Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Risk factors: $Z_n = (\ln S_n, r_n, \sigma_n)^T$;

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

Risk factors: $Z_n = (\ln S_n, r_n, \sigma_n)^T$;

Risk factor changes: $X_{n+1} = (\ln S_{n+1} - \ln S_n, r_{n+1} - r_n, \sigma_{n+1} - \sigma_n)^T$

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

Risk factors: $Z_n = (\ln S_n, r_n, \sigma_n)^T$;

Risk factor changes: $X_{n+1} = (\ln S_{n+1} - \ln S_n, r_{n+1} - r_n, \sigma_{n+1} - \sigma_n)^T$ Portfolio value: $V_n = C(t_n, S_n, r_n, \sigma_n) = C(t_n, exp(Z_{n,1}), Z_{n,2}, Z_{n,3})$

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

Risk factors: $Z_n = (\ln S_n, r_n, \sigma_n)^T$;

Risk factor changes: $X_{n+1} = (\ln S_{n+1} - \ln S_n, r_{n+1} - r_n, \sigma_{n+1} - \sigma_n)^T$ Portfolio value: $V_n = C(t_n, S_n, r_n, \sigma_n) = C(t_n, exp(Z_{n,1}), Z_{n,2}, Z_{n,3})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The linearized loss: $L_{n+1}^{\Delta} = -(C_t \Delta t + C_S S_n X_{n+1,1} + C_r X_{n+1,2} + C_\sigma X_{n+1,3})$

Consider an ECO over an asset S with execution date T, price S_T at time T and strike price K.

Value of the ECO at time $T: \max\{S_T - K, 0\}$

Price of ECO at time t < T: $C = C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

Risk factors: $Z_n = (\ln S_n, r_n, \sigma_n)^T$;

Risk factor changes: $X_{n+1} = (\ln S_{n+1} - \ln S_n, r_{n+1} - r_n, \sigma_{n+1} - \sigma_n)^T$ Portfolio value: $V_n = C(t_n, S_n, r_n, \sigma_n) = C(t_n, exp(Z_{n,1}), Z_{n,2}, Z_{n,3})$

The linearized loss: $L_{n+1}^{\Delta} = -(C_t \Delta t + C_S S_n X_{n+1,1} + C_r X_{n+1,2} + C_\sigma X_{n+1,3})$

The greeks: C_t - theta, C_S - delta, C_r - rho, C_σ - Vega

Purpose of the risk management:

Determination of the minimum regulatory capital:

i.e. the capital, needed to cover possible losses.

As a management tool:

to determine the limits of the amount of risk a unit within the company may take

Purpose of the risk management:

Determination of the minimum regulatory capital:

i.e. the capital, needed to cover possible losses.

As a management tool:

to determine the limits of the amount of risk a unit within the company may take

Elementary risk measures computed without assessing the loss distribution

Notational amount: weighted sum of notational values of individual securities weighted by a prespecified factor for each asset class

e.g. in Basel I (1998): **Cooke Ratio**= $\frac{\text{regulatory capital}}{\text{risk-weighted sum}} \ge 8\%$ Gewicht := $\begin{cases}
0\% & \text{for claims on governments and supranationals (OECD)}\\
20\% & \text{claims on banks}\\
50\% & \text{claims on individual investors with mortgage securities}\\
100\% & \text{claims on the private sector}
\end{cases}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Purpose of the risk management:

Determination of the minimum regulatory capital:

i.e. the capital, needed to cover possible losses.

As a management tool:

to determine the limits of the amount of risk a unit within the company may take

Elementary risk measures computed without assessing the loss distribution

Notational amount: weighted sum of notational values of individual securities weighted by a prespecified factor for each asset class

e.g. in Basel I (1998): **Cooke Ratio**= $\frac{\text{regulatory capital}}{\text{risk-weighted sum}} \ge 8\%$ Gewicht := $\begin{cases}
0\% & \text{for claims on governments and supranationals (OECD)} \\
20\% & \text{claims on banks} \\
50\% & \text{claims on individual investors with mortgage securities} \\
100\% & \text{claims on the private sector}
\end{cases}$

Portfolio value at time t_n : $V_n = f(t_n, Z_n)$, Z_n ist a vector of d risk factors Sensitivity coefficients: $f_{z_i} = \frac{\delta f}{\delta z_i}(t_n, Z_n)$, $1 \le i \le d$ Example: "The Greeks" of a portfolio are the sensitivity coefficients

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Portfolio value at time t_n : $V_n = f(t_n, Z_n)$, Z_n ist a vector of d risk factors Sensitivity coefficients: $f_{z_i} = \frac{\delta f}{\delta z_i}(t_n, Z_n)$, $1 \le i \le d$ Example: "The Greeks" of a portfolio are the sensitivity coefficients Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in different markets is difficult;

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Portfolio value at time t_n : $V_n = f(t_n, Z_n)$, Z_n ist a vector of d risk factors Sensitivity coefficients: $f_{z_i} = \frac{\delta f}{\delta z_i}(t_n, Z_n)$, $1 \le i \le d$ Example: "The Greeks" of a portfolio are the sensitivity coefficients Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in different markets is difficult;

Scenario based risk measures: Let n be the number of possible risk factor changes (= scenarios).

Let $\chi = \{X_1, X_2, \dots, X_N\}$ be the set of scenarios and $l_{[n]}(\cdot)$ the portfolio loss operator.

Portfolio value at time t_n : $V_n = f(t_n, Z_n)$, Z_n ist a vector of d risk factors Sensitivity coefficients: $f_{z_i} = \frac{\delta f}{\delta z_i}(t_n, Z_n)$, $1 \le i \le d$ Example: "The Greeks" of a portfolio are the sensitivity coefficients Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in different markets is difficult;

Scenario based risk measures: Let n be the number of possible risk factor changes (= scenarios).

Let $\chi = \{X_1, X_2, \dots, X_N\}$ be the set of scenarios and $l_{[n]}(\cdot)$ the portfolio loss operator.

Assign a weight w_i to every scenario i, $1 \le i \le N$

Portfolio value at time t_n : $V_n = f(t_n, Z_n)$, Z_n ist a vector of d risk factors Sensitivity coefficients: $f_{z_i} = \frac{\delta f}{\delta z_i}(t_n, Z_n)$, $1 \le i \le d$ Example: "The Greeks" of a portfolio are the sensitivity coefficients Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in different markets is difficult;

Scenario based risk measures: Let n be the number of possible risk factor changes (= scenarios).

Let $\chi = \{X_1, X_2, \dots, X_N\}$ be the set of scenarios and $l_{[n]}(\cdot)$ the portfolio loss operator.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assign a weight w_i to every scenario i, $1 \le i \le N$

Portfolio risk:

$$\Psi[\chi, w] = \max\{w_1 l_{[n]}(X_1), w_2 l_{[n]}(X_2), \dots, w_N l_{[n]}(X_N)\}$$

Example: SPAN rules applied at CME (see Artzner et al., 1999) A portfolio consists of units of a certain future contract and *put* and *call options* on the same contract with the same maturity.

Example: SPAN rules applied at CME (see Artzner et al., 1999)

A portfolio consists of units of a certain future contract and *put* and *call options* on the same contract with the same maturity.

Scenarios	i.	1	<	i	<	14:
	-,	_	_	-	_	

Scenarios 1	to 8	Scenarios	9 to 14
Volatility	Price of the future	Volatility	Price of the future
	$ \xrightarrow{7} \frac{1}{3} * Range \xrightarrow{7} \frac{1}{3} * Range \xrightarrow{7} \frac{3}{3} * Range $	\nearrow	$\begin{array}{c} \searrow \frac{1}{3} * Range \\ \searrow \frac{2}{3} * Range \\ \searrow \frac{3}{3} * Range \\ \searrow \frac{3}{3} * Range \end{array}$

Example: SPAN rules applied at CME (see Artzner et al., 1999)

A portfolio consists of units of a certain future contract and *put* and *call options* on the same contract with the same maturity.

Scenarios *i*, $1 \le i \le 14$:

Scenarios 1 to 8		Scenarios 9 to 14		
Volatility	Price of the future	Volatility	Price of the future	
\sim	$ \xrightarrow{7} \frac{1}{3} * Range \xrightarrow{7} \frac{1}{3} * Range \xrightarrow{7} \frac{3}{3} * Range $	\nearrow	$\begin{array}{c} \begin{array}{c} & \frac{1}{3} * Range \\ & \begin{array}{c} & & \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \end{array} $ \\ & \end{array} \\ \\ \end{array} \\ \\ & \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array}	

Scenarios *i*, i = 15, 16 represent an extreme increase or decrease of the future price, respectively. The weights are $w_i = 1$, for $i \in \{1, 2, ..., 14\}$, and $w_i = 0.35$, for $i \in \{15, 16\}$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Example: SPAN rules applied at CME (see Artzner et al., 1999)

A portfolio consists of units of a certain future contract and *put* and *call options* on the same contract with the same maturity.

Scenarios *i*, $1 \le i \le 14$:

Scenarios 1 to 8		Scenarios 9 to 14		
Volatility	Price of the future	Volatility	Price of the future	
$\overline{\mathbf{x}}$	$ \xrightarrow{7} \frac{1}{3} * Range \xrightarrow{7} \frac{3}{3} * Range \xrightarrow{7} \frac{3}{3} * Range $	\mathbf{x}	$\begin{array}{c} \begin{array}{c} & \frac{1}{3} * Range \\ & \frac{1}{3} * Range \\ & \frac{3}{3} * Range \\ & \frac{3}{3} * Range \end{array}$	

Scenarios *i*, i = 15, 16 represent an extreme increase or decrease of the future price, respectively. The weights are $w_i = 1$, for $i \in \{1, 2, ..., 14\}$, and $w_i = 0.35$, for $i \in \{15, 16\}$.

An appropriate model (zB. Black-Scholes) is used to generate the option prices in the different scenarios.

Risk measures based on the loss distribution

Let $F_L := F_{L_{n+1}}$ be the loss distribution of L_{n+1} . The parameters of F_L are estimated in terms of historical data, either directly or in terms of risk factors. **Risk measures based on the loss distribution** Let $F_L := F_{L_{n+1}}$ be the loss distribution of L_{n+1} . The parameters of F_L are estimated in terms of historical data, either directly or in terms of risk factors.

1. The standard deviation $std(L) := \sqrt{\sigma^2(F_L)}$

It is used frequently in portfolio theory.

Disadvantages:

STD exists only for distributions with E(F²_L) < ∞, not applicable to leptocurtic ("fat tailed") loss distributions;</p>

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

gains and losses equally influence the STD.

Risk measures based on the loss distribution Let $F_L := F_{L_{n+1}}$ be the loss distribution of L_{n+1} . The parameters of F_L are estimated in terms of historical data, either directly or in terms of risk factors.

1. The standard deviation $std(L) := \sqrt{\sigma^2(F_L)}$

It is used frequently in portfolio theory.

Disadvantages:

- STD exists only for distributions with E(F²_L) < ∞, not applicable to leptocurtic ("fat tailed") loss distributions;</p>
- gains and losses equally influence the STD.

Example

 $L_1 \sim N(0,2), L_2 \sim t_4$ (Student's t-distribution with m = 4 degrees of freedom) $\sigma^2(L_1) = 2$ and $\sigma^2(L_2) = \frac{m}{m-2} = 2$ hold

However the probability of losses is much larger for L_2 than for L_1 . Plot the logarithm of the quotient $\ln[P(L_2 > x)/P(L_1 > x)]!$

Let *L* be the loss distribution with distribution function F_L and let $\alpha \in (0, 1)$ be a given confindence level.

 $VaR_{\alpha}(L)$: the smallest number *I*, such that $P(L > I) \leq 1 - \alpha$ holds.

Let L be the loss distribution with distribution function F_L and let $\alpha \in (0, 1)$ be a given confindence level.

 $VaR_{\alpha}(L)$: the smallest number *I*, such that $P(L > I) \leq 1 - \alpha$ holds.

$$VaR_{\alpha}(L) = \inf\{I \in \mathbb{R} : P(L > I) \le 1 - \alpha\} = \inf\{I \in \mathbb{R} : 1 - F_L(I) \le 1 - \alpha\} = \inf\{I \in \mathbb{R} : F_L(I) \ge \alpha\}$$

BIS (Bank of International Settlements) suggests $VaR_{0.99}(L)$ over a horizon of 10 days as a measure for the market risk of a portfolio.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let L be the loss distribution with distribution function F_L and let $\alpha \in (0, 1)$ be a given confindence level.

 $VaR_{\alpha}(L)$: the smallest number *I*, such that $P(L > I) \leq 1 - \alpha$ holds.

 $VaR_{\alpha}(L) = \inf\{l \in \mathbb{R} \colon P(L > l) \le 1 - \alpha\} =$

 $\inf\{I \in \mathbb{R} \colon 1 - F_L(I) \le 1 - \alpha\} = \inf\{I \in \mathbb{R} \colon F_L(I) \ge \alpha\}$

BIS (Bank of International Settlements) suggests $VaR_{0.99}(L)$ over a horizon of 10 days as a measure for the market risk of a portfolio.

Definition: Let $F: A \to B$ be an increasing function. The function $F^{\leftarrow}: B \to A \cup \{-\infty, +\infty\}, y \mapsto \inf\{x \in \mathbb{R}: F(x) \ge y\}$ is called *generalized inverse function* of F.

Notice that $\inf \emptyset = \infty$.

Let L be the loss distribution with distribution function F_L and let $\alpha \in (0, 1)$ be a given confindence level.

 $VaR_{\alpha}(L)$: the smallest number I, such that $P(L > I) \leq 1 - \alpha$ holds.

 $VaR_{\alpha}(L) = \inf\{l \in \mathbb{R} : P(L > l) \le 1 - \alpha\} = \inf\{l \in \mathbb{R} : 1 - F_L(l) \le 1 - \alpha\} = \inf\{l \in \mathbb{R} : F_L(l) \ge \alpha\}$

BIS (Bank of International Settlements) suggests $VaR_{0.99}(L)$ over a horizon of 10 days as a measure for the market risk of a portfolio.

Definition: Let $F: A \to B$ be an increasing function. The function $F^{\leftarrow}: B \to A \cup \{-\infty, +\infty\}, y \mapsto \inf\{x \in \mathbb{R}: F(x) \ge y\}$ is called *generalized inverse function* of F.

Notice that $\inf \emptyset = \infty$.

If *F* is strictly monotone increasing, then $F^{-1} = F^{\leftarrow}$ holds. **Exercise:** Compute F^{\leftarrow} for $F: [0, +\infty) \rightarrow [0, 1]$ with

$$F(x) = \begin{cases} 1/2 & 0 \le x < 1\\ 1 & 1 \le x \end{cases}$$

Let $F : \mathbb{R} \to \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$ be α -quantile of F.

Let $F : \mathbb{R} \to \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$ be α -quantile of F.

For the loss function L and its distribution function F the following holds:

$$VaR_{\alpha}(L) = q_{\alpha}(F) = F^{\leftarrow}(\alpha).$$

Let $F : \mathbb{R} \to \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$ be α -quantile of F.

For the loss function L and its distribution function F the following holds:

$$VaR_{\alpha}(L) = q_{\alpha}(F) = F^{\leftarrow}(\alpha).$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Example: Let $L \sim N(\mu, \sigma^2)$. Then $VaR_{\alpha}(L) = \mu + \sigma q_{\alpha}(\Phi) = \mu + \sigma \Phi^{-1}(\alpha)$ holds, where Φ is the d.f. of a r.v. $X \sim N(0, 1)$.

Let $F : \mathbb{R} \to \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$ be α -quantile of F.

For the loss function L and its distribution function F the following holds:

$$VaR_{\alpha}(L) = q_{\alpha}(F) = F^{\leftarrow}(\alpha).$$

Example: Let $L \sim N(\mu, \sigma^2)$. Then $VaR_{\alpha}(L) = \mu + \sigma q_{\alpha}(\Phi) = \mu + \sigma \Phi^{-1}(\alpha)$ holds, where Φ is the d.f. of a r.v. $X \sim N(0, 1)$.

Exercise: Consider a portfolio consisting of 5 pieces of an asset *A*. The today's price of *A* is $S_0 = 100$. The daily logarithmic returns are i.i.d., i.e. $X_1 = \ln \frac{S_1}{S_0}, X_2 = \ln \frac{S_2}{S_1}, \ldots \sim N(0, 0.01)$. Let L_1 be the 1-day portfolio loss in the time interval (today, tomorrow).

- (a) Compute $VaR_{0.99}(L_1)$.
- (b) Compute $VaR_{0.99}(L_{100})$ and $VaR_{0.99}(L_{100}^{\Delta})$, where L_{100} is the 100-day portfolio loss over a horizon of 100 days starting with today. L_{100}^{Δ} is the linearization of the above mentioned 100-day PF-portfolio loss.

Hint: For $Z \sim N(0,1)$ use the equality $F_Z^{-1}(0.99) \approx 2.3$

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \ge VaR_{\alpha}(L)$ happens.

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \ge VaR_{\alpha}(L)$ happens.

Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_L . $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \ge VaR_{\alpha}(L)$ happens.

Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_L . $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$

If F_L is continuous:

$$CVaR_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)) = \frac{E(L|_{q_{\alpha}(L),\infty})(L)}{P(L \ge q_{\alpha}(L))} = \frac{1}{1-\alpha} E(Ll_{q_{\alpha}(L),\infty}) = \frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} IdF_{L}(I)$$

 I_A is the indicator function of the set A: $I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \ge VaR_{\alpha}(L)$ happens.

Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_L . $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$

If F_L is continuous:

$$CVaR_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)) = \frac{E(LI_{q_{\alpha}(L),\infty})(L))}{P(L \ge q_{\alpha}(L))} = \frac{1}{1-\alpha} E(LI_{q_{\alpha}(L),\infty}) = \frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} IdF_{L}(I)$$

 I_A is the indicator function of the set A: $I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$

If F_L is discrete the generalized CVaR is defined as follows:

$$GCVaR_{\alpha}(L) := \frac{1}{1-\alpha} \left[E(LI_{[q_{\alpha}(L),\infty)}) + q_{\alpha} \left(1 - \alpha - P(L > q_{\alpha}(L)) \right) \right]$$

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \ge VaR_{\alpha}(L)$ happens.

Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_L . $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$

If F_L is continuous:

$$CVaR_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)) = \frac{E(Ll_{[q_{\alpha}(L),\infty)}(L))}{P(L \ge q_{\alpha}(L))} = \frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} IdF_{L}(I)$$

 I_A is the indicator function of the set A: $I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$

If F_L is discrete the generalized CVaR is defined as follows:

$$GCVaR_{\alpha}(L) := \frac{1}{1-\alpha} \left[E(LI_{[q_{\alpha}(L),\infty)}) + q_{\alpha} \left(1 - \alpha - P(L > q_{\alpha}(L)) \right) \right]$$

Lemma Let α be a given confidence level and L a continuous loss function with distribution F_L . Then $CVaR_{\alpha}(L) = \frac{1}{1-\alpha} \int_{\alpha}^{1} VaR_{\rho}(L)dp$ holds.

Conditional Value at Risk (contd.) Example 1:

(a) Let $L \sim Exp(\lambda)$. Compute $CVaR_{\alpha}(L)$.

(b) Let the distribution function F_L of the loss function L be given as follows : $F_L(x) = 1 - (1 + \gamma x)^{-1/\gamma}$ for $x \ge 0$ and $\gamma \in (0, 1)$. Compute $CVaR_{\alpha}(L)$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conditional Value at Risk (contd.) Example 1:

(a) Let
$$L \sim Exp(\lambda)$$
. Compute $CVaR_{\alpha}(L)$.

(b) Let the distribution function F_L of the loss function L be given as follows : $F_L(x) = 1 - (1 + \gamma x)^{-1/\gamma}$ for $x \ge 0$ and $\gamma \in (0, 1)$. Compute $CVaR_{\alpha}(L)$.

Example 2:

Let $L \sim N(0, 1)$. Let ϕ und Φ be the density and the distribution function of L, respectively. Show that $CVaR_{\alpha}(L) = \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds. Let $L' \sim N(\mu, \sigma^2)$. Show that $CVaR_{\alpha}(L') = \mu + \sigma \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds.

Conditional Value at Risk (contd.) Example 1:

(a) Let
$$L \sim Exp(\lambda)$$
. Compute $CVaR_{\alpha}(L)$.

(b) Let the distribution function F_L of the loss function L be given as follows : $F_L(x) = 1 - (1 + \gamma x)^{-1/\gamma}$ for $x \ge 0$ and $\gamma \in (0, 1)$. Compute $CVaR_{\alpha}(L)$.

Example 2:

Let $L \sim N(0, 1)$. Let ϕ und Φ be the density and the distribution function of L, respectively. Show that $CVaR_{\alpha}(L) = \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds. Let $L' \sim \mathcal{N}(\mu, \sigma^2)$. Show that $CVaR_{\alpha}(L') = \mu + \sigma \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds. Exercise:

Let the loss L be distributed according to the Student's t-distribution with $\nu > 1$ degrees of freedom. The density of L is

$$g_{
u}(x) = rac{\Gamma((
u+1)/2)}{\sqrt{
u\pi}\Gamma(
u/2)} \left(1 + rac{x^2}{
u}
ight)^{-(
u+1)/2}$$

Show that $CVaR_{\alpha}(L) = \frac{g_{\nu}(t_{\nu}^{-1}(\alpha))}{1-\alpha} \left(\frac{\nu+(t_{\nu}^{-1}(a))^2}{\nu-1}\right)$, where t_{ν} is the distribution function of L. ▲□▶▲□▶▲□▶▲□▶ □ のへで

Methods for the computation of VaR und CVaR

Consider the portfolio value $V_m = f(t_m, Z_m)$, where Z_m is the vector of risk factors.

Let the loss function over the interval $[t_m, t_{m+1}]$ be given as $L_{m+1} = I_{[m]}(X_{m+1})$, where X_{m+1} is the vector of the risk factor changes, i.e.

$$X_{m+1}=Z_{m+1}-Z_m.$$

Consider observations (historical data) of risk factor values Z_{m-n+1}, \ldots, Z_m . How to use these data to compute/estimate $VaR(L_{m+1})$, $CVaR(L_{m+1})$?

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F.

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F.

The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F.

The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} \colon F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F.

The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} \colon F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

Assumption: $x_1 > x_2 > \ldots > x_n$. Then $q_{\alpha}(F_n) = x_{[n(1-\alpha)]+1}$ holds, where $[y] := \sup\{n \in \mathbb{N} : n \leq y\}$ for every $y \in \mathbb{R}$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F.

The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} \colon F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

Assumption: $x_1 > x_2 > ... > x_n$. Then $q_{\alpha}(F_n) = x_{[n(1-\alpha)]+1}$ holds, where $[y] := \sup\{n \in \mathbb{N} : n \leq y\}$ for every $y \in \mathbb{R}$.

Lemma

Let $\hat{q}_{\alpha}(F) := q_{\alpha}(F_n)$ and let F be a strictly increasing function. Then $\lim_{n\to\infty} \hat{q}_{\alpha}(F) = q_{\alpha}(F)$ holds $\forall \alpha \in (0,1)$, i.e. the estimator $\hat{q}_{\alpha}(F)$ is consistent.

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F.

The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} \colon F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

Assumption: $x_1 > x_2 > ... > x_n$. Then $q_{\alpha}(F_n) = x_{[n(1-\alpha)]+1}$ holds, where $[y] := \sup\{n \in \mathbb{N} : n \leq y\}$ for every $y \in \mathbb{R}$.

Lemma

Let $\hat{q}_{\alpha}(F) := q_{\alpha}(F_n)$ and let F be a strictly increasing function. Then $\lim_{n\to\infty} \hat{q}_{\alpha}(F) = q_{\alpha}(F)$ holds $\forall \alpha \in (0,1)$, i.e. the estimator $\hat{q}_{\alpha}(F)$ is consistent.

The empirical estimator of CVaR is $\widehat{\text{CVaR}}_{\alpha}(F) = \frac{\sum_{k=1}^{\lfloor n(1-\alpha) \rfloor+1} x_k}{\lfloor n(1-\alpha) \rfloor+1}$

<□▶ <□▶ < 三▶ < 三▶ < 三▶ 三三 のへぐ

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F.

(日)

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F.

Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta = q_{\alpha}(F)$, and the corresponding confidence interval.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F.

Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta = q_{\alpha}(F)$, and the corresponding confidence interval.

Let $\hat{\theta}(x_1, \ldots, x_n)$ be an estimator of θ , e.g. $\hat{\theta}(x_1, \ldots, x_n) = x_{[(n(1-\alpha)]+1]}$ $\theta = q_{\alpha}(F)$.

The required confidence interval is an (a, b) with $a = a(x_1, ..., x_n)$ u. $b = b(x_1, ..., x_n)$, such that $P(a < \theta < b) = p$, for a given confidence level p.

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F.

Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta = q_{\alpha}(F)$, and the corresponding confidence interval.

Let $\hat{\theta}(x_1, \ldots, x_n)$ be an estimator of θ , e.g. $\hat{\theta}(x_1, \ldots, x_n) = x_{[(n(1-\alpha)]+1]}$ $\theta = q_{\alpha}(F)$.

The required confidence interval is an (a, b) with $a = a(x_1, ..., x_n)$ u. $b = b(x_1, ..., x_n)$, such that $P(a < \theta < b) = p$, for a given confidence level p.

Case I: *F* is known. Generate *N* samples $\tilde{x}_1^{(i)}, \tilde{x}_2^{(i)}, \ldots, \tilde{x}_n^{(i)}, 1 \le i \le N$, by simulation from *F* (*N* should be large) Let $\tilde{\theta}_i = \hat{\theta}\left(\tilde{x}_1^{(i)}, \tilde{x}_2^{(i)}, \ldots, \tilde{x}_n^{(i)}\right), 1 \le i \le N$.

Case I (cont.) The empirical distribution function of $\hat{\theta}(x_1, x_2, ..., x_n)$ is given as

$$F_N^{\hat{ heta}} := rac{1}{N} \sum_{i=1}^N I_{[ilde{ heta}_i,\infty)}$$

and it tends to $F^{\hat{\theta}}$ for $N \to \infty$.

The required conficence interval is given as

$$\left(q_{\frac{1-\rho}{2}}(F_N^{\hat{\theta}}), q_{\frac{1+\rho}{2}}(F_N^{\hat{\theta}})\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(assuming that the sample sizes N und n are large enough).

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

$$F_n(x)=\frac{1}{n}\sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing *n* elementes in $\{x_1, x_2, \ldots, x_n\}$ and putting every element back to the set immediately after its choice Assume *N* such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}, 1 \le i \le N$.

$$F_n(x)=\frac{1}{n}\sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing *n* elementes in $\{x_1, x_2, ..., x_n\}$ and putting every element back to the set immediately after its choice Assume *N* such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, ..., x_n^{*(i)}, 1 \le i \le N$. Compute $\theta_i^* = \hat{\theta}\left(x_1^{*(i)}, x_2^{*(i)}, ..., x_n^{*(i)}\right)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$F_n(x)=\frac{1}{n}\sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing *n* elementes in $\{x_1, x_2, \ldots, x_n\}$ and putting every element back to the set immediately after its choice Assume *N* such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}, 1 \le i \le N$. Compute $\theta_i^* = \hat{\theta}\left(x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}\right)$. The empirical distribution of θ_i^* is given as $F_N^{\theta^*}(x) = \frac{1}{N} \sum_{i=1}^N l_{[\theta_i^*,\infty)}(x)$; it approximates the d.f. $F^{\hat{\theta}}$ of $\hat{\theta}(X_1, X_2, \ldots, X_n)$ for $N \to \infty$.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

$$F_n(x)=\frac{1}{n}\sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing *n* elementes in $\{x_1, x_2, ..., x_n\}$ and putting every element back to the set immediately after its choice Assume *N* such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, ..., x_n^{*(i)}, 1 \le i \le N$. Compute $\theta_i^* = \hat{\theta}\left(x_1^{*(i)}, x_2^{*(i)}, ..., x_n^{*(i)}\right)$. The empirical distribution of θ_i^* is given as $F_N^{\theta^*}(x) = \frac{1}{N} \sum_{i=1}^N I_{[\theta_i^*,\infty)}(x)$; it approximates the d.f. $F^{\hat{\theta}}$ of $\hat{\theta}(X_1, X_2, ..., X_n)$ for $N \to \infty$. A confidence interval (a, b) with confidence level *p* is given by

$$a = q_{(1-p)/2}(F_N^{\theta^*})$$
 $b = q_{(1+p)/2}(F_N^{\theta^*}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$F_n(x)=\frac{1}{n}\sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing *n* elementes in $\{x_1, x_2, ..., x_n\}$ and putting every element back to the set immediately after its choice Assume *N* such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, ..., x_n^{*(i)}, 1 \le i \le N$. Compute $\theta_i^* = \hat{\theta}\left(x_1^{*(i)}, x_2^{*(i)}, ..., x_n^{*(i)}\right)$. The empirical distribution of θ_i^* is given as $F_N^{\theta^*}(x) = \frac{1}{N} \sum_{i=1}^N I_{[\theta_i^*,\infty)}(x)$; it approximates the d.f. $F^{\hat{\theta}}$ of $\hat{\theta}(X_1, X_2, ..., X_n)$ for $N \to \infty$.

A confidence interval (a, b) with confidence level p is given by

$$a = q_{(1-p)/2}(F_N^{\theta^*})$$
 $b = q_{(1+p)/2}(F_N^{\theta^*}).$

Thus $a = \theta^*_{[N(1+p)/2]+1}, b = \theta^*_{[N(1-p)/2]+1}$, where $\theta^*_1 \ge \ldots \ge \theta^*_N$.

Summary of the non-parametric bootstrapping approach to compute confidence intervals

Input: Sample $x_1, x_2, ..., x_n$ of the i.i.d. random variables $X_1, X_2, ..., X_n$ with distribution function F and an estimator $\hat{\theta}(x_1, x_2, ..., x_n)$ of an unknown parameter $\theta(F)$, A confidence level $p \in (0, 1)$.

Output: A confidence interval I_p for θ with confidence level p.

▶ Generate N new Samples x₁^{*(i)}, x₂^{*(i)}, ..., x_n^{*(i)}, 1 ≤ i ≤ N, by chosing elements in {x₁, x₂, ..., x_n} and putting them back right after the choice.

<ロ> <個> < 国> < 国> < 国> < 国> < 国> < 回> < <</p>

Input: A sample $x_1, x_2, ..., x_n$ of the random variables X_i , $1 \le i \le n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in (0, 1)$.

Input: A sample $x_1, x_2, ..., x_n$ of the random variables X_i , $1 \le i \le n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in (0, 1)$.

Output: A $p' \in (0,1)$, with $p \le p' \le p + \epsilon$, for some small ϵ , and a confidence interval (a, b) for $q_{\alpha}(F)$, i.e. $a = a(x_1, x_2, \ldots, x_n)$, $b = b(x_1, x_2, \ldots, x_n)$, such that

 $P(a < q_{\alpha}(F) < b) = p' \text{ and } P(a \geq q_{\alpha}(F)) = P(b \leq q_{\alpha}(F)) \leq (1-p)/2 \text{ holds.}$

Input: A sample $x_1, x_2, ..., x_n$ of the random variables X_i , $1 \le i \le n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in (0, 1)$.

Output: A $p' \in (0,1)$, with $p \le p' \le p + \epsilon$, for some small ϵ , and a confidence interval (a, b) for $q_{\alpha}(F)$, i.e. $a = a(x_1, x_2, \ldots, x_n)$, $b = b(x_1, x_2, \ldots, x_n)$, such that

$${\sf P}({\sf a} < q_lpha({\sf F}) < b) = p' ext{ and } {\sf P}({\sf a} \geq q_lpha({\sf F})) = {\sf P}(b \leq q_lpha({\sf F})) \leq (1{-}p)/2 ext{ holds}.$$

Assume w.l.o.g. that the sample is sorted $x_1 \ge x_2 \ge \ldots \ge x_n$. Determine i > j, $i, j \in \{1, 2, \ldots, n\}$, and the smallest p' > p, such that

$$P\left(x_i < q_{\alpha}(F) < x_j\right) = p'$$
 (*) and

$$Pigg(x_i \geq q_lpha(F)igg) \leq (1-p)/2 ext{ and } Pigg(x_j \leq q_lpha(F)igg) \leq (1-p)/2(**).$$

・ロト ・日下・ モー・ モー・ うへの

・ロト ・日下・ モー・ モー・ うへの

$$\begin{array}{l} \text{We get } P(x_j \leq q_\alpha(F)) \approx P(x_j < q_\alpha(F)) = P(Y_\alpha \leq j-1) \\ P(x_i \geq q_\alpha(F)) \approx P(x_i > q_\alpha(F)) = 1 - P(Y_\alpha \leq i-1) \end{array} \end{array}$$

We get
$$P(x_j \le q_\alpha(F)) \approx P(x_j < q_\alpha(F)) = P(Y_\alpha \le j-1)$$

 $P(x_i \ge q_\alpha(F)) \approx P(x_i > q_\alpha(F)) = 1 - P(Y_\alpha \le i-1)$

 $Y_{\alpha} \sim Bin(n, 1 - \alpha)$ since $Prob(x_k \ge q_{\alpha}(F)) \approx 1 - \alpha$ for a sample point x_k .

(日)

We get
$$P(x_j \leq q_{\alpha}(F)) \approx P(x_j < q_{\alpha}(F)) = P(Y_{\alpha} \leq j-1)$$

 $P(x_i \geq q_{\alpha}(F)) \approx P(x_i > q_{\alpha}(F)) = 1 - P(Y_{\alpha} \leq i-1)$
 $Y_{\alpha} \sim Bin(n, 1-\alpha)$ since $Prob(x_k \geq q_{\alpha}(F)) \approx 1 - \alpha$ for a sample point

 $x_k.$

Compute $P(x_j \le q_\alpha(F))$ and $P(x_i \ge q_\alpha(F))$ for different *i* and *j* until indices $i, j \in \{1, 2, ..., n\}$, i > j, which fulfill (**) are found.

(日)

We get
$$P(x_j \leq q_{\alpha}(F)) \approx P(x_j < q_{\alpha}(F)) = P(Y_{\alpha} \leq j-1)$$

 $P(x_i \geq q_{\alpha}(F)) \approx P(x_i > q_{\alpha}(F)) = 1 - P(Y_{\alpha} \leq i-1)$
 $Y_{\alpha} \sim Bin(n, 1-\alpha)$ since $Prob(x_k \geq q_{\alpha}(F)) \approx 1 - \alpha$ for a sample p

 $Y_{\alpha} \sim Bin(n, 1 - \alpha)$ since $Prob(x_k \ge q_{\alpha}(F)) \approx 1 - \alpha$ for a sample point x_k .

Compute $P(x_j \le q_\alpha(F))$ and $P(x_i \ge q_\alpha(F))$ for different *i* and *j* until indices $i, j \in \{1, 2, ..., n\}$, i > j, which fulfill (**) are found.

(日)

Set $b := x_j$ and $a := x_i$.