Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \geq 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i : 1 \leq i \leq n\}$

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \geq 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i \colon 1 \leq i \leq n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Let (X_k) , $k \in \mathbb{IN}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \geq 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i \colon 1 \leq i \leq n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of S_n .

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n - b_n)$, for some sequences of reals $a_n > 0$ und $b_n \in \mathbb{R}$, $n \in \mathbb{N}$?

Let (X_k) , $k \in \mathbb{IN}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \geq 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i \colon 1 \leq i \leq n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of S_n .

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n - b_n)$, for some sequences of reals $a_n > 0$ und $b_n \in \mathbb{R}$, $n \in \mathbb{N}$?

Notation:
$$\lim_{n\to\infty} a_n^{-1}(S_n-b_n)\stackrel{\mathrm{d}}{=} Z$$

Let (X_k) , $k \in \mathbb{IN}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \geq 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i \colon 1 \leq i \leq n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of S_n .

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n-b_n)$, for some sequences of reals $a_n>0$ und $b_n\in\mathbb{R}$, $n\in\mathbb{N}$?

Notation: $\lim_{n\to\infty} a_n^{-1}(S_n-b_n)\stackrel{\mathrm{d}}{=} Z$

Definition: A r.v. X is called **stable,** (α -**stable,** Lévy-stable), iff for all $c_1, c_2 \in \mathbb{R}_+$ and the i.i.d. copies X_1 and X_2 of X, there exist constantes $a(c_1, c_2) \in \mathbb{R}$ and $b(c_1, c_2) \in \mathbb{R}$, such that $c_1X_1 + c_2X_2$ und $a(c_1, c_2)X + b(c_1, c_2)$ are identically distributed.

Notation: $c_1X_1 + c_2X_2 \stackrel{\text{d}}{=} a(c_1, c_2)X + b(c_1, c_2)$

Let (X_k) , $k \in \mathbb{IN}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \geq 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i \colon 1 \leq i \leq n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of S_n .

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n-b_n)$, for some sequences of reals $a_n>0$ und $b_n\in\mathbb{R}$, $n\in\mathbb{N}$?

Notation: $\lim_{n\to\infty} a_n^{-1}(S_n-b_n)\stackrel{\mathrm{d}}{=} Z$

Definition: A r.v. X is called **stable,** $(\alpha$ -**stable,** Lévy-stable), iff for all $c_1, c_2 \in \mathbb{R}_+$ and the i.i.d. copies X_1 and X_2 of X, there exist constantes $a(c_1, c_2) \in \mathbb{R}$ and $b(c_1, c_2) \in \mathbb{R}$, such that $c_1X_1 + c_2X_2$ und $a(c_1, c_2)X + b(c_1, c_2)$ are identically distributed.

Notation: $c_1X_1 + c_2X_2 \stackrel{\text{d}}{=} a(c_1, c_2)X + b(c_1, c_2)$

Theorem

The family of stable distributions coincides whith the limit distributions of appropriately normalized and centralized sums of i.i.d. r.v..

Proof e.g. in Rényi, 1962.

Theorem: The characteristic function of a stable distribution X is given as:

$$\varphi_X(t) = E[\exp\{iXt\}] = \exp\{i\gamma t - c|t|^{\alpha}(1 + i\beta \operatorname{signum}(t)z(t,\alpha))\}, \quad (4)$$
 where $\gamma \in \mathbb{R}$, $c > 0$, $\alpha \in (0,2]$, $\beta \in [-1,1]$ and
$$z(t,\alpha) = \begin{cases} \tan(\frac{\pi\alpha}{2}) & \text{wenn } \alpha \neq 1 \\ -\frac{2}{\pi}\ln|t| & \text{wenn } \alpha = 1 \end{cases}$$

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Theorem: The characteristic function of a stable distribution X is given as:

$$\varphi_X(t) = E[\exp\{iXt\}] = \exp\{i\gamma t - c|t|^{\alpha}(1 + i\beta \operatorname{signum}(t)z(t,\alpha))\}, \quad (4)$$
 where $\gamma \in \mathbb{R}$, $c > 0$, $\alpha \in (0,2]$, $\beta \in [-1,1]$ and

$$z(t, \alpha) = \left\{ \begin{array}{ll} \tan(\frac{\pi\alpha}{2}) & \text{wenn } \alpha \neq 1 \\ -\frac{2}{\pi} \ln|t| & \text{wenn } \alpha = 1 \end{array} \right.$$

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Definition: The parameter α in (4) is called **the form parameter or the characteristical exponent**, the corresponding distribution is called α -stable and its distribution function is denoted by G_{α} .

Theorem: The characteristic function of a stable distribution X is given as:

$$\varphi_X(t) = E[\exp\{iXt\}] = \exp\{i\gamma t - c|t|^{\alpha}(1 + i\beta \operatorname{signum}(t)z(t,\alpha))\},$$
 (4)

where $\gamma \in {\rm I\!R}$, c > 0, $\alpha \in (0,2]$, $\beta \in [-1,1]$ and

$$z(t, \alpha) = \left\{ \begin{array}{ll} \tan(\frac{\pi\alpha}{2}) & \text{wenn } \alpha \neq 1 \\ -\frac{2}{\pi}\ln|t| & \text{wenn } \alpha = 1 \end{array} \right.$$

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Definition: The parameter α in (4) is called **the form parameter or the characteristical exponent**, the corresponding distribution is called α -stable and its distribution function is denoted by G_{α} .

Definition: Let X be a r.v. with distribution function F. Assume that there exists two sequences of reals $a_n>0$ and $b_n\in\mathbb{R}$, $n\in\mathbb{N}$, such that $\lim_{n\to\infty}a_n^{-1}(S_n-b_n)=G_\alpha$, for some α -stable distribution G_α . Then we say that F belongs to the domain of attraction of G_α . Notation: $F\in DA(G_\alpha)$.

Remark 1:

$$X \sim G_2 \Longleftrightarrow \varphi_X(t) = \exp\{i\gamma t - \frac{1}{2}t^2(2c)\} \Longleftrightarrow X \sim N(\gamma, 2c)$$

Remark 1:

$$X \sim G_2 \Longleftrightarrow \varphi_X(t) = \exp\{i\gamma t - \frac{1}{2}t^2(2c)\} \Longleftrightarrow X \sim N(\gamma, 2c)$$

Remark2: Show that $F \in DA(G_2) \iff F \in DA(\phi)$, where ϕ is the standard normal distribution N(0,1).

Hint: The Convergence to Types Theorem could be used.

Remark 1:

$$X \sim G_2 \Longleftrightarrow \varphi_X(t) = \exp\{i\gamma t - \frac{1}{2}t^2(2c)\} \Longleftrightarrow X \sim N(\gamma, 2c)$$

Remark2: Show that $F \in DA(G_2) \iff F \in DA(\phi)$, where ϕ is the standard normal distribution N(0,1).

Hint: The Convergence to Types Theorem could be used.

Definition: The r.v. Z and \tilde{Z} are of the same type if there exist the constants $\sigma>0$ and $\mu\in\mathbb{R}$, such that $\tilde{Z}\stackrel{\mathrm{d}}{=}(Z-\mu)/\sigma$, i.e. $\tilde{F}(x)=F(\mu+\sigma x), \ \forall x\in\mathbb{R}$, where F and \tilde{F} are the distribution functions of Z and \tilde{Z} , respectively.

The Convergence to Types Theorem

Let Z, \tilde{Z} , Y_n , $n \ge 1$, be not almost surely constant r.v. Let a_n , \tilde{a}_n , b_n , $\tilde{b}_n \in \mathbb{R}$, $n \in \mathbb{N}$, be sequences of reals with a_n , $\tilde{a}_n > 0$.

(i) If

$$\lim_{n\to\infty} a_n^{-1}(Y_n - b_n) = Z \text{ and } \lim_{n\to\infty} \tilde{a}_n^{-1}(Y_n - \tilde{b}_n) = \tilde{Z}$$
 (5)

then there exist A > 0 und $B \in \mathbb{R}$, such that

$$\lim_{n \to \infty} \frac{\tilde{a}_n}{a_n} = A \text{ and } \lim_{n \to \infty} \frac{\tilde{b}_n - b_n}{a_n} = B$$
 (6)

and

$$\tilde{Z} \stackrel{\mathrm{d}}{=} (Z - B)/A.$$
 (7)

(ii) Assume that (6) holds. Then each of the two relations in (5) implies the other and also (7) holds.

The Convergence to Types Theorem

Let Z, \tilde{Z} , Y_n , $n \ge 1$, be not almost surely constant r.v. Let a_n , \tilde{a}_n , b_n , $\tilde{b}_n \in \mathbb{R}$, $n \in \mathbb{N}$, be sequences of reals with a_n , $\tilde{a}_n > 0$.

(i) If

$$\lim_{n\to\infty} a_n^{-1}(Y_n - b_n) = Z \text{ and } \lim_{n\to\infty} \tilde{a}_n^{-1}(Y_n - \tilde{b}_n) = \tilde{Z}$$
 (5)

then there exist A > 0 und $B \in \mathbb{R}$, such that

$$\lim_{n \to \infty} \frac{\tilde{a}_n}{a_n} = A \text{ and } \lim_{n \to \infty} \frac{\tilde{b}_n - b_n}{a_n} = B$$
 (6)

and

$$\tilde{Z} \stackrel{\mathrm{d}}{=} (Z - B)/A.$$
 (7)

(ii) Assume that (6) holds. Then each of the two relations in (5) implies the other and also (7) holds.

Proof: See Resnick 1987, Prop. 0.2, Seite 7.

(i) Let ϕ be the standard normal distribution function. The equivalence

$$F \in DA(\phi) \Longleftrightarrow \lim_{x \to \infty} \frac{x^2 \int_{[-x,x]^c} dF(y)}{\int_{[-x,x]} y^2 dF(y)} = 0$$

holds, where $[-x,x]^C$ is the complement of [-x,x] in ${\rm I\!R}.$

(i) Let ϕ be the standard normal distribution function. The equivalence

$$F \in DA(\phi) \iff \lim_{x \to \infty} \frac{x^2 \int_{[-x,x]^c} dF(y)}{\int_{[-x,x]} y^2 dF(y)} = 0$$

holds, where $[-x,x]^C$ is the complement of [-x,x] in ${\rm I\!R}$.

(ii) For $\alpha \in (0,2)$ the equivalence

$$F \in DA(G_{\alpha}) \Longleftrightarrow F(-x) = \frac{c_1 + o(1)}{x^{\alpha}}L(x), \bar{F}(x) = \frac{c_2 + o(1)}{x^{\alpha}}L(x)$$

holds, where L is a slowly varying function around infinity and $c_1, c_2 > 0$ with $c_1 + c_2 > 0$.

(i) Let ϕ be the standard normal distribution function. The equivalence

$$F \in DA(\phi) \iff \lim_{x \to \infty} \frac{x^2 \int_{[-x,x]^c} dF(y)}{\int_{[-x,x]} y^2 dF(y)} = 0$$

holds, where $[-x,x]^C$ is the complement of [-x,x] in ${\rm I\!R}$.

(ii) For $\alpha \in (0,2)$ the equivalence

$$F \in DA(G_{\alpha}) \Longleftrightarrow F(-x) = \frac{c_1 + o(1)}{x^{\alpha}}L(x), \bar{F}(x) = \frac{c_2 + o(1)}{x^{\alpha}}L(x)$$

holds, where L is a slowly varying function around infinity and $c_1, c_2 \ge 0$ with $c_1 + c_2 > 0$.

This theorem is also known as Theorem of Lévy, Feller and Chintschin. Proof in Rényi, 1962.

(i) Let ϕ be the standard normal distribution function. The equivalence

$$F \in DA(\phi) \iff \lim_{x \to \infty} \frac{x^2 \int_{[-x,x]^c} dF(y)}{\int_{[-x,x]} y^2 dF(y)} = 0$$

holds, where $[-x,x]^C$ is the complement of [-x,x] in ${\rm I\!R}$.

(ii) For $\alpha \in (0,2)$ the equivalence

$$F \in DA(G_{\alpha}) \Longleftrightarrow F(-x) = \frac{c_1 + o(1)}{x^{\alpha}} L(x), \bar{F}(x) = \frac{c_2 + o(1)}{x^{\alpha}} L(x)$$

holds, where L is a slowly varying function around infinity and $c_1, c_2 \ge 0$ with $c_1 + c_2 > 0$.

This theorem is also known as Theorem of Lévy, Feller and Chintschin. Proof in Rényi, 1962.

Remark: Let $F \in DA(G_{\alpha})$ for $\alpha \in (0,2)$. Then $E(|X|^{\delta}) < \infty$ for $\delta < \alpha$ and $E(|X|^{\delta}) = \infty$ for $\delta > \alpha$ hold.

(i) Let ϕ be the standard normal distribution function. The equivalence

$$F \in DA(\phi) \iff \lim_{x \to \infty} \frac{x^2 \int_{[-x,x]^c} dF(y)}{\int_{[-x,x]} y^2 dF(y)} = 0$$

holds, where $[-x,x]^C$ is the complement of [-x,x] in ${\rm I\!R}$.

(ii) For $\alpha \in (0,2)$ the equivalence

$$F \in DA(G_{\alpha}) \Longleftrightarrow F(-x) = \frac{c_1 + o(1)}{x^{\alpha}}L(x), \bar{F}(x) = \frac{c_2 + o(1)}{x^{\alpha}}L(x)$$

holds, where L is a slowly varying function around infinity and $c_1, c_2 \ge 0$ with $c_1 + c_2 > 0$.

This theorem is also known as Theorem of Lévy, Feller and Chintschin. Proof in Rényi, 1962.

Remark: Let $F \in DA(G_{\alpha})$ for $\alpha \in (0,2)$. Then $E(|X|^{\delta}) < \infty$ for $\delta < \alpha$ and $E(|X|^{\delta}) = \infty$ for $\delta > \alpha$ hold.

Proof: See Resnick 1987 (or a demanding homework!)

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F.

For $n \ge 1$, set $M_n := \max\{X_i : 1 \le i \le n\}$

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F.

For $n \ge 1$, set $M_n := \max\{X_i : 1 \le i \le n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered M_n ?

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F.

For $n \ge 1$, set $M_n := \max\{X_i : 1 \le i \le n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered M_n ?

Consider $\lim_{n\to\infty} P(a_n^{-1}(M_n-b_n)\leq x)=\lim_{n\to\infty} P(M_n\leq u_n)$, where $u_n=a_nx+b_n, \ \forall n\in\mathbb{N}$.

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F.

For $n \ge 1$, set $M_n := \max\{X_i \colon 1 \le i \le n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered M_n ?

Consider $\lim_{n\to\infty} P(a_n^{-1}(M_n-b_n)\leq x)=\lim_{n\to\infty} P(M_n\leq u_n)$, where $u_n=a_nx+b_n, \ \forall n\in\mathbb{N}$.

Theorem: (Poisson Approximation)

Let $au \in [0,\infty]$ and a sequence of reals $u_n \in {\rm I\!R}$. Then the following holds

$$\lim_{n\to\infty} n\bar{F}(u_n) = \tau \Longleftrightarrow \lim_{n\to\infty} P(M_n \le u_n) = \exp\{-\tau\}.$$

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F.

For $n \ge 1$, set $M_n := \max\{X_i : 1 \le i \le n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered M_n ?

Consider $\lim_{n\to\infty} P(a_n^{-1}(M_n-b_n)\leq x)=\lim_{n\to\infty} P(M_n\leq u_n)$, where $u_n=a_nx+b_n, \ \forall n\in\mathbb{N}$.

Theorem: (Poisson Approximation)

Let $au \in [0,\infty]$ and a sequence of reals $u_n \in {\rm I\!R}$. Then the following holds

$$\lim_{n\to\infty} n\bar{F}(u_n) = \tau \Longleftrightarrow \lim_{n\to\infty} P(M_n \le u_n) = \exp\{-\tau\}.$$

Remark: The convergence to types theorem implies that H and \tilde{H} are of the same type, if

$$\lim_{n\to\infty} a_n^{-1}(M_n-b_n)=H$$
 and $\lim_{n\to\infty} \tilde{a}_n^{-1}(M_n-\tilde{b}_n)=\tilde{H}$.

Definition: A non-degenarate r.v. X is called *max-stable* iff for any $n \geq 2 \max\{X_1, X_2, \dots, X_n\} \stackrel{\mathrm{d}}{=} a_n X + b_n$ for indepedent copies X_1, X_2, \dots, X_n of X and appropriate constants $a_n > 0$ and $b_n \in \mathbb{R}$.

Definition: A non-degenarate r.v. X is called *max-stable* iff for any $n \geq 2 \max\{X_1, X_2, \dots, X_n\} \stackrel{\mathrm{d}}{=} a_n X + b_n$ for indepedent copies X_1, X_2, \dots, X_n of X and appropriate constants $a_n > 0$ and $b_n \in \mathbb{R}$.

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.) The class of max-stable distributions coincides with the class of non-degenerate limit distributions of normalized and centered maxima of i.i.d. r.v.

Definition: A non-degenarate r.v. X is called *max-stable* iff for any $n \geq 2 \max\{X_1, X_2, \dots, X_n\} \stackrel{\mathrm{d}}{=} a_n X + b_n$ for indepedent copies X_1, X_2, \dots, X_n of X and appropriate constants $a_n > 0$ and $b_n \in \mathbb{R}$.

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.) The class of max-stable distributions coincides with the class of non-degenerate limit distributions of normalized and centered maxima of i.i.d. r.v.

Definition: A non-degenarate r.v. X is called max-stable iff for any $n \geq 2 \max\{X_1, X_2, \dots, X_n\} \stackrel{\mathrm{d}}{=} a_n X + b_n$ for indepedent copies X_1, X_2, \dots, X_n of X and appropriate constants $a_n > 0$ and $b_n \in \mathbb{R}$.

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.) The class of max-stable distributions coincides with the class of non-degenerate limit distributions of normalized and centered maxima of i.i.d. r.v.

Theorem: (Fischer-Tippet Theorem, Proof in Resnick 1987, page 9-11) Let (X_k) be a sequence of i.i.d. r.v.. If the constants $a_n, b_n \in \mathbb{R}$, $a_n > 0$, and a non-degenerate disribution H exist, such that $\lim_{n\to\infty} a_n^{-1}(M_n-b_n)=H$, then H is of the same type as one of the following three distributions:

$$\begin{array}{lll} \text{Fr\'echet} & \Phi_{\alpha}(x) = \left\{ \begin{array}{ll} 0 & x \leq 0 \\ \exp\{-x^{-\alpha}\} & x > 0 \end{array} \right. & \alpha > 0 \\ \text{Weibull} & \Psi_{\alpha}(x) = \left\{ \begin{array}{ll} \exp\{-(-x)^{\alpha}\} & x \leq 0 \\ 1 & x > 0 \end{array} \right. & \alpha > 0 \\ \text{Gumbel} & \Lambda(x) = \exp\{-e^{-x}\} & x \in {\rm I\!R} \end{array}$$

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions (standard evd)*. The distributions which are of the same type as the standard evd are called *extreme value distributions* (evd).

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions (standard evd)*. The distributions which are of the same type as the standard evd are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribuion) belongs to the *maximum domain of attraction* of the evd H iff there exist constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that $\lim_{n \to \infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions (standard evd)*. The distributions which are of the same type as the standard evd are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribuion) belongs to the *maximum domain of attraction* of the evd H iff there exist constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that $\lim_{n \to \infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

Theorem: (Characterisation of MDA, proof is left as an exercise) $F \in MDA(H)$ with normalizing and centering constants $a_n > 0$ snd $b_n \in \mathbb{R}$ holds, iff

$$\lim_{n\to\infty} n\bar{F}(a_nx+b_n) = -\ln H(x), \forall x\in \mathrm{I\!R},$$

where $-\ln H(x)$ is replaced by ∞ if H(x) = 0.

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions (standard evd)*. The distributions which are of the same type as the standard evd are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribuion) belongs to the *maximum domain of attraction* of the evd H iff there exist constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that $\lim_{n \to \infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

Theorem: (Characterisation of MDA, proof is left as an exercise) $F \in MDA(H)$ with normalizing and centering constants $a_n > 0$ snd $b_n \in \mathbb{R}$ holds, iff

$$\lim_{n\to\infty} n\bar{F}(a_nx+b_n) = -\ln H(x), \forall x\in \mathbb{R},$$

where $-\ln H(x)$ is replaced by ∞ if H(x) = 0.

Hint for the proof: apply the theorem about the Poisson approximation.

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions (standard evd)*. The distributions which are of the same type as the standard evd are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribuion) belongs to the *maximum domain of attraction* of the evd H iff there exist constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that $\lim_{n \to \infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

Theorem: (Characterisation of MDA, proof is left as an exercise) $F \in MDA(H)$ with normalizing and centering constants $a_n > 0$ snd $b_n \in \mathbb{R}$ holds, iff

$$\lim_{n\to\infty} n\bar{F}(a_nx+b_n) = -\ln H(x), \forall x\in \mathbb{R},$$

where $-\ln H(x)$ is replaced by ∞ if H(x) = 0.

Hint for the proof: apply the theorem about the Poisson approximation.

There exist distributions which do not belong to the MDA of any evd!

Example: (The Poisson distribution)

Let $X \sim P(\lambda)$, i.e. $P(X = k) = e^{-\lambda} \lambda^k / k!$, $k \in \mathbb{N}_0$, $\lambda > 0$. Show that there exist no evd Z such that $X \in MDA(Z)$.

The generalized evd

The generalized evd

Definition: (The generalized extreme value distribution (gevd)) Let the distribution function H_{γ} be given as follows:

$$H_{\gamma}(x) = \left\{ egin{array}{ll} \exp\{-(1+\gamma x)^{-1/\gamma}\} & \text{wenn } \gamma \neq 0 \\ \exp\{-\exp\{-x\}\}\} & \text{wenn } \gamma = 0 \end{array} \right.$$

where $1 + \gamma x > 0$, i.e. the definition area of H_{γ} is given as

$$\begin{array}{ll} x>-\gamma^{-1} & \text{wenn } \gamma>0 \\ x<-\gamma^{-1} & \text{wenn } \gamma<0 \\ x\in {\rm I\!R} & \text{wenn } \gamma=0 \end{array}$$

 H_{γ} is called generalized extreme value distribution (gevd).

The generalized evd

Definition: (The generalized extreme value distribution (gevd)) Let the distribution function H_{γ} be given as follows:

$$H_{\gamma}(x) = \left\{ egin{array}{ll} \exp\{-(1+\gamma x)^{-1/\gamma}\} & \text{wenn } \gamma \neq 0 \\ \exp\{-\exp\{-x\}\}\} & \text{wenn } \gamma = 0 \end{array} \right.$$

where $1 + \gamma x > 0$, i.e. the definition area of H_{γ} is given as

$$\begin{array}{ll} x>-\gamma^{-1} & \text{wenn } \gamma>0 \\ x<-\gamma^{-1} & \text{wenn } \gamma<0 \\ x\in {\rm I\!R} & \text{wenn } \gamma=0 \end{array}$$

 H_{γ} is called generalized extreme value distribution (gevd).

Theorem: (Characterisation of $MDA(H_{\gamma})$)

- ▶ $F \in MDA(H_{\gamma})$ with $\gamma > 0 \iff F \in MDA(\Phi_{\alpha})$ with $\alpha = 1/\gamma > 0$.
- ▶ $F \in MDA(H_0) \iff F \in MDA(\Lambda)$.
- ► $F \in MDA(H_{\gamma})$ with $\gamma < 0 \iff F \in MDA(\Psi_{\alpha})$ with $\alpha = -1/\gamma > 0$.

Clearly every standard evd belongs to its own MDA!

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha > 0$)?

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha>0$)?

Observation: $\lim_{x\to +\infty} \frac{\bar{\Phi}_{\alpha}(x)}{x^{-\alpha}} = 1$, $\forall \alpha > 0$. Thus for $\Phi_{\alpha} \in MDA(\Phi_{\alpha})$ we have $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$. Does this generally hold for members of $MDA(\Phi_{\alpha})$?

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha>0$)?

Observation: $\lim_{x\to +\infty} \frac{\bar{\Phi}_{\alpha}(x)}{x^{-\alpha}} = 1$, $\forall \alpha > 0$. Thus for $\Phi_{\alpha} \in MDA(\Phi_{\alpha})$ we have $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$. Does this generally hold for members of $MDA(\Phi_{\alpha})$?

Theorem: $(MDA(\Phi_{\alpha}), \text{ Gnedenko 1943})$ $F \in MDA(\Phi_{\alpha}) \ (\alpha > 0) \iff \bar{F} \in RV_{-\alpha} \ (\alpha > 0).$ If $F \in MDA(\Phi_{\alpha}), \text{ then } \lim_{n \to \infty} a_n^{-1}M_n = \Phi_{\alpha} \text{ with } a_n = F^{\leftarrow}(1 - n^{-1}).$

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha>0$)?

Observation: $\lim_{x\to +\infty} \frac{\bar{\Phi}_{\alpha}(x)}{x^{-\alpha}} = 1$, $\forall \alpha > 0$. Thus for $\Phi_{\alpha} \in MDA(\Phi_{\alpha})$ we have $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$. Does this generally hold for members of $MDA(\Phi_{\alpha})$?

Theorem: $(MDA(\Phi_{\alpha}), \text{ Gnedenko 1943})$ $F \in MDA(\Phi_{\alpha}) \ (\alpha > 0) \iff \bar{F} \in RV_{-\alpha} \ (\alpha > 0).$ If $F \in MDA(\Phi_{\alpha}), \text{ then } \lim_{n \to \infty} a_n^{-1}M_n = \Phi_{\alpha} \text{ with } a_n = F^{\leftarrow}(1 - n^{-1}).$

Examples: The following distributions belong to $MDA(\Phi_{\alpha})$:

- ▶ Pareto: $F(x) = 1 x^{-\alpha}$, x > 1, $\alpha > 0$.
- Cauchy: $f(x) = (\pi(1+x^2))^{-1}$, $x \in \mathbb{R}$.
- ► Student: $f(x) = \frac{\Gamma((\alpha+1)/2)}{\sqrt{\alpha\pi}\Gamma(\alpha/2)(1+x^2/\alpha)^{(\alpha+1)/2}}$, $\alpha \in \mathbb{N}$, $x \in \mathbb{R}$.
- ▶ Loggamma: $f(x) = \frac{\alpha^{\beta}}{\Gamma(\beta)} (\ln x)^{\beta-1} x^{-\alpha-1}, x > 1, \alpha, \beta > 0.$