Possibilities to generate a sample of losses x_{1}, \ldots, x_{n}

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_{m} be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_{m};
the historically realized losses are given as $I_{k}=I_{[m]}\left(x_{m-k+1}\right)$,
$k=1,2, \ldots, n$,

Possibilities to generate a sample of losses x_{1}, \ldots, x_{n}

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_{m} be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_{m};
the historically realized losses are given as $I_{k}=I_{[m]}\left(x_{m-k+1}\right)$,
$k=1,2, \ldots, n$,
Assumption: the historically realized losses are i.i.d.
The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses: $I_{1} \geq I_{2} \geq \ldots \geq I_{n}$.

Possibilities to generate a sample of losses x_{1}, \ldots, x_{n}

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_{m} be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_{m};
the historically realized losses are given as $I_{k}=I_{[m]}\left(x_{m-k+1}\right)$,
$k=1,2, \ldots, n$,
Assumption: the historically realized losses are i.i.d.
The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses: $I_{1} \geq I_{2} \geq \ldots \geq I_{n}$.
Empirical VaR: $\widehat{\operatorname{VaR}}=q_{\alpha}\left(\hat{F}_{n}^{L}\right)=I_{[n(1-\alpha)]+1}$

Possibilities to generate a sample of losses x_{1}, \ldots, x_{n}

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_{m} be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_{m};
the historically realized losses are given as $I_{k}=I_{[m]}\left(x_{m-k+1}\right)$,
$k=1,2, \ldots, n$,
Assumption: the historically realized losses are i.i.d.
The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses: $I_{1} \geq I_{2} \geq \ldots \geq I_{n}$.
Empirical VaR: $\widehat{\operatorname{VaR}}=q_{\alpha}\left(\hat{F}_{n}^{L}\right)=I_{[n(1-\alpha)]+1}$
Empirical CVaR: $\widehat{C V a R}=\frac{\sum_{i=1}^{[n(1-\alpha)]+1} l_{i}}{[n(1-\alpha)]+1}$.

Possibilities to generate a sample of losses x_{1}, \ldots, x_{n}

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_{m} be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_{m};
the historically realized losses are given as $I_{k}=I_{[m]}\left(x_{m-k+1}\right)$,
$k=1,2, \ldots, n$,
Assumption: the historically realized losses are i.i.d.
The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses: $I_{1} \geq I_{2} \geq \ldots \geq I_{n}$.
Empirical VaR: $\widehat{\operatorname{VaR}}=q_{\alpha}\left(\hat{F}_{n}^{L}\right)=I_{[n(1-\alpha)]+1}$
Empirical CVaR: $\widehat{C V a R}=\frac{\sum_{i=1}^{[n(1-\alpha)]+1} i_{i}}{[n(1-\alpha)]+1}$.

The aggregated loss over a given time interval

For example, for 10 time units, compute $\lfloor n / 10\rfloor$ aggregated loss
realizations $l_{k}^{(10)}$ over the time intervals
$[m-n+10(k-1)+1, m-n+10(k-1)+10], k=1, \ldots,\lfloor n / 10\rfloor$:
$\iota_{k}^{(10)}=I_{[m]}\left(\sum_{j=1}^{10} x_{m-n+10(k-1)+j}\right)$.
Then compute the empirical estimators of the risk measures.

Historical simulation (contd.)

Advantages:

- simple implementation
- considers intrinsically the dependencies between the elements of the vector of the risk factors changes $X_{m-k}=\left(X_{m-k, 1}, \ldots, X_{m-k, d}\right)$.

Historical simulation (contd.)

Advantages:

- simple implementation
- considers intrinsically the dependencies between the elements of the vector of the risk factors changes $X_{m-k}=\left(X_{m-k, 1}, \ldots, X_{m-k, d}\right)$.

Disadvantages:

- lots of historical data needed to get good estimators
- the estimated loss cannot be larger than the maximal loss experienced in the past
(ii) The variance-covariance method
(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$
\begin{aligned}
& L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V^{\top} X_{m+1}, \\
& \text { where } V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}, \\
& X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T} .
\end{aligned}
$$

(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$
L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{\top} X_{m+1},
$$

where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
$L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{\top} X_{m+1}$,
where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
and thus $-V w^{T} X_{m+1} \sim N\left(-V w^{T} \mu, V^{2} w^{T} \Sigma w\right)$
(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
$L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{\top} X_{m+1}$,
where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
and thus $-V w^{\top} X_{m+1} \sim N\left(-V w^{\top} \mu, V^{2} w^{T} \Sigma w\right)$
Let x_{m-n+1}, \ldots, x_{m} be the historically observed risk factor changes
(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
$L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{\top} X_{m+1}$,
where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
and thus $-V w^{\top} X_{m+1} \sim N\left(-V w^{T} \mu, V^{2} w^{T} \Sigma w\right)$
Let x_{m-n+1}, \ldots, x_{m} be the historically observed risk factor changes
Assumption 2: x_{m-n+1}, \ldots, x_{m} are i.i.d.
(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
$L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{\top} X_{m+1}$,
where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
and thus $-V w^{\top} X_{m+1} \sim N\left(-V w^{T} \mu, V^{2} w^{T} \Sigma w\right)$
Let x_{m-n+1}, \ldots, x_{m} be the historically observed risk factor changes
Assumption 2: x_{m-n+1}, \ldots, x_{m} are i.i.d.
Estimator for $\mu_{i}: \hat{\mu}_{i}=\frac{1}{n} \sum_{k=1}^{n} x_{m-k+1, i}, i=1,2, \ldots, d$
(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
$L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{\top} X_{m+1}$,
where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
and thus $-V w^{\top} X_{m+1} \sim N\left(-V w^{T} \mu, V^{2} w^{T} \Sigma w\right)$
Let x_{m-n+1}, \ldots, x_{m} be the historically observed risk factor changes
Assumption 2: x_{m-n+1}, \ldots, x_{m} are i.i.d.
Estimator for $\mu_{i}: \hat{\mu}_{i}=\frac{1}{n} \sum_{k=1}^{n} x_{m-k+1, i}, i=1,2, \ldots, d$
Estimator for $\Sigma=\left(\sigma_{i j}\right): \hat{\Sigma}=\left(\hat{\sigma}_{i j}\right)$ with
$\hat{\sigma}_{i j}=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{m-k+1, i}-\mu_{i}\right)\left(x_{m-k+1, j}-\mu_{j}\right) \quad i, j=1,2, \ldots, d$
(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.
$L_{m+1}^{\Delta}=I_{m}^{\Delta}\left(X_{m+1}\right)=-V \sum_{i=1}^{d} w_{i} X_{m+1, i}=-V w^{\top} X_{m+1}$,
where $V:=V_{m}, w_{i}:=w_{m, i}, w=\left(w_{1}, \ldots, w_{d}\right)^{T}$,
$X_{m+1}=\left(X_{m+1,1}, X_{m+1,2}, \ldots, X_{m+1, d}\right)^{T}$.
Assumption 1: $X_{m+1} \sim N_{d}(\mu, \Sigma)$,
and thus $-V w^{\top} X_{m+1} \sim N\left(-V w^{T} \mu, V^{2} w^{T} \Sigma w\right)$
Let x_{m-n+1}, \ldots, x_{m} be the historically observed risk factor changes
Assumption 2: x_{m-n+1}, \ldots, x_{m} are i.i.d.
Estimator for $\mu_{i}: \hat{\mu}_{i}=\frac{1}{n} \sum_{k=1}^{n} x_{m-k+1, i}, i=1,2, \ldots, d$
Estimator for $\Sigma=\left(\sigma_{i j}\right): \hat{\Sigma}=\left(\hat{\sigma}_{i j}\right)$ with
$\hat{\sigma}_{i j}=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{m-k+1, i}-\mu_{i}\right)\left(x_{m-k+1, j}-\mu_{j}\right) \quad i, j=1,2, \ldots, d$
Estimator for VaR: $\widehat{\operatorname{VaR}}\left(L_{m+1}\right)=-V w^{T} \hat{\mu}+V \sqrt{w^{T} \hat{\Sigma} w} \phi^{-1}(\alpha)$

The variance-covariance method (contd.)

Advantages:

- analytical solution
- simple implementation
- no simulations needed

The variance-covariance method (contd.)

Advantages:

- analytical solution
- simple implementation
- no simulations needed

Disadvantages:

- Linearisation is not always appropriate, only for a short time horizon reasonable
- The normal distribution assumption could lead to underestimation of risks and should be argued upon (e.g. in terms of historical data)
(iii) Monte-Carlo approach
(1) historical observations of risk factor changes X_{m-n+1}, \ldots, X_{m}.
(2) assumption on a parametric model for the cumulative distribution function of $X_{k}, m-n+1 \leq k \leq m$;
e.g. a common distribution function F and independence
(3) estimation of the parameters of F.
(4) generation of N samples $\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{N}$ from $F(N \gg 1)$ and computation of the losses $I_{k}=I_{[m]}\left(\tilde{x}_{k}\right), 1 \leq k \leq N$
(5) computation of the empirical distribution of the loss function L_{m+1} :

$$
\hat{F}_{N}^{L_{m+1}}(x)=\frac{1}{N} \sum_{k=1}^{N} I_{[\mid k, \infty)}(x) .
$$

(5) computation of estimates for the VaR and CVAR of the loss function: $\widehat{\operatorname{VaR}}\left(L_{m+1}\right)=\left(\hat{F}_{N}^{L_{m+1}}\right)=I_{[N(1-\alpha)]+1}$,
$\widehat{C \operatorname{VaR}}\left(L_{m+1}\right)=\frac{\sum_{k=1}^{[N(1-\alpha)]+1} l_{k}}{[N(1-\alpha)]+1}$,
where the losses are sorted as $I_{1} \geq I_{2} \geq \ldots \geq I_{N}$.

Monte-Carlo approach (contd.)

Advantages:

- very flexible; can use any distribution F from which simulation is possible
- time dependencies of the risk factor changes can be considered by using time series

Monte-Carlo approach (contd.)

Advantages:

- very flexible; can use any distribution F from which simulation is possible
- time dependencies of the risk factor changes can be considered by using time series

Disadvantages:

- computationally expensive; a large number of simulations needed to obtain good estimates

Monte-Carlo approach

Example: The portfolio consists of one unit of asset S with price S_{t} at time t. The risk factor changes $X_{k+1}=\ln \left(S_{t_{k+1}}\right)-\ln \left(S_{t_{k}}\right)$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ.

Monte-Carlo approach

Example: The portfolio consists of one unit of asset S with price S_{t} at time t. The risk factor changes $X_{k+1}=\ln \left(S_{t_{k+1}}\right)-\ln \left(S_{t_{k}}\right)$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ.
θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Monte-Carlo approach

Example: The portfolio consists of one unit of asset S with price S_{t} at time t. The risk factor changes $X_{k+1}=\ln \left(S_{t_{k+1}}\right)-\ln \left(S_{t_{k}}\right)$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ.
θ can be estimated by means of historical data (e.g. maximum likelihood approaches)
Let the price at time t_{k} be $S:=S_{t_{k}}$

Monte-Carlo approach

Example: The portfolio consists of one unit of asset S with price S_{t} at time t. The risk factor changes $X_{k+1}=\ln \left(S_{t_{k+1}}\right)-\ln \left(S_{t_{k}}\right)$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ.
θ can be estimated by means of historical data (e.g. maximum likelihood approaches)
Let the price at time t_{k} be $S:=S_{t_{k}}$
The VaR of the portfolio over $\left[t_{k}, t_{k+1}\right]$ is given as

$$
\operatorname{Va}_{\alpha}\left(L_{t_{k}+1}\right)=S\left(1-\exp \left\{F_{\theta}^{\leftarrow}(1-\alpha)\right\}\right)
$$

Monte-Carlo approach

Example: The portfolio consists of one unit of asset S with price S_{t} at time t. The risk factor changes $X_{k+1}=\ln \left(S_{t_{k+1}}\right)-\ln \left(S_{t_{k}}\right)$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ.
θ can be estimated by means of historical data (e.g. maximum likelihood approaches)
Let the price at time t_{k} be $S:=S_{t_{k}}$
The VaR of the portfolio over $\left[t_{k}, t_{k+1}\right]$ is given as

$$
\operatorname{Va}_{\alpha}\left(L_{t_{k}+1}\right)=S\left(1-\exp \left\{F_{\theta}^{\leftarrow}(1-\alpha)\right\}\right)
$$

Depending on F_{θ} it can be complicated or impossible to compute CVaR analytically.

Monte-Carlo approach

Example: The portfolio consists of one unit of asset S with price S_{t} at time t. The risk factor changes $X_{k+1}=\ln \left(S_{t_{k+1}}\right)-\ln \left(S_{t_{k}}\right)$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ.
θ can be estimated by means of historical data (e.g. maximum likelihood approaches)
Let the price at time t_{k} be $S:=S_{t_{k}}$
The VaR of the portfolio over $\left[t_{k}, t_{k+1}\right]$ is given as

$$
\operatorname{Va}_{\alpha}\left(L_{t_{k}+1}\right)=S\left(1-\exp \left\{F_{\theta}^{\leftarrow}(1-\alpha)\right\}\right)
$$

Depending on F_{θ} it can be complicated or impossible to compute CVaR analytically.
Alternative: Monte-Carlo simulation.

Example (contd.)

A popular model for the logarithmic returns of assets is $\operatorname{GARCH}(1,1)$ (see e.g. Alexander 2002):

Example (contd.)

A popular model for the logarithmic returns of assets is $\operatorname{GARCH}(1,1)$ (see e.g. Alexander 2002):

$$
\begin{align*}
X_{k+1} & =\sigma_{k+1} Z_{k+1} \tag{1}\\
\sigma_{k+1}^{2} & =a_{0}+a_{1} X_{k}^{2}+b_{1} \sigma_{k}^{2} \tag{2}
\end{align*}
$$

where $Z_{k}, k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_{0}, a_{1} and b_{1} are parameters, which should be estimated.

Example (contd.)

A popular model for the logarithmic returns of assets is $\operatorname{GARCH}(1,1)$ (see e.g. Alexander 2002):

$$
\begin{align*}
X_{k+1} & =\sigma_{k+1} Z_{k+1} \tag{1}\\
\sigma_{k+1}^{2} & =a_{0}+a_{1} X_{k}^{2}+b_{1} \sigma_{k}^{2} \tag{2}
\end{align*}
$$

where $Z_{k}, k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_{0}, a_{1} and b_{1} are parameters, which should be estimated.

It is simple to simulate from this model.

Example (contd.)

A popular model for the logarithmic returns of assets is $\operatorname{GARCH}(1,1)$ (see e.g. Alexander 2002):

$$
\begin{align*}
X_{k+1} & =\sigma_{k+1} Z_{k+1} \tag{1}\\
\sigma_{k+1}^{2} & =a_{0}+a_{1} X_{k}^{2}+b_{1} \sigma_{k}^{2} \tag{2}
\end{align*}
$$

where $Z_{k}, k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_{0}, a_{1} and b_{1} are parameters, which should be estimated.

It is simple to simulate from this model.
Howeve, analytical computation of VaR and CVaR over a certain time interval consisting of many periods is cumbersome! Check it out!

Chapter 3: Extreme value theory

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \rightarrow \infty$ means $\lim _{x \rightarrow \infty} f(x) / g(x)=1$
- $\bar{F}:=1-F$ is called the right tail of the univariate distribution function F.

Chapter 3: Extreme value theory

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \rightarrow \infty$ means $\lim _{x \rightarrow \infty} f(x) / g(x)=1$
- $\bar{F}:=1-F$ is called the right tail of the univariate distribution function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim _{x \rightarrow \infty} \frac{\bar{F}(x)}{e^{-\lambda x}}=\infty, \forall \lambda>0$.

Chapter 3: Extreme value theory

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \rightarrow \infty$ means $\lim _{x \rightarrow \infty} f(x) / g(x)=1$
- $\bar{F}:=1-F$ is called the right tail of the univariate distribution function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim _{x \rightarrow \infty} \frac{\bar{F}(x)}{e^{-\lambda x}}=\infty, \forall \lambda>0$.

Also a r.v. X for which $\exists k \in \mathbb{N}$ with $E\left(X^{k}\right)=\infty$ will be often called heavy tailed.

Chapter 3: Extreme value theory

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \rightarrow \infty$ means $\lim _{x \rightarrow \infty} f(x) / g(x)=1$
- $\bar{F}:=1-F$ is called the right tail of the univariate distribution function F.

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim _{x \rightarrow \infty} \frac{\bar{F}(x)}{e^{-\lambda x}}=\infty, \forall \lambda>0$.
Also a r.v. X for which $\exists k \in \mathbb{N}$ with $E\left(X^{k}\right)=\infty$ will be often called heavy tailed.
These two "definitions" are not equivalent!

Regular variation

Definition

A measurable function $h:(0,+\infty) \rightarrow(0,+\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{h(t x)}{h(t)}=x^{\rho}, \forall x>0 \tag{3}
\end{equation*}
$$

Notation: $h \in R V_{\rho}$.

Regular variation

Definition

A measurable function $h:(0,+\infty) \rightarrow(0,+\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{h(t x)}{h(t)}=x^{\rho}, \forall x>0 \tag{3}
\end{equation*}
$$

Notation: $h \in R V_{\rho}$.
If $\rho=0$, we say h has a slow variation or is slowly varying towards ∞.

Regular variation

Definition

A measurable function $h:(0,+\infty) \rightarrow(0,+\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{h(t x)}{h(t)}=x^{\rho}, \forall x>0 \tag{3}
\end{equation*}
$$

Notation: $h \in R V_{\rho}$.
If $\rho=0$, we say h has a slow variation or is slowly varying towards ∞. If $h \in R V_{\rho}$, then $h(x) / x^{\rho} \in R V_{0}$, or equivalently,

Regular variation

Definition

A measurable function $h:(0,+\infty) \rightarrow(0,+\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{h(t x)}{h(t)}=x^{\rho}, \forall x>0 \tag{3}
\end{equation*}
$$

Notation: $h \in R V_{\rho}$.
If $\rho=0$, we say h has a slow variation or is slowly varying towards ∞.
If $h \in R V_{\rho}$, then $h(x) / x^{\rho} \in R V_{0}$, or equivalently,
if $h \in R V_{\rho}$, then $\exists L \in R V_{0}$ such that $h(x)=L(x) x^{\rho}\left(L(x)=h(x) / x^{\rho}\right)$.

Regular variation

Definition

A measurable function $h:(0,+\infty) \rightarrow(0,+\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{h(t x)}{h(t)}=x^{\rho}, \forall x>0 \tag{3}
\end{equation*}
$$

Notation: $h \in R V_{\rho}$.
If $\rho=0$, we say h has a slow variation or is slowly varying towards ∞.
If $h \in R V_{\rho}$, then $h(x) / x^{\rho} \in R V_{0}$, or equivalently,
if $h \in R V_{\rho}$, then $\exists L \in R V_{0}$ such that $h(x)=L(x) x^{\rho}\left(L(x)=h(x) / x^{\rho}\right)$. If $\rho<0$, then the convergence in (3) is uniform in every interval $(b,+\infty)$ for $b>0$.

Regular variation

Definition

A measurable function $h:(0,+\infty) \rightarrow(0,+\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{h(t x)}{h(t)}=x^{\rho}, \forall x>0 \tag{3}
\end{equation*}
$$

Notation: $h \in R V_{\rho}$.
If $\rho=0$, we say h has a slow variation or is slowly varying towards ∞.
If $h \in R V_{\rho}$, then $h(x) / x^{\rho} \in R V_{0}$, or equivalently,
if $h \in R V_{\rho}$, then $\exists L \in R V_{0}$ such that $h(x)=L(x) x^{\rho}\left(L(x)=h(x) / x^{\rho}\right)$.
If $\rho<0$, then the convergence in (3) is uniform in every interval $(b,+\infty)$ for $b>0$.
Example
Show that $L \in R V_{0}$ holds for the functions L as below:
(a) $\lim _{x \rightarrow+\infty} L(x)=c \in(0,+\infty)$
(b) $L(x):=\ln (1+x)$
(c) $L(x):=\ln (1+\ln (1+x))$

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x$?

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x$?
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞, i.e.

$$
\lim \inf _{x \rightarrow \infty} L(x)=0 \text { and } \lim _{\sup _{x \rightarrow \infty}} L(x)=\infty,
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x$?
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞, i.e.

$$
\lim \inf _{x \rightarrow \infty} L(x)=0 \text { and } \lim _{x \rightarrow \infty} \sup _{x \rightarrow \infty} L(x)=\infty,
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.
Definition: A r.v. $X>0$ with distribution function F has a regular variation on $+\infty$, iff $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$.

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x$?
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞, i.e.

$$
\lim \inf _{x \rightarrow \infty} L(x)=0 \text { and } \lim _{x \rightarrow \infty} \sup _{x \rightarrow \infty} L(x)=\infty,
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.
Definition: A r.v. $X>0$ with distribution function F has a regular variation on $+\infty$, iff $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$.

Example:

1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for $x>1$ and $\alpha>0$. Then $\bar{G}_{\alpha}(t x) / \bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for $t>0$, i.e. $\bar{G}_{\alpha} \in R V_{-\alpha}$.

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x$?
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞, i.e.

$$
\lim \inf _{x \rightarrow \infty} L(x)=0 \text { and } \lim _{x \rightarrow \infty} \sup _{x \rightarrow \infty} L(x)=\infty,
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.
Definition: A r.v. $X>0$ with distribution function F has a regular variation on $+\infty$, iff $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$.

Example:

1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for $x>1$ and $\alpha>0$. Then $\bar{G}_{\alpha}(t x) / \bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for $t>0$, i.e. $\bar{G}_{\alpha} \in R V_{-\alpha}$.
2. Fréchet distribution: $\Phi_{\alpha}(x):=\exp \left\{-x^{-\alpha}\right\}$ for $x>0$ and $\Phi_{\alpha}(0)=0$, for some parameter (fixed) $\alpha>0$. Then $\lim _{x \rightarrow \infty} \bar{\Phi}_{\alpha}(x) / x^{-\alpha}=1$ holds, i.e. $\bar{\Phi}_{\alpha} \in R V_{-\alpha}$.

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x ?$
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞, i.e.

$$
\lim _{x \rightarrow \infty} \inf _{x \rightarrow \infty} L(x)=0 \text { and } \lim _{x \rightarrow \infty} L(x)=\infty
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.
Definition: A r.v. $X>0$ with distribution function F has a regular variation on $+\infty$, iff $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$.

Example:

1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for $x>1$ and $\alpha>0$. Then $\bar{G}_{\alpha}(t x) / \bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for $t>0$, i.e. $\bar{G}_{\alpha} \in R V_{-\alpha}$.
2. Fréchet distribution: $\Phi_{\alpha}(x):=\exp \left\{-x^{-\alpha}\right\}$ for $x>0$ and
$\Phi_{\alpha}(0)=0$, for some parameter (fixed) $\alpha>0$. Then
$\lim _{x \rightarrow \infty} \bar{\Phi}_{\alpha}(x) / x^{-\alpha}=1$ holds, i.e. $\bar{\Phi}_{\alpha} \in R V_{-\alpha}$.
Proposition (no proof)
Let $X>0$ be a r.v. with distribution function F, such that $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$. Then $E\left(X^{\beta}\right)<\infty$ for $\beta<\alpha$ and $E\left(X^{\beta}\right)=\infty$ for $\beta>\alpha$ hold.

Example: Check whether $f \in R V_{0}$ holds for $f(x)=3+\sin x$, $f(x)=\ln (e+x)+\sin x ?$
Notice: a function $L \in R V_{0}$ can have an infinite variation on ∞, i.e.

$$
\lim _{x \rightarrow \infty} \inf _{x \rightarrow \infty} L(x)=0 \text { and } \lim _{x \rightarrow \infty} L(x)=\infty
$$

as for example $L(x)=\exp \left\{(\ln (1+x))^{2} \cos \left((\ln (1+x))^{1 / 2}\right)\right\}$.
Definition: A r.v. $X>0$ with distribution function F has a regular variation on $+\infty$, iff $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$.

Example:

1. Pareto distribution: $G_{\alpha}(x):=1-x^{-\alpha}$, for $x>1$ and $\alpha>0$. Then $\bar{G}_{\alpha}(t x) / \bar{G}_{\alpha}(x)=x^{-\alpha}$ holds for $t>0$, i.e. $\bar{G}_{\alpha} \in R V_{-\alpha}$.
2. Fréchet distribution: $\Phi_{\alpha}(x):=\exp \left\{-x^{-\alpha}\right\}$ for $x>0$ and
$\Phi_{\alpha}(0)=0$, for some parameter (fixed) $\alpha>0$. Then
$\lim _{x \rightarrow \infty} \bar{\Phi}_{\alpha}(x) / x^{-\alpha}=1$ holds, i.e. $\bar{\Phi}_{\alpha} \in R V_{-\alpha}$.
Proposition (no proof)
Let $X>0$ be a r.v. with distribution function F, such that $\bar{F} \in R V_{-\alpha}$ for some $\alpha>0$. Then $E\left(X^{\beta}\right)<\infty$ for $\beta<\alpha$ and $E\left(X^{\beta}\right)=\infty$ for $\beta>\alpha$ hold.
The converse is not true!

Application of regular variation

Example 1: Let X_{1} and X_{2} be two continuous nonnegative i.i.d. r.v. with distribution function $F, \bar{F} \in R V_{-\alpha}$ for some $\alpha>0$. Let $X_{1}\left(X_{2}\right)$ represent the loss of a portfolio which consists of 1 unit of asset $A_{1}\left(A_{2}\right)$.

Application of regular variation

Example 1: Let X_{1} and X_{2} be two continuous nonnegative i.i.d. r.v. with distribution function $F, \bar{F} \in R V_{-\alpha}$ for some $\alpha>0$. Let $X_{1}\left(X_{2}\right)$ represent the loss of a portfolio which consists of 1 unit of asset $A_{1}\left(A_{2}\right)$. Assumption: The prices of A_{1} and A_{2} are identical and their logreturns are i.i.d..

Application of regular variation

Example 1: Let X_{1} and X_{2} be two continuous nonnegative i.i.d. r.v. with distribution function $F, \bar{F} \in R V_{-\alpha}$ for some $\alpha>0$. Let $X_{1}\left(X_{2}\right)$ represent the loss of a portfolio which consists of 1 unit of asset $A_{1}\left(A_{2}\right)$. Assumption: The prices of A_{1} and A_{2} are identical and their logreturns are i.i.d..
Consider a portfolio P_{1} containing 2 units of asset A_{1} and a portfolio P_{2} containing one unit of A_{1} and one unit of A_{2}. Let L_{i} represent the loss of portfolio $P_{i}, i=1,2$.

Application of regular variation

Example 1: Let X_{1} and X_{2} be two continuous nonnegative i.i.d. r.v. with distribution function $F, \bar{F} \in R V_{-\alpha}$ for some $\alpha>0$. Let $X_{1}\left(X_{2}\right)$ represent the loss of a portfolio which consists of 1 unit of asset $A_{1}\left(A_{2}\right)$. Assumption: The prices of A_{1} and A_{2} are identical and their logreturns are i.i.d..
Consider a portfolio P_{1} containing 2 units of asset A_{1} and a portfolio P_{2} containing one unit of A_{1} and one unit of A_{2}. Let L_{i} represent the loss of portfolio $P_{i}, i=1,2$.
Compare the probabilities of high losses in the two portfolios by computing the limit

$$
\lim _{I \rightarrow \infty} \frac{\operatorname{Prob}\left(L_{2}>I\right)}{\operatorname{Prob}\left(L_{1}>I\right)}
$$

In which cases are the extreme losses of the diversified portfolio smaller then those of the non-diversified portfolio?

Application of regular variation (contd.)

Example 2: Let $X, Y \geq 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents).

Application of regular variation (contd.)

Example 2: Let $X, Y \geq 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents).
Assumptions

- $\bar{F} \in R V_{-\alpha}$, for some $\alpha>0$, where F is the distribution function of X.
- $E\left(Y^{k}\right)<\infty, \forall k>0$.

Application of regular variation (contd.)

Example 2: Let $X, Y \geq 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents).
Assumptions

- $\bar{F} \in R V_{-\alpha}$, for some $\alpha>0$, where F is the distribution function of X.
- $E\left(Y^{k}\right)<\infty, \forall k>0$.

Compute $\lim _{x \rightarrow \infty} P(X>x \mid X+Y>x)$.

