**Observation:**  $\Psi_{\alpha}(-x^{-1}) = \Phi_{\alpha}(x)$  holds for x > 0 and for every  $\alpha > 0$ . Are  $MDA(\Phi_{\alpha})$  and  $MDA(\Psi_{\alpha})$  "similar" somehow?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

**Observation:**  $\Psi_{\alpha}(-x^{-1}) = \Phi_{\alpha}(x)$  holds for x > 0 and for every  $\alpha > 0$ . Are  $MDA(\Phi_{\alpha})$  and  $MDA(\Psi_{\alpha})$  "similar" somehow?

**Theorem:**  $(MDA(\Psi_{\alpha}), \text{ Gnedenko 1943})$   $F \in MDA(\Psi_{\alpha}) \ (\alpha > 0) \iff x_F := \sup\{x \in \mathbb{R} : F(x) < 1\} < \infty \text{ and }$   $\overline{F}(x_F - x^{-1}) \in RV_{-\alpha} \ (\alpha > 0).$ If  $F \in MDA(\Psi_{\alpha})$ , then  $\lim_{n\to\infty} a_n^{-1}(M_n - x_F) = \Psi_{\alpha}$  with  $a_n = x_F - F^{\leftarrow}(1 - n^{-1}).$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Observation:**  $\Psi_{\alpha}(-x^{-1}) = \Phi_{\alpha}(x)$  holds for x > 0 and for every  $\alpha > 0$ . Are  $MDA(\Phi_{\alpha})$  and  $MDA(\Psi_{\alpha})$  "similar" somehow?

**Theorem:**  $(MDA(\Psi_{\alpha}), \text{ Gnedenko 1943})$   $F \in MDA(\Psi_{\alpha}) \ (\alpha > 0) \iff x_F := \sup\{x \in \mathbb{R} : F(x) < 1\} < \infty \text{ and }$   $\overline{F}(x_F - x^{-1}) \in RV_{-\alpha} \ (\alpha > 0).$ If  $F \in MDA(\Psi_{\alpha})$ , then  $\lim_{n \to \infty} a_n^{-1}(M_n - x_F) = \Psi_{\alpha}$  with  $a_n = x_F - F^{\leftarrow}(1 - n^{-1}).$ 

**Example:** Let  $X \sim U(0, 1)$ . it holds  $X \in MDA(\Psi_1)$  with  $a_n = 1/n$ ,  $n \in \mathbb{N}$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三</p>

**Observation:**  $\lim_{x\to+\infty} \frac{\bar{\Lambda}(x)}{e^{-x}} = 1$ ,  $\forall \alpha > 0$ . Thus for  $\Lambda \in MDA(\Lambda)$  we have  $\bar{\Lambda} \sim e^{-x}$ . Does this (or smth. similar) generally hold for members of  $MDA(\Lambda)$ ?

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

**Observation:**  $\lim_{x\to+\infty} \frac{\bar{\Lambda}(x)}{e^{-x}} = 1$ ,  $\forall \alpha > 0$ . Thus for  $\Lambda \in MDA(\Lambda)$  we have  $\bar{\Lambda} \sim e^{-x}$ . Does this (or smth. similar) generally hold for members of  $MDA(\Lambda)$ ?

#### **Theorem:** $(MDA(\Lambda))$

Let *F* be a distribution function with right endpoint  $x_F \le \infty$ .  $F \in MDA(\Lambda)$  holds iff there exists a  $z < x_F$  such that *F* can be represented as

$$\bar{F}(x) = c(x)exp\left\{-\int_{z}^{x} \frac{g(t)}{a(t)}dt\right\}, \forall x, z < x \leq x_{F},$$

where the functions c(x) and g(x) fulfill  $\lim_{x\uparrow x_F} c(x) = c > 0$  and  $\lim_{t\uparrow x_F} g(t) = 1$ , and a(t) is a positive absolutely continuous function with  $\lim_{t\uparrow x_F} a'(t) = 0$ .

**Observation:**  $\lim_{x\to+\infty} \frac{\bar{\Lambda}(x)}{e^{-x}} = 1$ ,  $\forall \alpha > 0$ . Thus for  $\Lambda \in MDA(\Lambda)$  we have  $\bar{\Lambda} \sim e^{-x}$ . Does this (or smth. similar) generally hold for members of  $MDA(\Lambda)$ ?

#### **Theorem:** $(MDA(\Lambda))$

Let *F* be a distribution function with right endpoint  $x_F \le \infty$ .  $F \in MDA(\Lambda)$  holds iff there exists a  $z < x_F$  such that *F* can be represented as

$$\bar{F}(x) = c(x)exp\left\{-\int_{z}^{x} \frac{g(t)}{a(t)}dt\right\}, \forall x, z < x \leq x_{F},$$

where the functions c(x) and g(x) fulfill  $\lim_{x\uparrow x_F} c(x) = c > 0$  and  $\lim_{t\uparrow x_F} g(t) = 1$ , and a(t) is a positive absolutely continuous function with  $\lim_{t\uparrow x_F} a'(t) = 0$ .

See the book by Embrechts et al. for the proofs of the above theorem and of the following theorem concerning the characterisation of  $MDA(\Lambda)$ .

**Theorem:** (*MDA*( $\Lambda$ ), alternative characterisation) A distribution function *F* belongs to *MDA*( $\Lambda$ ) iff there exists a positive function  $\tilde{a}$  such that

$$\lim_{x\uparrow x_{F}}\frac{\bar{F}(x+u\tilde{a}(x))}{\bar{F}(x)}=e^{-u},\forall u\in{\rm I\!R}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A possible choice for  $\tilde{a}$  is  $\tilde{a}(x) = a(x)$  with  $a(x) := \int_x^{x_F} \frac{\tilde{F}(t)}{\tilde{F}(x)} dt$ .

**Theorem:** ( $MDA(\Lambda)$ , alternative characterisation) A distribution function F belongs to  $MDA(\Lambda)$  iff there exists a positive function  $\tilde{a}$  such that

$$\lim_{x\uparrow x_F}\frac{\bar{F}(x+u\tilde{a}(x))}{\bar{F}(x)}=e^{-u}, \forall u\in {\rm I\!R}$$

A possible choice for  $\tilde{a}$  is  $\tilde{a}(x) = a(x)$  with  $a(x) := \int_{x}^{x_{F}} \frac{\tilde{F}(t)}{\tilde{F}(x)} dt$ .

**Definition:** The function a(x) above is called **mean excess function** and it can be alternatively represented as

$$a(x) := E(X - x | X > x), \forall x \leq x_F$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

**Theorem:** ( $MDA(\Lambda)$ , alternative characterisation) A distribution function F belongs to  $MDA(\Lambda)$  iff there exists a positive function  $\tilde{a}$  such that

$$\lim_{x\uparrow x_F} \frac{\bar{F}(x+u\tilde{a}(x))}{\bar{F}(x)} = e^{-u}, \forall u \in {\rm I\!R}$$

A possible choice for  $\tilde{a}$  is  $\tilde{a}(x) = a(x)$  with  $a(x) := \int_x^{x_F} \frac{\tilde{F}(t)}{\tilde{F}(x)} dt$ .

**Definition:** The function a(x) above is called **mean excess function** and it can be alternatively represented as

$$a(x) := E(X - x | X > x), \forall x \leq x_F$$

**Examples:** The following distributions belong to  $MDA(\Lambda)$ :

- Normal:  $F(x) = (2\pi)^{-1/2} \exp\{-x^2/2\}, x \in \mathbb{R}.$
- Exponential:  $f(x) = \lambda^{-1} \exp\{-\lambda x\}, x > 0, \lambda > 0.$
- Lognormal:  $f(x) = (2\pi x^2)^{-1/2} \exp\{-(\ln x)^2/2\}, x > 0.$
- Gamma:  $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp\{-\beta x\}, x > 0, \alpha, \beta > 0.$

<□▶ <□▶ < 三▶ < 三▶ < 三▶ 三三 の < ⊙

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

Histogram

- Histogram
- Quantile-quantile plots

Let  $X_1, X_2, \ldots, X_n$  be i.i.d. r.v. with unknown distribution  $\tilde{F}$ . We assume that the right range of  $\tilde{F}$  can be approximated by a known distribution F.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Question: How to check whether this assumption holds?

- Histogram
- Quantile-quantile plots

Let  $X_1, X_2, \ldots, X_n$  be i.i.d. r.v. with unknown distribution  $\tilde{F}$ . We assume that the right range of  $\tilde{F}$  can be approximated by a known distribution F.

Question: How to check whether this assumption holds?

Let  $x_n \leq x_{n-1} \leq \ldots \leq x_1$  be a sorted sample of  $X_1, X_2, \ldots, X_n$ . qq-plot:  $\{(x_k, F^{\leftarrow}(\frac{n-k+1}{n+1})): k = 1, 2, \ldots, n\}.$ 

Histogram

#### Quantile-quantile plots

Let  $X_1, X_2, \ldots, X_n$  be i.i.d. r.v. with unknown distribution  $\tilde{F}$ . We assume that the right range of  $\tilde{F}$  can be approximated by a known distribution F.

Question: How to check whether this assumption holds?

Let  $x_n \leq x_{n-1} \leq \ldots \leq x_1$  be a sorted sample of  $X_1, X_2, \ldots, X_n$ . qq-plot:  $\{(x_k, F^{\leftarrow}(\frac{n-k+1}{n+1})): k = 1, 2, \ldots, n\}.$ 

If the assumption is plausible then the qq-plot is similar to the graph of a linear function. This property holds also if the reference distribution and the real distribution do not coincide but are of the same type.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Histogram

#### Quantile-quantile plots

Let  $X_1, X_2, \ldots, X_n$  be i.i.d. r.v. with unknown distribution  $\tilde{F}$ . We assume that the right range of  $\tilde{F}$  can be approximated by a known distribution F.

Question: How to check whether this assumption holds?

Let  $x_n \leq x_{n-1} \leq \ldots \leq x_1$  be a sorted sample of  $X_1, X_2, \ldots, X_n$ . qq-plot:  $\{(x_k, F^{\leftarrow}(\frac{n-k+1}{n+1})): k = 1, 2, \ldots, n\}.$ 

If the assumption is plausible then the qq-plot is similar to the graph of a linear function. This property holds also if the reference distribution and the real distribution do not coincide but are of the same type.

Rule of thumb: the larger the quantile the heavier the tails of the distribution!

The Hill estimator

<ロ> <個> < 国> < 国> < 国> < 国> < 国> < 回> < <</p>

#### The Hill estimator

Let  $X_1, X_2, \ldots, X_n$  be i.i.d. r.v. with distribution function F, such that  $\overline{F} \in RV_{-\alpha}$ ,  $\alpha > 0$ , i.e.  $\overline{F}(x) = x^{-\alpha}L(x)$  with  $L \in RV_0$ .

Goal: Estimate  $\alpha$ !



#### The Hill estimator

Let  $X_1, X_2, \ldots, X_n$  be i.i.d. r.v. with distribution function F, such that  $\overline{F} \in RV_{-\alpha}$ ,  $\alpha > 0$ , i.e.  $\overline{F}(x) = x^{-\alpha}L(x)$  with  $L \in RV_0$ . Goal: Estimate  $\alpha!$ 

**Theorem:** (Theorem of Karamata) Let *L* be a slowly varying locally bounded function on  $[x_0, +\infty)$  for some  $x_0 \in \mathbb{R}$ . Then the following holds:

(a) For  $\kappa > -1$ :  $\int_{x_0}^x t^{\kappa} L(t) dt \sim K(x_0) + \frac{1}{\kappa+1} x^{\kappa+1} L(x)$  for  $x \to \infty$ , where  $K(x_0)$  is a constant depending on  $x_0$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(b) For 
$$\kappa < -1$$
:  $\int_x^{+\infty} t^{\kappa} L(t) dt \sim -\frac{1}{\kappa+1} x^{\kappa+1} L(x)$  for  $x \to \infty$ .

Proof in Bingham et al. 1987.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Assumption: F is locally bounded on  $[u, +\infty)$ .

Assumption: F is locally bounded on  $[u, +\infty)$ .

The theorem of Karamata implies:  $E(\ln(X) - \ln(u)|\ln(X) > \ln(u)) =$ 

$$\lim_{u\to\infty}\frac{1}{\bar{F}(u)}\int_{u}^{\infty}(\ln x - \ln u)dF(x) = \alpha^{-1}.$$
(8)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Assumption: F is locally bounded on  $[u, +\infty)$ .

The theorem of Karamata implies:  $E(\ln(X) - \ln(u)|\ln(X) > \ln(u)) =$ 

$$\lim_{u\to\infty}\frac{1}{\bar{F}(u)}\int_{u}^{\infty}(\ln x - \ln u)dF(x) = \alpha^{-1}.$$
(8)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

For the empirical distribution  $F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k,\infty)}(x)$  and a large threshold  $x_k$  depending on the sample  $x_n \le x_{n-1} \le \ldots \le x_1$  we get:

$$E\left(\ln(X) - \ln(x_k)|\ln(X) > \ln(x_k)\right) \approx$$

$$\frac{1}{\bar{F}_n(x_k)}\int_{X_k}^{\infty} (\ln x - \ln x_k) dF_n(x) = \frac{1}{k-1}\sum_{j=1}^{k-1} (\ln x_j - \ln x_k).$$

Assumption: F is locally bounded on  $[u, +\infty)$ .

The theorem of Karamata implies:  $E(\ln(X) - \ln(u)|\ln(X) > \ln(u)) =$ 

$$\lim_{u\to\infty}\frac{1}{\bar{F}(u)}\int_{u}^{\infty}(\ln x - \ln u)dF(x) = \alpha^{-1}.$$
(8)

For the empirical distribution  $F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k,\infty)}(x)$  and a large threshold  $x_k$  depending on the sample  $x_n \le x_{n-1} \le \ldots \le x_1$  we get:

$$E\left(\ln(X) - \ln(x_k)|\ln(X) > \ln(x_k)\right) \approx$$

$$\frac{1}{\bar{F}_n(x_k)}\int_{X_k}^{\infty} (\ln x - \ln x_k) dF_n(x) = \frac{1}{k-1}\sum_{j=1}^{k-1} (\ln x_j - \ln x_k).$$

If  $k = k(n) \rightarrow \infty$  and  $k/n \rightarrow 0$ , then  $x_k \rightarrow \infty$  for  $n \rightarrow \infty$ , and (8) implies:

$$\lim_{n \to \infty} \frac{1}{k - 1} \sum_{j = 1}^{k - 1} (\ln x_j - \ln x_k) \stackrel{d}{=} \alpha^{-1}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Thus the following Hill estimator is consistent:

$$\hat{\alpha}_{k,n}^{(H)} = \left(\frac{1}{k}\sum_{j=1}^{k}(\ln x_j - \ln x_k)\right)^{-1}$$

Thus the following Hill estimator is consistent:

$$\hat{\alpha}_{k,n}^{(H)} = \left(\frac{1}{k}\sum_{j=1}^{k}(\ln x_j - \ln x_k)\right)^{-1}$$

How to choose a suitable k for a given sample size n?

Thus the following Hill estimator is consistent:

$$\hat{\alpha}_{k,n}^{(H)} = \left(\frac{1}{k}\sum_{j=1}^{k}(\ln x_j - \ln x_k)\right)^{-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

How to choose a suitable k for a given sample size n? If k too small, then the estimator has a high variance.

Thus the following Hill estimator is consistent:

$$\hat{\alpha}_{k,n}^{(H)} = \left(\frac{1}{k}\sum_{j=1}^{k}(\ln x_j - \ln x_k)\right)^{-1}$$

How to choose a suitable k for a given sample size n?

If k too small, then the estimator has a high variance.

If k too large, than the estimator is based on central values of the sample distribution, and is therefore biased.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Thus the following Hill estimator is consistent:

$$\hat{\alpha}_{k,n}^{(H)} = \left(\frac{1}{k}\sum_{j=1}^{k} (\ln x_j - \ln x_k)\right)^{-1}$$

How to choose a suitable k for a given sample size n?

If k too small, then the estimator has a high variance.

If k too large, than the estimator is based on central values of the sample distribution, and is therefore biased.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Grafical inspection of the Hill plots:  $\left\{ \left(k, \hat{\alpha}_{k,n}^{(H)}\right) : k = 2, ..., n \right\}$ 

Thus the following Hill estimator is consistent:

$$\hat{\alpha}_{k,n}^{(H)} = \left(\frac{1}{k}\sum_{j=1}^{k}(\ln x_j - \ln x_k)\right)^{-1}$$

How to choose a suitable k for a given sample size n?

If k too small, then the estimator has a high variance.

If k too large, than the estimator is based on central values of the sample distribution, and is therefore biased.

Grafical inspection of the Hill plots:  $\left\{ \left(k, \hat{\alpha}_{k,n}^{(H)}\right) : k = 2, ..., n \right\}$ 

Given an estimator  $\hat{\alpha}_{k,n}^{(H)}$  of  $\alpha$  we get tail and quantile estimators as follows:

$$\hat{\bar{F}}(x) = \frac{k}{n} \left(\frac{x}{x_k}\right)^{-\hat{\alpha}_{k,n}^{(H)}} \text{ and } \hat{q}_p = \hat{F}^{\leftarrow}(p) = \left(\frac{n}{k}(1-p)\right)^{-1/\hat{\alpha}_{k,n}^{(H)}} x_k.$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへぐ

### The POT method (Peaks over Threshold)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ● 臣 ● の Q @

# The POT method (Peaks over Threshold) Definition: (The generalized Pareto distribution (GPD))

The **standard GPD** denoted by  $G_{\gamma}$ :

$$G_{\gamma}(x) = \begin{cases} 1 - (1 + \gamma x)^{-1/\gamma} & \text{für } \gamma \neq 0\\ 1 - \exp\{-x\} & \text{für } \gamma = 0 \end{cases}$$

where  $x \in D(\gamma)$ 

$$D(\gamma) = \left\{ egin{array}{cc} 0 \leq x < \infty & {
m für} \ \gamma \geq 0 \ 0 \leq x \leq -1/\gamma & {
m für} \ \gamma < 0 \end{array} 
ight.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

# The POT method (Peaks over Threshold) Definition: (The generalized Pareto distribution (GPD))

The **standard GPD** denoted by  $G_{\gamma}$ :

$$G_{\gamma}(x) = \begin{cases} 1 - (1 + \gamma x)^{-1/\gamma} & \text{für } \gamma \neq 0\\ 1 - \exp\{-x\} & \text{für } \gamma = 0 \end{cases}$$

where  $x \in D(\gamma)$ 

$$\mathcal{D}(\gamma) = \left\{ egin{array}{cc} 0 \leq x < \infty & ext{für } \gamma \geq 0 \ 0 \leq x \leq -1/\gamma & ext{für } \gamma < 0 \end{array} 
ight.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Notice that  $G_0 = \lim_{\gamma \to 0} G_{\gamma}$ .

### The POT method (Peaks over Threshold) Definition: (The generalized Pareto distribution (GPD))

The standard GPD denoted by  $G_{\gamma}$ :

$$G_{\gamma}(x) = \begin{cases} 1 - (1 + \gamma x)^{-1/\gamma} & \text{für } \gamma \neq 0\\ 1 - \exp\{-x\} & \text{für } \gamma = 0 \end{cases}$$

where  $x \in D(\gamma)$ 

$$\mathcal{D}(\gamma) = \left\{ egin{array}{cc} 0 \leq x < \infty & ext{ für } \gamma \geq 0 \ 0 \leq x \leq -1/\gamma & ext{ für } \gamma < 0 \end{array} 
ight.$$

Notice that  $G_0 = \lim_{\gamma \to 0} G_{\gamma}$ .

Let  $\nu \in \mathbb{R}$  and  $\beta > 0$ . The **GPD** with parameters  $\gamma$ ,  $\nu$ ,  $\beta$  is given by the following distribution function

$$G_{\gamma,\nu,\beta} = 1 - (1 + \gamma \frac{x - \nu}{\beta})^{-1/\gamma}$$

where  $x \in D(\gamma, \nu, \beta)$  and