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The linearized loss:
L∆n+1 = −(Ct∆t + CSSnXn+1,1 + CrXn+1,2 + CσXn+1,3)

The greeks: Ct - theta, CS - delta, Cr - rho, Cσ - Vega
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◮ Notational amount: weighted sum of notational values of individual securities weighted by a

prespecified factor for each asset class

e.g. in Basel I (1998):

Cooke Ratio=
regulatory capital
risk-weighted sum

≥ 8%

Gewicht :=














0% for claims on governments and supranationals (OECD)

20% claims on banks

50% claims on individual investors with mortgage securities

100% claims on the private sector

Disadvantages: no difference between long and short positions,
diversification effects are not considered
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Example: “The Greeks” of a portfolio are the sensitivity coefficients

Disadvantages: assessment of risk arising due to simultaneous
changes of different risk factors is difficult;
aggregation of risks arising in different markets is difficult;

◮ Scenario based risk measures: Let n be the number of possible risk
factor changes (= scenarios).

Let χ = {X1,X2, . . . ,XN} be the set of scenarios and l[n](·) the
portfolio loss operator.

Assign a weight wi to every scenario i , 1 ≤ i ≤ N

Portfolio risk:

Ψ[χ,w ] = max{w1l[n](X1),w2l[n](X2), . . . ,wN l[n](XN)}
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A portfolio consists of units of a certain future contract and put and call

options on the same contract with the same maturity.

Scenarios i , 1 ≤ i ≤ 14:

Scenarios 1 to 8 Scenarios 9 to 14
Volatility Price of the future Volatility Price of the future
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3 ∗ Range ր ց 1

3 ∗ Range
ց ր 2

3 ∗ Range ց ց 2
3 ∗ Range

ր 3
3 ∗ Range ց 3

3 ∗ Range
−→

Scenarios i , i = 15, 16 represent an extreme increase or decrease of the
future price, respectively. The weights are wi = 1, for i ∈ {1, 2, . . . , 14},
and wi = 0.35, for i ∈ {15, 16}.
An appropriate model (zB. Black-Scholes) is used to generate the option
prices in the different scenarios.
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The parameters of FL are estimated in terms of historical data, either
directly or in terms of risk factors.

1. The standard deviation std(L) :=
√

σ2(FL)

It is used frequently in portfolio theory.

Disadvantages:

◮ STD exists only for distributions with E (F 2
L ) < ∞, not

applicable to leptocurtic (“fat tailed”) loss distributions;
◮ gains and losses equally influence the STD.

Example

L1 ∼ N(0, 2), L2 ∼ t4 (Student’s t-distribution with m = 4 degrees of freedom)

σ2(L1) = 2 and σ2(L2) =
m

m−2 = 2 hold

However the probability of losses is much larger for L2 than for L1.

Plot the logarithm of the quotient ln[P(L2 > x)/P(L1 > x)]!
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horizon of 10 days as a measure for the market risk of a portfolio.

Definition: Let F : A → B be an increasing function. The function
F← : B → A ∪ {−∞,+∞}, y 7→ inf{x ∈ IR : F (x) ≥ y} is called
generalized inverse function of F .

Notice that inf ∅ = ∞.

If F is strictly monotone increasing, then F−1 = F← holds.

Exercise: Compute F← for F : [0,+∞) → [0, 1] with

F (x) =

{

1/2 0 ≤ x < 1
1 1 ≤ x
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Value at Risk (contd.)

Let F : IR → IR be a (monotone increasing) distribution function and
qα(F ) := inf{x ∈ IR : F (x) ≥ α} be α-quantile of F .

For the loss function L and its distribution function F the following holds:

VaRα(L) = qα(F ) = F←(α).

Example: Let L ∼ N(µ, σ2). Then VaRα(L) = µ+ σqα(Φ) =
µ+ σΦ−1(α) holds, where Φ is the d.f. of a r.v. X ∼ N(0, 1).

Exercise: Consider a portfolio consisting of 5 pieces of an asset A. The
today’s price of A is S0 = 100. The daily logarithmic returns are i.i.d., i.e.
X1 = ln S1

S0
, X2 = ln S2

S1
,. . . ∼ N(0, 0.01). Let L1 be the 1-day portfolio

loss in the time interval (today, tomorrow).

(a) Compute VaR0.99(L1).

(b) Compute VaR0.99(L100) and VaR0.99(L
∆
100), where L100 is the

100-day portfolio loss over a horizon of 100 days starting with
today. L∆100 is the linearization of the above mentioned 100-day
PF-portfolio loss.

Hint: For Z ∼ N(0, 1) use the equality F−1Z (0.99) ≈ 2.3.
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GCVaRα(L) :=
1
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[
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Lemma Let α be a given confidence level and L a continuous loss
function with distribution FL.
Then CVaRα(L) =

1
1−α

∫ 1

α VaRp(L)dp holds.
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Example 1:

(a) Let L ∼ Exp(λ). Compute CVaRα(L).

(b) Let the distribution function FL of the loss function L be given as
follows : FL(x) = 1− (1 + γx)−1/γ for x ≥ 0 and γ ∈ (0, 1).
Compute CVaRα(L).

Example 2:
Let L ∼ N(0, 1). Let φ und Φ be the density and the distribution

function of L, respectively. Show that CVaRα(L) =
φ(Φ−1(α))

1−α holds.

Let L′ ∼ N(µ, σ2). Show that CVaRα(L
′) = µ+ σ φ(Φ−1(α))

1−α holds.
Exercise:
Let the loss L be distributed according to the Student’s t-distribution
with ν > 1 degrees of freedom. The density of L is

gν(x) =
Γ((ν + 1)/2)√

νπΓ(ν/2)

(

1 +
x2

ν

)−(ν+1)/2

Show that CVaRα(L) =
gν (t

−1
ν

(α))
1−α

(

ν+(t−1
ν

(a))2

ν−1

)

, where tν is the

distribution function of L.



Methods for the computation of VaR und CVaR

Consider the portfolio value Vm = f (tm,Zm), where Zm is the vector of
risk factors.

Let the loss function over the interval [tm, tm+1] be given as
Lm+1 = l[m](Xm+1), where Xm+1 is the vector of the risk factor changes,
i.e.

Xm+1 = Zm+1 − Zm.

Consider observations (historical data) of risk factor values
Zm−n+1, . . . ,Zm.
How to use these data to compute/estimate VaR(Lm+1), CVaR(Lm+1)?
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[y ] := sup{n ∈ IN : n ≤ y} for every y ∈ IR.

Lemma

Let q̂α(F ) := qα(Fn) and let F be a strictly increasing function. Then

limn→∞ q̂α(F ) = qα(F ) holds ∀α ∈ (0, 1), i.e. the estimator q̂α(F ) is
consistent.

The empirical estimator of CVaR is ĈVaRα(F ) =
∑[n(1−α)]+1

k=1 xk
[(n(1−α)]+1
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A non-parametric bootstrapping approach to compute the
confidence interval for the estimator

Let X1,X2, . . . ,Xn be i.i.d. with distribution function F and let
x1 > x2 > . . . > xn be an ordered sample of F .

Goal: computation of an estimator of a certain parameter θ depending on
F , e.g. θ = qα(F ), and the corresponding confidence interval.

Let θ̂(x1, . . . , xn) be an estimator of θ, e.g. θ̂(x1, . . . , xn) = x[(n(1−α)]+1

θ = qα(F ).
The required confidence interval is an (a, b) with a = a(x1, . . . , xn) u.
b = b(x1, . . . , xn), such that P(a < θ < b) = p, for a given confidence
level p.

Case I: F is known.
Generate N samples x̃

(i)
1 , x̃

(i)
2 , . . . , x̃

(i)
n , 1 ≤ i ≤ N , by simulation from F

(N should be large)

Let θ̃i = θ̂

(

x̃
(i)
1 , x̃

(i)
2 , . . . , x̃

(i)
n

)

, 1 ≤ i ≤ N .



Case I (cont.)
The empirical distribution function of θ̂(x1, x2, . . . , xn) is given as

F θ̂
N :=

1

N

N
∑

i=1

I[θ̃i ,∞)

and it tends to F θ̂ for N → ∞.

The required conficence interval is given as

(

q 1−p
2
(F θ̂

N), q 1+p
2
(F θ̂

N)

)

(assuming that the sample sizes N und n are large enough).
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Case II: F is not known. Apply bootstrapping!
The empirical distribution function of Xi , 1 ≤ i ≤ n, is given as

Fn(x) =
1

n

n
∑

i=1

I[xi ,∞)(x).

For n large Fn ≈ F holds.

Generate samples from Fn be choosing n elementes in {x1, x2, . . . , xn}
and putting every element back to the set immediately after its choice

Assume N such samples are generated: x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n , 1 ≤ i ≤ N .

Compute θ∗i = θ̂

(

x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n

)

.

The empirical distribution of θ∗i is given as F θ∗

N (x) = 1
N

∑N

i=1 I[θ∗

i
,∞)(x);

it approximates the d.f. F θ̂ of θ̂(X1,X2, . . . ,Xn) for N → ∞.

A confidence interval (a, b) with confidence level p is given by

a = q(1−p)/2(F
θ∗

N ) b = q(1+p)/2(F
θ∗

N ) .

Thus a = θ∗[N(1+p)/2]+1, b = θ∗[N(1−p)/2]+1, where θ∗1 ≥ . . . ≥ θ∗N .



Summary of the non-parametric bootstrapping approach to
compute confidence intervals

Input: Sample x1, x2, . . . , xn of the i.i.d. random variables X1,X2, . . . ,Xn

with distribution function F and an estimator θ̂(x1, x2, . . . , xn) of an
unknown parameter θ(F ), A confidence level p ∈ (0, 1).

Output: A confidence interval Ip for θ with confidence level p.

◮ Generate N new Samples x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n , 1 ≤ i ≤ N , by

chosing elements in {x1, x2, . . . , xn} and putting them back right
after the choice.

◮ Compute θ∗i = θ̂

(

x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n

)

.

◮ Setz Ip :=

(

θ∗[N(1+p)/2]+1,N , θ
∗
[N(1−p)/2]+1,N

)

, where

θ∗1,N ≥ θ∗2,N ≥ . . . θ∗N,N is obtained by sorting θ∗1 , θ
∗
2 , . . . , θ

∗
N .
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An approximative solution without bootstrapping

Input: A sample x1, x2, . . . , xn of the random variables Xi , 1 ≤ i ≤ n,
i.i.d. with unknown continuous distribution function F , a confidence level
p ∈ (0, 1).

Output: A p′ ∈ (0, 1), with p ≤ p′ ≤ p + ǫ, for some small ǫ, and a
confidence interval (a, b) for qα(F ), i.e. a = a(x1, x2, . . . , xn),
b = b(x1, x2, . . . , xn), such that

P(a < qα(F ) < b) = p′ and P(a ≥ qα(F )) = P(b ≤ qα(F )) ≤ (1−p)/2 holds.

Assume w.l.o.g. that the sample is sorted x1 ≥ x2 ≥ . . . ≥ xn.

Determine i > j , i , j ∈ {1, 2, . . . , n}, and the smallest p′ > p, such that

P

(

xi < qα(F ) < xj

)

= p′ (∗) and

P

(

xi ≥ qα(F )

)

≤ (1− p)/2 and P

(

xj ≤ qα(F )

)

≤ (1 − p)/2(∗∗).
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An approximative solution without bootstrapping (contd.)

Let Yα := #{xk : xk > qα(F )}

We get P(xj ≤ qα(F )) ≈ P(xj < qα(F )) = P(Yα ≤ j − 1)
P(xi ≥ qα(F )) ≈ P(xi > qα(F )) = 1− P(Yα ≤ i − 1)

Yα ∼ Bin(n, 1 − α) since Prob(xk ≥ qα(F )) ≈ 1− α for a sample point
xk .

Compute P(xj ≤ qα(F )) and P(xi ≥ qα(F )) for different i and j until
indices i , j ∈ {1, 2, . . . , n}, i > j , which fulfill (∗∗) are found.

Set b := xj and a := xi .


