(i) Historical simulation

Let x_{m-n+1}, \ldots, x_m be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_m ; the historically realized losses are given as $l_k = l_{[m]}(x_{m-k+1})$, $k = 1, 2, \ldots, n$,

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_m be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_m ; the historically realized losses are given as $l_k = l_{[m]}(x_{m-k+1})$, $k = 1, 2, \ldots, n$,

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses: $l_1 \ge l_2 \ge \ldots \ge l_n$.

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_m be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_m ; the historically realized losses are given as $l_k = l_{[m]}(x_{m-k+1})$, $k = 1, 2, \ldots, n$,

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses: $l_1 \ge l_2 \ge \ldots \ge l_n$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Empirical VaR: $\widehat{VaR} = q_{\alpha}(\widehat{F}_{n}^{L}) = I_{[n(1-\alpha)]+1}$

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_m be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_m ; the historically realized losses are given as $l_k = l_{[m]}(x_{m-k+1})$, $k = 1, 2, \ldots, n$,

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses: $l_1 \ge l_2 \ge \ldots \ge l_n$.

Empirical VaR:
$$\widehat{VaR} = q_{\alpha}(\hat{F}_{n}^{L}) = I_{[n(1-\alpha)]+1}$$

Empirical CVaR: $\widehat{CVaR} = \frac{\sum_{i=1}^{[n(1-\alpha)]+1} l_i}{[n(1-\alpha)]+1}$.

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_m be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_m ; the historically realized losses are given as $l_k = l_{[m]}(x_{m-k+1})$, $k = 1, 2, \ldots, n$,

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses: $l_1 \ge l_2 \ge \ldots \ge l_n$.

Empirical VaR:
$$\widehat{VaR} = q_{\alpha}(\widehat{F}_{n}^{L}) = I_{[n(1-\alpha)]+1}$$

Empirical CVaR: $\widehat{CVaR} = \frac{\sum_{i=1}^{[n(1-\alpha)]+1} l_i}{[n(1-\alpha)]+1}$.

The aggregated loss over a given time interval

For example, for 10 time units, compute $\lfloor n/10 \rfloor$ aggregated loss realizations $l_k^{(10)}$ over the time intervals $[m - n + 10(k - 1) + 1, m - n + 10(k - 1) + 10], k = 1, ..., \lfloor n/10 \rfloor$: $l_k^{(10)} = l_{[m]} \left(\sum_{j=1}^{10} x_{m-n+10(k-1)+j} \right).$ Then compute the empirical estimators of the risk measures.

ロト・御ト・ヨト・ヨト ヨーのへの

Historical simulation (contd.)

Advantages:

- simple implementation
- ► considers intrinsically the dependencies between the elements of the vector of the risk factors changes X_{m-k} = (X_{m-k,1},...,X_{m-k,d}).

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Historical simulation (contd.)

Advantages:

simple implementation

► considers intrinsically the dependencies between the elements of the vector of the risk factors changes X_{m-k} = (X_{m-k,1},..., X_{m-k,d}).

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Disadvantages:

- lots of historical data needed to get good estimators
- the estimated loss cannot be larger than the maximal loss experienced in the past

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三</p>

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^d w_i X_{m+1,i} = -V w^T X_{m+1}, \\ \text{where } V &:= V_m, \, w_i := w_{m,i}, \, w = (w_1, \dots, w_d)^T, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T. \end{split}$$

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

(日)

$$L_{m+1}^{\Delta} = I_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^d w_i X_{m+1,i} = -V w^T X_{m+1},$$

where $V := V_m$, $w_i := w_{m,i}$, $w = (w_1, \dots, w_d)^T$,
 $X_{m+1} = (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T$.

Assumption 1: $X_{m+1} \sim N_d(\mu, \Sigma)$,

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

$$L_{m+1}^{\Delta} = I_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^d w_i X_{m+1,i} = -V w^T X_{m+1},$$

where $V := V_m$, $w_i := w_{m,i}$, $w = (w_1, \dots, w_d)^T$,
 $X_{m+1} = (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T$.

Assumption 1: $X_{m+1} \sim N_d(\mu, \Sigma)$, and thus $-Vw^T X_{m+1} \sim N(-Vw^T \mu, V^2 w^T \Sigma w)$

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^d w_i X_{m+1,i} = -V w^T X_{m+1}, \\ \text{where } V &:= V_m, \, w_i := w_{m,i}, \, w = (w_1, \dots, w_d)^T, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T. \end{split}$$

Assumption 1: $X_{m+1} \sim N_d(\mu, \Sigma)$, and thus $-Vw^T X_{m+1} \sim N(-Vw^T \mu, V^2 w^T \Sigma w)$ Let x_{m-n+1}, \ldots, x_m be the historically observed risk factor changes

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^d w_i X_{m+1,i} = -V w^T X_{m+1}, \\ \text{where } V &:= V_m, \, w_i := w_{m,i}, \, w = (w_1, \dots, w_d)^T, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T. \end{split}$$

Assumption 1: $X_{m+1} \sim N_d(\mu, \Sigma)$, and thus $-Vw^T X_{m+1} \sim N(-Vw^T \mu, V^2 w^T \Sigma w)$ Let x_{m-n+1}, \ldots, x_m be the historically observed risk factor changes Assumption 2: x_{m-n+1}, \ldots, x_m are i.i.d.

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^d w_i X_{m+1,i} = -V w^T X_{m+1}, \\ \text{where } V &:= V_m, \, w_i := w_{m,i}, \, w = (w_1, \dots, w_d)^T, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T. \end{split}$$

Assumption 1: $X_{m+1} \sim N_d(\mu, \Sigma)$, and thus $-Vw^T X_{m+1} \sim N(-Vw^T \mu, V^2 w^T \Sigma w)$ Let x_{m-n+1}, \ldots, x_m be the historically observed risk factor changes Assumption 2: x_{m-n+1}, \ldots, x_m are i.i.d. Estimator for μ_i : $\hat{\mu}_i = \frac{1}{n} \sum_{k=1}^n x_{m-k+1,i}$, $i = 1, 2, \ldots, d$

・ロト・母ト・ヨト・ヨト ヨー うへの

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^d w_i X_{m+1,i} = -V w^T X_{m+1}, \\ \text{where } V &:= V_m, \, w_i := w_{m,i}, \, w = (w_1, \dots, w_d)^T, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T. \end{split}$$

Assumption 1:
$$X_{m+1} \sim N_d(\mu, \Sigma)$$
,
and thus $-Vw^T X_{m+1} \sim N(-Vw^T \mu, V^2 w^T \Sigma w)$
Let x_{m-n+1}, \ldots, x_m be the historically observed risk factor changes

Assumption 2: x_{m-n+1}, \ldots, x_m are i.i.d. Estimator for μ_i : $\hat{\mu}_i = \frac{1}{n} \sum_{k=1}^n x_{m-k+1,i}$, $i = 1, 2, \ldots, d$ Estimator for $\Sigma = \left(\sigma_{ij}\right)$: $\hat{\Sigma} = \left(\hat{\sigma}_{ij}\right)$ with $\hat{\sigma}_{ij} = \frac{1}{n-1} \sum_{k=1}^n (x_{m-k+1,i} - \mu_i)(x_{m-k+1,j} - \mu_j)$ $i, j = 1, 2, \ldots, d$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q ()

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^d w_i X_{m+1,i} = -V w^T X_{m+1}, \\ \text{where } V &:= V_m, \, w_i := w_{m,i}, \, w = (w_1, \dots, w_d)^T, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T. \end{split}$$

Assumption 1:
$$X_{m+1} \sim N_d(\mu, \Sigma)$$
,
and thus $-Vw^T X_{m+1} \sim N(-Vw^T \mu, V^2 w^T \Sigma w)$
Let x_{m-n+1}, \ldots, x_m be the historically observed risk factor changes

Assumption 2: x_{m-n+1}, \ldots, x_m are i.i.d. Estimator for μ_i : $\hat{\mu}_i = \frac{1}{n} \sum_{k=1}^n x_{m-k+1,i}$, $i = 1, 2, \ldots, d$ Estimator for $\Sigma = \left(\sigma_{ij}\right)$: $\hat{\Sigma} = \left(\hat{\sigma}_{ij}\right)$ with $\hat{\sigma}_{ij} = \frac{1}{n-1} \sum_{k=1}^n (x_{m-k+1,i} - \mu_i)(x_{m-k+1,j} - \mu_j)$ $i, j = 1, 2, \ldots, d$ Estimator for VaR: $\widehat{VaR}(L_{m+1}) = -Vw^T\hat{\mu} + V\sqrt{w^T\hat{\Sigma}w}\phi^{-1}(\alpha)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The variance-covariance method (contd.)

Advantages:

- analytical solution
- simple implementation
- no simulations needed

The variance-covariance method (contd.)

Advantages:

- analytical solution
- simple implementation
- no simulations needed

Disadvantages:

- Linearisation is not always appropriate, only for a short time horizon reasonable
- The normal distribution assumption could lead to underestimation of risks and should be argued upon (e.g. in terms of historical data)

(iii) Monte-Carlo approach

- (1) historical observations of risk factor changes X_{m-n+1}, \ldots, X_m .
- (2) assumption on a parametric model for the cumulative distribution function of X_k, m − n + 1 ≤ k ≤ m;
 e.g. a common distribution function F and independence
- (3) estimation of the parameters of F.
- (4) generation of N samples $\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_N$ from F ($N \gg 1$) and computation of the losses $l_k = l_{[m]}(\tilde{x}_k)$, $1 \le k \le N$
- (5) computation of the empirical distribution of the loss function L_{m+1} :

$$\hat{F}_{N}^{L_{m+1}}(x) = \frac{1}{N} \sum_{k=1}^{N} I_{[I_{k},\infty)}(x).$$

(5) computation of estimates for the VaR and CVAR of the loss function: $\widehat{VaR}(L_{m+1}) = (\widehat{F}_N^{L_{m+1}}) = I_{[N(1-\alpha)]+1},$ $\widehat{CVaR}(L_{m+1}) = \frac{\sum_{k=1}^{[N(1-\alpha)]+1} I_k}{[N(1-\alpha)]+1},$ where the losses are sorted as $I_1 \ge I_2 \ge \ldots \ge I_N$. Monte-Carlo approach (contd.)

Advantages:

- very flexible; can use any distribution F from which simulation is possible
- time dependencies of the risk factor changes can be considered by using time series

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Monte-Carlo approach (contd.)

Advantages:

- very flexible; can use any distribution F from which simulation is possible
- time dependencies of the risk factor changes can be considered by using time series

Disadvantages:

 computationally expensive; a large number of simulations needed to obtain good estimates

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example: The portfolio consists of one unit of asset S with price S_t at time t. The risk factor changes $X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k})$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ .

Example: The portfolio consists of one unit of asset S with price S_t at time t. The risk factor changes $X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k})$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ .

 θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Example: The portfolio consists of one unit of asset S with price S_t at time t. The risk factor changes $X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k})$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ .

 θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let the price at time t_k be $S := S_{t_k}$

Example: The portfolio consists of one unit of asset S with price S_t at time t. The risk factor changes $X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k})$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ .

 θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Let the price at time t_k be $S := S_{t_k}$

The VaR of the portfolio over $[t_k, t_{k+1}]$ is given as

$$VaR_{\alpha}(L_{t_{k}+1}) = S\left(1 - \exp\{F_{\theta}^{\leftarrow}(1-\alpha)\}\right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: The portfolio consists of one unit of asset S with price S_t at time t. The risk factor changes $X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k})$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ .

 θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Let the price at time t_k be $S := S_{t_k}$

The VaR of the portfolio over $[t_k, t_{k+1}]$ is given as

$$VaR_{\alpha}(L_{t_{k}+1}) = S\left(1 - \exp\{F_{\theta}^{\leftarrow}(1-\alpha)\}\right).$$

Depending on F_{θ} it can be complicated or impossible to compute CVaR analytically.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: The portfolio consists of one unit of asset S with price S_t at time t. The risk factor changes $X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k})$ are i.i.d. with distribution function F_{θ} for some unknown parameter θ .

 θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Let the price at time t_k be $S := S_{t_k}$

The VaR of the portfolio over $[t_k, t_{k+1}]$ is given as

$$VaR_{\alpha}(L_{t_{k}+1}) = S\left(1 - \exp\{F_{\theta}^{\leftarrow}(1-\alpha)\}\right).$$

Depending on F_{θ} it can be complicated or impossible to compute CVaR analytically.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Alternative: Monte-Carlo simulation.

A popular model for the logarithmic returns of assets is GARCH(1,1) (see e.g. Alexander 2002):

A popular model for the logarithmic returns of assets is GARCH(1,1) (see e.g. Alexander 2002):

$$X_{k+1} = \sigma_{k+1} Z_{k+1} \tag{1}$$

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2$$
(2)

(日)

where Z_k , $k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_{0}, a_{1} and b_{1} are parameters, which should be estimated.

A popular model for the logarithmic returns of assets is GARCH(1,1) (see e.g. Alexander 2002):

$$X_{k+1} = \sigma_{k+1} Z_{k+1} \tag{1}$$

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2$$
(2)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

where Z_k , $k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_0, a_1 and b_1 are parameters, which should be estimated.

It is simple to simulate from this model.

A popular model for the logarithmic returns of assets is GARCH(1,1) (see e.g. Alexander 2002):

$$X_{k+1} = \sigma_{k+1} Z_{k+1} \tag{1}$$

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2$$
(2)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where Z_k , $k \in \mathbb{N}$, are i.i.d. and standard normally distributed, and a_{0}, a_{1} and b_{1} are parameters, which should be estimated.

It is simple to simulate from this model.

Howeve, analytical computation of VaR and CVaR over a certain time interval consisting of many periods is cumbersome! Check it out!

Notation:

We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!

- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x\to\infty} f(x)/g(x) = 1$
- $\overline{F} := 1 F$ is called the *right tail* of the univariate distribution function *F*.

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x\to\infty} f(x)/g(x) = 1$
- $\overline{F} := 1 F$ is called the *right tail* of the univariate distribution function *F*.

Terminology: We say a r.v. X has **fat tails** or is **heavy tailed** (h.t.) iff $\lim_{x\to\infty} \frac{\bar{F}(x)}{e^{-\lambda x}} = \infty$, $\forall \lambda > 0$.

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x\to\infty} f(x)/g(x) = 1$
- $\overline{F} := 1 F$ is called the *right tail* of the univariate distribution function *F*.

Terminology: We say a r.v. X has **fat tails** or is **heavy tailed** (h.t.) iff $\lim_{x\to\infty} \frac{\bar{F}(x)}{e^{-\lambda x}} = \infty$, $\forall \lambda > 0$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Also a r.v. X for which $\exists k \in \mathbb{N}$ with $E(X^k) = \infty$ will be often called heavy tailed.

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x\to\infty} f(x)/g(x) = 1$
- $\overline{F} := 1 F$ is called the *right tail* of the univariate distribution function *F*.

Terminology: We say a r.v. X has **fat tails** or is **heavy tailed** (h.t.) iff $\lim_{x\to\infty} \frac{\bar{F}(x)}{e^{-\lambda x}} = \infty$, $\forall \lambda > 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Also a r.v. X for which $\exists k \in \mathbb{N}$ with $E(X^k) = \infty$ will be often called heavy tailed.

These two "definitions" are not equivalent!

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Notation: $h \in RV_{\rho}$.

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ .

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ . If $h \in RV_{\rho}$, then $h(x)/x^{\rho} \in RV_0$, or equivalently,

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ . If $h \in RV_{\rho}$, then $h(x)/x^{\rho} \in RV_0$, or equivalently, if $h \in RV_{\rho}$, then $\exists L \in RV_0$ such that $h(x) = L(x)x^{\rho}$ ($L(x) = h(x)/x^{\rho}$).

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ . If $h \in RV_{\rho}$, then $h(x)/x^{\rho} \in RV_0$, or equivalently, if $h \in RV_{\rho}$, then $\exists L \in RV_0$ such that $h(x) = L(x)x^{\rho}$ ($L(x) = h(x)/x^{\rho}$). If $\rho < 0$, then the convergence in (3) is uniform in every interval $(b, +\infty)$ for b > 0.

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ . If $h \in RV_{\rho}$, then $h(x)/x^{\rho} \in RV_0$, or equivalently, if $h \in RV_{\rho}$, then $\exists L \in RV_0$ such that $h(x) = L(x)x^{\rho}$ ($L(x) = h(x)/x^{\rho}$). If $\rho < 0$, then the convergence in (3) is uniform in every interval $(b, +\infty)$ for b > 0.

Example

Show that $L \in RV_0$ holds for the functions L as below:

(a)
$$\lim_{x \to +\infty} L(x) = c \in (0, +\infty)$$

(b) $L(x) := \ln(1+x)$
(c) $L(x) := \ln(1 + \ln(1 + x))$

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty,$$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty \,,$$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: A r.v. X > 0 with distribution function F has a regular variation on $+\infty$, iff $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty \,,$$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: A r.v. X > 0 with distribution function F has a regular variation on $+\infty$, iff $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

Example:

1. Pareto distribution: $G_{\alpha}(x) := 1 - x^{-\alpha}$, for x > 1 and $\alpha > 0$. Then $\overline{G}_{\alpha}(tx)/\overline{G}_{\alpha}(x) = x^{-\alpha}$ holds for t > 0, i.e. $\overline{G}_{\alpha} \in RV_{-\alpha}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty \,,$$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: A r.v. X > 0 with distribution function F has a regular variation on $+\infty$, iff $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

Example:

1. Pareto distribution: $G_{\alpha}(x) := 1 - x^{-\alpha}$, for x > 1 and $\alpha > 0$. Then $\overline{G}_{\alpha}(tx)/\overline{G}_{\alpha}(x) = x^{-\alpha}$ holds for t > 0, i.e. $\overline{G}_{\alpha} \in RV_{-\alpha}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. Fréchet distribution: $\Phi_{\alpha}(x) := \exp\{-x^{-\alpha}\}$ for x > 0 and $\Phi_{\alpha}(0) = 0$, for some parameter (fixed) $\alpha > 0$. Then $\lim_{x\to\infty} \overline{\Phi}_{\alpha}(x)/x^{-\alpha} = 1$ holds, i.e. $\overline{\Phi}_{\alpha} \in RV_{-\alpha}$.

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty \,,$$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: A r.v. X > 0 with distribution function F has a regular variation on $+\infty$, iff $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

Example:

- 1. Pareto distribution: $G_{\alpha}(x) := 1 x^{-\alpha}$, for x > 1 and $\alpha > 0$. Then $\overline{G}_{\alpha}(tx)/\overline{G}_{\alpha}(x) = x^{-\alpha}$ holds for t > 0, i.e. $\overline{G}_{\alpha} \in RV_{-\alpha}$.
- 2. Fréchet distribution: $\Phi_{\alpha}(x) := \exp\{-x^{-\alpha}\}$ for x > 0 and $\Phi_{\alpha}(0) = 0$, for some parameter (fixed) $\alpha > 0$. Then $\lim_{x\to\infty} \overline{\Phi}_{\alpha}(x)/x^{-\alpha} = 1$ holds, i.e. $\overline{\Phi}_{\alpha} \in RV_{-\alpha}$.

Proposition (no proof) Let X > 0 be a r.v. with distribution function F, such that $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Then $E(X^{\beta}) < \infty$ for $\beta < \alpha$ and $E(X^{\beta}) = \infty$ for $\beta > \alpha$ hold.

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty \,,$$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: A r.v. X > 0 with distribution function F has a regular variation on $+\infty$, iff $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

Example:

- 1. Pareto distribution: $G_{\alpha}(x) := 1 x^{-\alpha}$, for x > 1 and $\alpha > 0$. Then $\overline{G}_{\alpha}(tx)/\overline{G}_{\alpha}(x) = x^{-\alpha}$ holds for t > 0, i.e. $\overline{G}_{\alpha} \in RV_{-\alpha}$.
- 2. Fréchet distribution: $\Phi_{\alpha}(x) := \exp\{-x^{-\alpha}\}$ for x > 0 and $\Phi_{\alpha}(0) = 0$, for some parameter (fixed) $\alpha > 0$. Then $\lim_{x\to\infty} \overline{\Phi}_{\alpha}(x)/x^{-\alpha} = 1$ holds, i.e. $\overline{\Phi}_{\alpha} \in RV_{-\alpha}$.

Proposition (no proof)

Let X > 0 be a r.v. with distribution function F, such that $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Then $E(X^{\beta}) < \infty$ for $\beta < \alpha$ and $E(X^{\beta}) = \infty$ for $\beta > \alpha$ hold.

The converse is not true!

Example 1: Let X_1 and X_2 be two continuous nonnegative i.i.d. r.v. with distribution function F, $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Let X_1 (X_2) represent the loss of a portfolio which consists of 1 unit of asset A_1 (A_2).

Example 1: Let X_1 and X_2 be two continuous nonnegative i.i.d. r.v. with distribution function F, $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Let X_1 (X_2) represent the loss of a portfolio which consists of 1 unit of asset A_1 (A_2). *Assumption:* The prices of A_1 and A_2 are identical and their logreturns are i.i.d..

Example 1: Let X_1 and X_2 be two continuous nonnegative i.i.d. r.v. with distribution function F, $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Let X_1 (X_2) represent the loss of a portfolio which consists of 1 unit of asset A_1 (A_2).

Assumption: The prices of A_1 and A_2 are identical and their logreturns are i.i.d..

Consider a portfolio P_1 containing 2 units of asset A_1 and a portfolio P_2 containing one unit of A_1 and one unit of A_2 . Let L_i represent the loss of portfolio P_i , i = 1, 2.

Example 1: Let X_1 and X_2 be two continuous nonnegative i.i.d. r.v. with distribution function F, $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Let X_1 (X_2) represent the loss of a portfolio which consists of 1 unit of asset A_1 (A_2).

Assumption: The prices of A_1 and A_2 are identical and their logreturns are i.i.d..

Consider a portfolio P_1 containing 2 units of asset A_1 and a portfolio P_2 containing one unit of A_1 and one unit of A_2 . Let L_i represent the loss of portfolio P_i , i = 1, 2.

Compare the probabilities of high losses in the two portfolios by computing the limit

1

$$\lim_{l\to\infty}\frac{\operatorname{Prob}(L_2>l)}{\operatorname{Prob}(L_1>l)}.$$

In which cases are the extreme losses of the diversified portfolio smaller then those of the non-diversified portfolio?

Application of regular variation (contd.)

Example 2: Let $X, Y \ge 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Application of regular variation (contd.)

Example 2: Let $X, Y \ge 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents). *Assumptions*

• $\overline{F} \in RV_{-\alpha}$, for some $\alpha > 0$, where F is the distribution function of X.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

$$\blacktriangleright E(Y^k) < \infty, \ \forall k > 0.$$

Application of regular variation (contd.)

Example 2: Let $X, Y \ge 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents). *Assumptions*

► $\overline{F} \in RV_{-\alpha}$, for some $\alpha > 0$, where F is the distribution function of X.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\blacktriangleright E(Y^k) < \infty, \forall k > 0.$$

Compute $\lim_{x\to\infty} P(X > x | X + Y > x)$.