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The aggregated loss over a given time interval
For example, for 10 time units, compute ⌊n/10⌋ aggregated loss

realizations l
(10)
k over the time intervals

[m − n + 10(k − 1) + 1,m− n + 10(k − 1) + 10], k = 1, . . . , ⌊n/10⌋:

l
(10)
k = l[m]

(
∑10

j=1 xm−n+10(k−1)+j

)
.

Then compute the empirical estimators of the risk measures.
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Advantages:

◮ simple implementation

◮ considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xm−k = (Xm−k,1, . . . ,Xm−k,d ).

Disadvantages:

◮ lots of historical data needed to get good estimators

◮ the estimated loss cannot be larger than the maximal loss
experienced in the past
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Estimator for VaR: V̂aR(Lm+1) = −VwT µ̂+ V
√

wT Σ̂wφ−1(α)
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Advantages:

◮ analytical solution

◮ simple implementation

◮ no simulations needed

Disadvantages:

◮ Linearisation is not always appropriate, only for a short time horizon
reasonable

◮ The normal distribution assumption could lead to underestimation
of risks and should be argued upon (e.g. in terms of historical data)



(iii) Monte-Carlo approach

(1) historical observations of risk factor changes Xm−n+1, . . ., Xm.

(2) assumption on a parametric model for the cumulative distribution
function of Xk , m − n+ 1 ≤ k ≤ m;
e.g. a common distribution function F and independence

(3) estimation of the parameters of F .

(4) generation of N samples x̃1, x̃2, . . . , x̃N from F (N ≫ 1) and
computation of the losses lk = l[m](x̃k ), 1 ≤ k ≤ N

(5) computation of the empirical distribution of the loss function Lm+1:

F̂ Lm+1

N (x) =
1

N

N∑

k=1

I[lk ,∞)(x).

(5) computation of estimates for the VaR and CVAR of the loss

function: V̂aR(Lm+1) = (F̂ Lm+1

N

)
= l[N(1−α)]+1,

ĈVaR(Lm+1) =
∑[N(1−α)]+1

k=1 lk
[N(1−α)]+1 ,

where the losses are sorted as l1 ≥ l2 ≥ . . . ≥ lN .
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Advantages:

◮ very flexible; can use any distribution F from which simulation is
possible

◮ time dependencies of the risk factor changes can be considered by
using time series

Disadvantages:

◮ computationally expensive; a large number of simulations needed to
obtain good estimates
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Monte-Carlo approach

Example: The portfolio consists of one unit of asset S with price St at
time t. The risk factor changes Xk+1 = ln(Stk+1

)− ln(Stk ) are i.i.d. with
distribution function Fθ for some unknown parameter θ.

θ can be estimated by means of historical data (e.g. maximum likelihood
approaches)

Let the price at time tk be S := Stk
The VaR of the portfolio over [tk , tk+1] is given as

VaRα(Ltk+1) = S

(
1− exp{F←θ (1− α)}

)
.

Depending on Fθ it can be complicated or impossible to compute CVaR
analytically.

Alternative: Monte-Carlo simulation.
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A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xk+1 = σk+1Zk+1 (1)

σ2
k+1 = a0 + a1X

2
k + b1σ

2
k (2)

where Zk , k ∈ IN, are i.i.d. and standard normally distributed, and a0,a1
and b1 are parameters, which should be estimated.

It is simple to simulate from this model.

Howeve, analytical computation of VaR and CVaR over a certain time
interval consisting of many periods is cumbersome! Check it out!
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Notation:

◮ We will often use the same notation for the distribution of a random
variable (r.v.) and its (cumulative) distribution function!

◮ f (x) ∼ g(x) for x → ∞ means limx→∞ f (x)/g(x) = 1

◮ F̄ := 1− F is called the right tail of the univariate distribution
function F .

Terminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff

limx→∞
F̄ (x)
e−λx = ∞, ∀λ > 0.

Also a r.v. X for which ∃k ∈ IN with E (X k ) = ∞ will be often called
heavy tailed.

These two “definitions” are not equivalent!
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If h ∈ RVρ, then h(x)/xρ ∈ RV0, or equivalently,
if h ∈ RVρ, then ∃L ∈ RV0 such that h(x) = L(x)xρ (L(x) = h(x)/xρ).
If ρ < 0, then the convergence in (3) is uniform in every interval (b,+∞)
for b > 0.

Example

Show that L ∈ RV0 holds for the functions L as below:

(a) limx→+∞ L(x) = c ∈ (0,+∞)

(b) L(x) := ln(1 + x)

(c) L(x) := ln(1 + ln(1 + x))
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Example:

1. Pareto distribution: Gα(x) := 1− x−α, for x > 1 and α > 0. Then
Ḡα(tx)/Ḡα(x) = x−α holds for t > 0, i.e. Ḡα ∈ RV−α.

2. Fréchet distribution: Φα(x) := exp{−x−α} for x > 0 and
Φα(0) = 0, for some parameter (fixed) α > 0. Then
limx→∞ Φ̄α(x)/x

−α = 1 holds, i.e. Φ̄α ∈ RV−α.

Proposition (no proof)
Let X > 0 be a r.v. with distribution function F , such that F̄ ∈ RV−α for
some α > 0. Then E (Xβ) < ∞ for β < α and E (Xβ) = ∞ for β > α
hold.



Example: Check whether f ∈ RV0 holds for f (x) = 3 + sin x ,
f (x) = ln(e + x) + sin x?

Notice: a function L ∈ RV0 can have an infinite variation on ∞, i.e.

lim inf
x→∞

L(x) = 0 and lim sup
x→∞

L(x) = ∞ ,

as for example L(x) = exp{(ln(1 + x))2 cos((ln(1 + x))1/2)}.

Definition: A r.v. X > 0 with distribution function F has a regular
variation on +∞, iff F̄ ∈ RV−α for some α > 0.

Example:

1. Pareto distribution: Gα(x) := 1− x−α, for x > 1 and α > 0. Then
Ḡα(tx)/Ḡα(x) = x−α holds for t > 0, i.e. Ḡα ∈ RV−α.

2. Fréchet distribution: Φα(x) := exp{−x−α} for x > 0 and
Φα(0) = 0, for some parameter (fixed) α > 0. Then
limx→∞ Φ̄α(x)/x

−α = 1 holds, i.e. Φ̄α ∈ RV−α.

Proposition (no proof)
Let X > 0 be a r.v. with distribution function F , such that F̄ ∈ RV−α for
some α > 0. Then E (Xβ) < ∞ for β < α and E (Xβ) = ∞ for β > α
hold.
The converse is not true!



Application of regular variation

Example 1: Let X1 and X2 be two continuous nonnegative i.i.d. r.v. with
distribution function F , F̄ ∈ RV−α for some α > 0. Let X1 (X2)
represent the loss of a portfolio which consists of 1 unit of asset A1 (A2).



Application of regular variation

Example 1: Let X1 and X2 be two continuous nonnegative i.i.d. r.v. with
distribution function F , F̄ ∈ RV−α for some α > 0. Let X1 (X2)
represent the loss of a portfolio which consists of 1 unit of asset A1 (A2).

Assumption: The prices of A1 and A2 are identical and their logreturns
are i.i.d..



Application of regular variation

Example 1: Let X1 and X2 be two continuous nonnegative i.i.d. r.v. with
distribution function F , F̄ ∈ RV−α for some α > 0. Let X1 (X2)
represent the loss of a portfolio which consists of 1 unit of asset A1 (A2).

Assumption: The prices of A1 and A2 are identical and their logreturns
are i.i.d..

Consider a portfolio P1 containing 2 units of asset A1 and a portfolio P2

containing one unit of A1 and one unit of A2. Let Li represent the loss of
portfolio Pi , i = 1, 2.



Application of regular variation

Example 1: Let X1 and X2 be two continuous nonnegative i.i.d. r.v. with
distribution function F , F̄ ∈ RV−α for some α > 0. Let X1 (X2)
represent the loss of a portfolio which consists of 1 unit of asset A1 (A2).

Assumption: The prices of A1 and A2 are identical and their logreturns
are i.i.d..

Consider a portfolio P1 containing 2 units of asset A1 and a portfolio P2

containing one unit of A1 and one unit of A2. Let Li represent the loss of
portfolio Pi , i = 1, 2.

Compare the probabilities of high losses in the two portfolios by
computing the limit

lim
l→∞

Prob(L2 > l)

Prob(L1 > l)
.

In which cases are the extreme losses of the diversified portfolio smaller
then those of the non-diversified portfolio?



Application of regular variation (contd.)

Example 2: Let X ,Y ≥ 0 be two r.v. which represent the losses of two
business lines of an insurance company (e.g. fire and car accidents).



Application of regular variation (contd.)

Example 2: Let X ,Y ≥ 0 be two r.v. which represent the losses of two
business lines of an insurance company (e.g. fire and car accidents).

Assumptions

◮ F̄ ∈ RV−α, for some α > 0, where F is the distribution function of
X .

◮ E (Y k) < ∞, ∀k > 0.



Application of regular variation (contd.)

Example 2: Let X ,Y ≥ 0 be two r.v. which represent the losses of two
business lines of an insurance company (e.g. fire and car accidents).

Assumptions

◮ F̄ ∈ RV−α, for some α > 0, where F is the distribution function of
X .

◮ E (Y k) < ∞, ∀k > 0.

Compute limx→∞ P(X > x |X + Y > x).


