\ln x_{k}\right)\right)^{-1}
$$

How to choose a suitable k for a given sample size n ? If k too small, then the estimator has a high variance. If k too large, than the estimator is based on central values of the sample distribution, and is therefore biased.
Grafical inspection of the Hill plots: $\left\{\left(k, \hat{\alpha}_{k, n}^{(H)}\right): k=2, \ldots, n\right\}$

Hill estimators for the tail distribution and the quantile

Thus the following Hill estimator is consistent:

$$
\hat{\alpha}_{k, n}^{(H)}=\left(\frac{1}{k} \sum_{j=1}^{k}\left(\ln x_{j}-\ln x_{k}\right)\right)^{-1}
$$

How to choose a suitable k for a given sample size n ? If k too small, then the estimator has a high variance.
If k too large, than the estimator is based on central values of the sample distribution, and is therefore biased.
Grafical inspection of the Hill plots: $\left\{\left(k, \hat{\alpha}_{k, n}^{(H)}\right): k=2, \ldots, n\right\}$
Given an estimator $\hat{\alpha}_{k, n}^{(H)}$ of α we get tail and quantile estimators as follows:

$$
\hat{\vec{F}}(x)=\frac{k}{n}\left(\frac{x}{x_{k}}\right)^{-\hat{\alpha}_{k, n}^{(H)}} \text { and } \hat{q}_{p}=\hat{F}^{\leftarrow}(p)=\left(\frac{n}{k}(1-p)\right)^{-1 / \hat{\alpha}_{k, n}^{(H)}} x_{k} .
$$

The POT method (Peaks over Threshold)

The POT method (Peaks over Threshold)
Definition: (The generalized Pareto distribution (GPD)) The standard GPD denoted by G_{γ} :

$$
G_{\gamma}(x)= \begin{cases}1-(1+\gamma x)^{-1 / \gamma} & \text { für } \gamma \neq 0 \\ 1-\exp \{-x\} & \text { für } \gamma=0\end{cases}
$$

where $x \in D(\gamma)$

$$
D(\gamma)= \begin{cases}0 \leq x<\infty & \text { für } \gamma \geq 0 \\ 0 \leq x \leq-1 / \gamma & \text { für } \gamma<0\end{cases}
$$

The POT method (Peaks over Threshold)
Definition: (The generalized Pareto distribution (GPD)) The standard GPD denoted by G_{γ} :

$$
G_{\gamma}(x)= \begin{cases}1-(1+\gamma x)^{-1 / \gamma} & \text { für } \gamma \neq 0 \\ 1-\exp \{-x\} & \text { für } \gamma=0\end{cases}
$$

where $x \in D(\gamma)$

$$
D(\gamma)= \begin{cases}0 \leq x<\infty & \text { für } \gamma \geq 0 \\ 0 \leq x \leq-1 / \gamma & \text { für } \gamma<0\end{cases}
$$

Notice that $G_{0}=\lim _{\gamma \rightarrow 0} G_{\gamma}$.

The POT method (Peaks over Threshold)

Definition: (The generalized Pareto distribution (GPD))
The standard GPD denoted by G_{γ} :

$$
G_{\gamma}(x)= \begin{cases}1-(1+\gamma x)^{-1 / \gamma} & \text { für } \gamma \neq 0 \\ 1-\exp \{-x\} & \text { für } \gamma=0\end{cases}
$$

where $x \in D(\gamma)$

$$
D(\gamma)= \begin{cases}0 \leq x<\infty & \text { für } \gamma \geq 0 \\ 0 \leq x \leq-1 / \gamma & \text { für } \gamma<0\end{cases}
$$

Notice that $G_{0}=\lim _{\gamma \rightarrow 0} G_{\gamma}$.
Let $\nu \in \mathbb{R}$ and $\beta>0$. The GPD with parameters γ, ν, β is given by the following distribution function

$$
G_{\gamma, \nu, \beta}=1-\left(1+\gamma \frac{x-\nu}{\beta}\right)^{-1 / \gamma}
$$

where $x \in D(\gamma, \nu, \beta)$ and

$$
D(\gamma, \nu, \beta)= \begin{cases}\nu \leq x<\infty & \text { für } \gamma \geq 0 \\ \nu \leq x \leq \nu-\beta / \gamma & \text { für } \gamma<0\end{cases}
$$

