A European call option (ECO)

Consider an ECO over an asset S with execution date T, price S_{T} at time T and strike price K.

A European call option (ECO)

Consider an ECO over an asset S with execution date T, price S_{T} at time T and strike price K.
Value of the ECO at time $T: \max \left\{S_{T}-K, 0\right\}$

A European call option (ECO)

Consider an ECO over an asset S with execution date T, price S_{T} at time T and strike price K.
Value of the ECO at time $T: \max \left\{S_{T}-K, 0\right\}$
Price of ECO at time $t<T: C=C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.

A European call option (ECO)

Consider an ECO over an asset S with execution date T, price S_{T} at time T and strike price K.
Value of the ECO at time $T: \max \left\{S_{T}-K, 0\right\}$
Price of ECO at time $t<T: C=C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.
Risk factors: $Z_{n}=\left(\ln S_{n}, r_{n}, \sigma_{n}\right)^{T}$;

A European call option (ECO)

Consider an ECO over an asset S with execution date T, price S_{T} at time T and strike price K.
Value of the ECO at time $T: \max \left\{S_{T}-K, 0\right\}$
Price of ECO at time $t<T: C=C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.
Risk factors: $Z_{n}=\left(\ln S_{n}, r_{n}, \sigma_{n}\right)^{T}$;
Risk factor changes: $X_{n+1}=\left(\ln S_{n+1}-\ln S_{n}, r_{n+1}-r_{n}, \sigma_{n+1}-\sigma_{n}\right)^{T}$

A European call option (ECO)

Consider an ECO over an asset S with execution date T, price S_{T} at time T and strike price K.
Value of the ECO at time $T: \max \left\{S_{T}-K, 0\right\}$
Price of ECO at time $t<T: C=C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.
Risk factors: $Z_{n}=\left(\ln S_{n}, r_{n}, \sigma_{n}\right)^{T}$;
Risk factor changes: $X_{n+1}=\left(\ln S_{n+1}-\ln S_{n}, r_{n+1}-r_{n}, \sigma_{n+1}-\sigma_{n}\right)^{T}$
Portfolio value: $V_{n}=C\left(t_{n}, S_{n}, r_{n}, \sigma_{n}\right)=C\left(t_{n}, \exp \left(Z_{n, 1}\right), Z_{n, 2}, Z_{n, 3}\right)$

A European call option (ECO)

Consider an ECO over an asset S with execution date T, price S_{T} at time T and strike price K.
Value of the ECO at time $T: \max \left\{S_{T}-K, 0\right\}$
Price of ECO at time $t<T: C=C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.
Risk factors: $Z_{n}=\left(\ln S_{n}, r_{n}, \sigma_{n}\right)^{T}$;
Risk factor changes: $X_{n+1}=\left(\ln S_{n+1}-\ln S_{n}, r_{n+1}-r_{n}, \sigma_{n+1}-\sigma_{n}\right)^{T}$
Portfolio value: $V_{n}=C\left(t_{n}, S_{n}, r_{n}, \sigma_{n}\right)=C\left(t_{n}, \exp \left(Z_{n, 1}\right), Z_{n, 2}, Z_{n, 3}\right)$
The linearized loss:
$L_{n+1}^{\Delta}=-\left(C_{t} \Delta t+C_{S} S_{n} X_{n+1,1}+C_{r} X_{n+1,2}+C_{\sigma} X_{n+1,3}\right)$

A European call option (ECO)

Consider an ECO over an asset S with execution date T, price S_{T} at time T and strike price K.
Value of the ECO at time $T: \max \left\{S_{T}-K, 0\right\}$
Price of ECO at time $t<T: C=C(t, S, r, \sigma)$ (Black-Scholes model), where S is the price of the asset, r is the interest rate and σ is the volatility, all of them at time t.
Risk factors: $Z_{n}=\left(\ln S_{n}, r_{n}, \sigma_{n}\right)^{T}$;
Risk factor changes: $X_{n+1}=\left(\ln S_{n+1}-\ln S_{n}, r_{n+1}-r_{n}, \sigma_{n+1}-\sigma_{n}\right)^{T}$
Portfolio value: $V_{n}=C\left(t_{n}, S_{n}, r_{n}, \sigma_{n}\right)=C\left(t_{n}, \exp \left(Z_{n, 1}\right), Z_{n, 2}, Z_{n, 3}\right)$
The linearized loss:
$L_{n+1}^{\Delta}=-\left(C_{t} \Delta t+C_{S} S_{n} X_{n+1,1}+C_{r} X_{n+1,2}+C_{\sigma} X_{n+1,3}\right)$
The greeks: C_{t} - theta, C_{S} - delta, C_{r} - rho, C_{σ} - Vega

Purpose of the risk management:

- Determination of the minimum regulatory capital:
i.e. the capital, needed to cover possible losses.
- As a management tool:
to determine the limits of the amount of risk a unit within the company may take

Purpose of the risk management:

- Determination of the minimum regulatory capital:
i.e. the capital, needed to cover possible losses.
- As a management tool:
to determine the limits of the amount of risk a unit within the company may take
Elementary risk measures computed without assessing the loss distribution
- Notational amount: weighted sum of notational values of individual securities weighted by a prespecified factor for each asset class
e.g. in Basel I (1998):

Cooke Ratio $=\frac{\text { regulatory capital }}{\text { risk-weighted sum }} \geq 8 \%$
Gewicht :=
$\begin{cases}0 \% & \text { for claims on governments and supranationals (OECD) } \\ 20 \% & \text { claims on banks } \\ 50 \% & \text { claims on individual investors with mortgage securities } \\ 100 \% & \text { claims on the private sector }\end{cases}$

Purpose of the risk management:

- Determination of the minimum regulatory capital:
i.e. the capital, needed to cover possible losses.
- As a management tool:
to determine the limits of the amount of risk a unit within the company may take

Elementary risk measures computed without assessing the loss distribution

- Notational amount: weighted sum of notational values of individual securities weighted by a prespecified factor for each asset class
e.g. in Basel I (1998):

Cooke Ratio $=\frac{\text { regulatory capital }}{\text { risk-weighted sum }} \geq 8 \%$
Gewicht :=
$\begin{cases}0 \% & \text { for claims on governments and supranationals (OECD) } \\ 20 \% & \text { claims on banks } \\ 50 \% & \text { claims on individual investors with mortgage securities } \\ 100 \% & \text { claims on the private sector }\end{cases}$
Disadvantages: no difference between long and short positions, diversification effects are not considered

- Coefficients of sensitivity with respect to risk factors

Portfolio value at time $t_{n}: V_{n}=f\left(t_{n}, Z_{n}\right)$,
Z_{n} ist a vector of d risk factors
Sensitivity coefficients: $f_{z_{i}}=\frac{\delta f}{\delta z_{i}}\left(t_{n}, Z_{n}\right), 1 \leq i \leq d$
Example: "The Greeks" of a portfolio are the sensitivity coefficients

- Coefficients of sensitivity with respect to risk factors

Portfolio value at time $t_{n}: V_{n}=f\left(t_{n}, Z_{n}\right)$,
Z_{n} ist a vector of d risk factors
Sensitivity coefficients: $f_{z_{i}}=\frac{\delta f}{\delta z_{i}}\left(t_{n}, Z_{n}\right), 1 \leq i \leq d$
Example: "The Greeks" of a portfolio are the sensitivity coefficients
Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in different markets is difficult;

- Coefficients of sensitivity with respect to risk factors

Portfolio value at time $t_{n}: V_{n}=f\left(t_{n}, Z_{n}\right)$,
Z_{n} ist a vector of d risk factors
Sensitivity coefficients: $f_{z_{i}}=\frac{\delta f}{\delta z_{i}}\left(t_{n}, Z_{n}\right), 1 \leq i \leq d$
Example: "The Greeks" of a portfolio are the sensitivity coefficients
Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in different markets is difficult;

- Scenario based risk measures: Let n be the number of possible risk factor changes ($=$ scenarios).
Let $\chi=\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$ be the set of scenarios and $\Lambda_{[n]}(\cdot)$ the portfolio loss operator.
- Coefficients of sensitivity with respect to risk factors

Portfolio value at time $t_{n}: V_{n}=f\left(t_{n}, Z_{n}\right)$,
Z_{n} ist a vector of d risk factors
Sensitivity coefficients: $f_{z_{i}}=\frac{\delta f}{\delta z_{i}}\left(t_{n}, Z_{n}\right), 1 \leq i \leq d$
Example: "The Greeks" of a portfolio are the sensitivity coefficients
Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in different markets is difficult;

- Scenario based risk measures: Let n be the number of possible risk factor changes ($=$ scenarios).
Let $\chi=\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$ be the set of scenarios and $\Lambda_{[n]}(\cdot)$ the portfolio loss operator.
Assign a weight w_{i} to every scenario $i, 1 \leq i \leq N$
- Coefficients of sensitivity with respect to risk factors

Portfolio value at time $t_{n}: V_{n}=f\left(t_{n}, Z_{n}\right)$,
Z_{n} ist a vector of d risk factors
Sensitivity coefficients: $f_{z_{i}}=\frac{\delta f}{\delta z_{i}}\left(t_{n}, Z_{n}\right), 1 \leq i \leq d$
Example: "The Greeks" of a portfolio are the sensitivity coefficients
Disadvantages: assessment of risk arising due to simultaneous changes of different risk factors is difficult; aggregation of risks arising in different markets is difficult;

- Scenario based risk measures: Let n be the number of possible risk factor changes ($=$ scenarios).
Let $\chi=\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$ be the set of scenarios and $\Lambda_{[n]}(\cdot)$ the portfolio loss operator.
Assign a weight w_{i} to every scenario $i, 1 \leq i \leq N$
Portfolio risk:

$$
\Psi[\chi, w]=\max \left\{w_{1} 1_{[n]}\left(X_{1}\right),\left.w_{2}\right|_{[n]}\left(X_{2}\right), \ldots, w_{N} \mathcal{L}_{[n]}\left(X_{N}\right)\right\}
$$

Example: SPAN rules applied at CME (see Artzere et al., 1999)

 A portfolio consists of units of a certain future contract and put and call options on the same contract with the same maturity.Example: SPAN rules applied at CME (see Artzere et al., 1999) A portfolio consists of units of a certain future contract and put and call options on the same contract with the same maturity.

Scenarios $i, 1 \leq i \leq 14$:

Scenarios 1 to 8		Scenarios 9 to 14	
Volatility	Price of the future	Volatility	Price of the future
\nearrow	$\nearrow \frac{1}{3} *$ Range	\nearrow	$\searrow \frac{1}{3} *$ Range
\searrow	$\nearrow \frac{2}{3} *$ Range	\searrow	$\searrow \frac{2}{3} *$ Range
	$\nearrow \frac{3}{3} *$ Range		$\searrow \frac{3}{3} *$ Range
	\longrightarrow		

Example: SPAN rules applied at CME (see Artzner et al., 1999)
A portfolio consists of units of a certain future contract and put and call options on the same contract with the same maturity.

Scenarios $i, 1 \leq i \leq 14$:

Scenarios 1 to 8		Scenarios 9 to 14	
Volatility	Price of the future	Volatility	Price of the future
\nearrow	$\nearrow \frac{1}{3} *$ Range	\nearrow	$\searrow \frac{1}{3} *$ Range
\searrow	$\nearrow \frac{2}{3} *$ Range	\searrow	$\searrow \frac{2}{3} *$ Range
	$\nearrow \frac{3}{3} *$ Range		$\searrow \frac{3}{3} *$ Range
	\longrightarrow		

Scenarios $i, i=15,16$ represent an extreme increase or decrease of the future price, respectively. The weights are $w_{i}=1$, for $i \in\{1,2, \ldots, 14\}$, and $w_{i}=0.35$, for $i \in\{15,16\}$.

Example: SPAN rules applied at CME (see Artzner et al., 1999)
A portfolio consists of units of a certain future contract and put and call options on the same contract with the same maturity.

Scenarios $i, 1 \leq i \leq 14$:

Scenarios 1 to 8		Scenarios 9 to 14	
Volatility	Price of the future	Volatility	Price of the future
\nearrow	$\nearrow \frac{1}{3} *$ Range	\nearrow	$\searrow \frac{1}{3} *$ Range
\searrow	$\nearrow \frac{2}{3} *$ Range	\searrow	$\searrow \frac{2}{3} *$ Range
	$\nearrow \frac{3}{3} *$ Range		$\searrow \frac{3}{3} *$ Range
	\longrightarrow		

Scenarios $i, i=15,16$ represent an extreme increase or decrease of the future price, respectively. The weights are $w_{i}=1$, for $i \in\{1,2, \ldots, 14\}$, and $w_{i}=0.35$, for $i \in\{15,16\}$.

An appropriate model (zB. Black-Scholes) is used to generate the option prices in the different scenarios.

Risk measures based on the loss distribution
Let $F_{L}:=F_{L_{n+1}}$ be the loss distribution of L_{n+1}.
The parameters of F_{L} are estimated in terms of historical data, either directly or in terms of risk factors.

Risk measures based on the loss distribution
Let $F_{L}:=F_{L_{n+1}}$ be the loss distribution of L_{n+1}.
The parameters of F_{L} are estimated in terms of historical data, either directly or in terms of risk factors.

1. The standard deviation $\operatorname{std}(L):=\sqrt{\sigma^{2}\left(F_{L}\right)}$

It is used frequently in portfolio theory.
Disadvantages:

- STD exists only for distributions with $E\left(F_{L}^{2}\right)<\infty$, not applicable to leptocurtic ("fat tailed") loss distributions;
- gains and losses equally influence the STD.

Risk measures based on the loss distribution
Let $F_{L}:=F_{L_{n+1}}$ be the loss distribution of L_{n+1}.
The parameters of F_{L} are estimated in terms of historical data, either directly or in terms of risk factors.

1. The standard deviation $\operatorname{std}(L):=\sqrt{\sigma^{2}\left(F_{L}\right)}$

It is used frequently in portfolio theory.
Disadvantages:

- STD exists only for distributions with $E\left(F_{L}^{2}\right)<\infty$, not applicable to leptocurtic ("fat tailed") loss distributions;
- gains and losses equally influence the STD.

Example

$L_{1} \sim N(0,2), L_{2} \sim t_{4}$ (Student's t-distribution with $m=4$ degrees of freedom)
$\sigma^{2}\left(L_{1}\right)=2$ and $\sigma^{2}\left(L_{2}\right)=\frac{m}{m-2}=2$ hold
However the probability of losses is much larger for L_{2} than for L_{1}.
Plot the logarithm of the quotient $\ln \left[P\left(L_{2}>x\right) / P\left(L_{1}>x\right)\right]$!
2. Value at Risk $\left(\operatorname{Va}_{\alpha} R_{\alpha}(L)\right)$

Let L be the loss distribution with distribution function F_{L} and let $\alpha \in(0,1)$ be a given confindence level.
$\operatorname{Va} R_{\alpha}(L)$: the smallest number I, such that $P(L>I) \leq 1-\alpha$ holds.
2. Value at Risk $\left(\operatorname{Va}_{\alpha} R_{\alpha}(L)\right)$

Let L be the loss distribution with distribution function F_{L} and let $\alpha \in(0,1)$ be a given confindence level.
$\operatorname{Va} R_{\alpha}(L)$: the smallest number I, such that $P(L>I) \leq 1-\alpha$ holds.

$$
\begin{gathered}
\operatorname{VaR}_{\alpha}(L)=\inf \{I \in \mathbb{R}: P(L>I) \leq 1-\alpha\}= \\
\inf \left\{I \in \mathbb{R}: 1-F_{L}(I) \leq 1-\alpha\right\}=\inf \left\{I \in \mathbb{R}: F_{L}(I) \geq \alpha\right\}
\end{gathered}
$$

BIS (Bank of International Settlements) suggests $\mathrm{Va}_{0.99}(L)$ over a horizon of 10 days as a measure for the market risk of a portfolio.
2. Value at Risk $\left(\operatorname{Va}_{\alpha} R_{\alpha}(L)\right)$

Let L be the loss distribution with distribution function F_{L} and let $\alpha \in(0,1)$ be a given confindence level.
$\operatorname{Va} R_{\alpha}(L)$: the smallest number I, such that $P(L>I) \leq 1-\alpha$ holds.

$$
\begin{gathered}
\operatorname{VaR}_{\alpha}(L)=\inf \{I \in \mathbb{R}: P(L>I) \leq 1-\alpha\}= \\
\inf \left\{I \in \mathbb{R}: 1-F_{L}(I) \leq 1-\alpha\right\}=\inf \left\{I \in \mathbb{R}: F_{L}(I) \geq \alpha\right\}
\end{gathered}
$$

BIS (Bank of International Settlements) suggests $V_{a} R_{0.99}(L)$ over a horizon of 10 days as a measure for the market risk of a portfolio.

Definition: Let $F: A \rightarrow B$ be an increasing function. The function $F^{\leftarrow}: B \rightarrow A \cup\{-\infty,+\infty\}, y \mapsto \inf \{x \in \mathbb{R}: F(x) \geq y\}$ is called generalized inverse function of F.
Notice that $\inf \emptyset=\infty$.
2. Value at Risk $\left(\operatorname{Va}_{\alpha} R_{\alpha}(L)\right)$

Let L be the loss distribution with distribution function F_{L} and let $\alpha \in(0,1)$ be a given confindence level.
$\operatorname{Va} R_{\alpha}(L)$: the smallest number I, such that $P(L>I) \leq 1-\alpha$ holds.

$$
\begin{gathered}
\operatorname{VaR}_{\alpha}(L)=\inf \{I \in \mathbb{R}: P(L>I) \leq 1-\alpha\}= \\
\inf \left\{I \in \mathbb{R}: 1-F_{L}(I) \leq 1-\alpha\right\}=\inf \left\{I \in \mathbb{R}: F_{L}(I) \geq \alpha\right\}
\end{gathered}
$$

BIS (Bank of International Settlements) suggests $V a R_{0.99}(L)$ over a horizon of 10 days as a measure for the market risk of a portfolio.
Definition: Let $F: A \rightarrow B$ be an increasing function. The function $F^{\leftarrow}: B \rightarrow A \cup\{-\infty,+\infty\}, y \mapsto \inf \{x \in \mathbb{R}: F(x) \geq y\}$ is called generalized inverse function of F.
Notice that $\inf \emptyset=\infty$.
If F is strictly monotone increasing, then $F^{-1}=F^{\leftarrow}$ holds.
Exercise: Compute $F \leftarrow$ for $F:[0,+\infty) \rightarrow[0,1]$ with

$$
F(x)= \begin{cases}1 / 2 & 0 \leq x<1 \\ 1 & 1 \leq x\end{cases}
$$

Value at Risk (contd.)

Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F):=\inf \{x \in \mathbb{R}: F(x) \geq \alpha\}$ be α-quantile of F.

Value at Risk (contd.)

Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F):=\inf \{x \in \mathbb{R}: F(x) \geq \alpha\}$ be α-quantile of F.
For the loss function L and its distribution function F the following holds:

$$
\operatorname{Va}_{a} R_{\alpha}(L)=q_{\alpha}(F)=F^{\leftarrow}(\alpha) .
$$

Value at Risk (contd.)

Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F):=\inf \{x \in \mathbb{R}: F(x) \geq \alpha\}$ be α-quantile of F.
For the loss function L and its distribution function F the following holds:

$$
\operatorname{Va}_{\alpha} R_{\alpha}(L)=q_{\alpha}(F)=F^{\leftarrow}(\alpha) .
$$

Example: Let $L \sim N\left(\mu, \sigma^{2}\right)$. Then $V_{a} R_{\alpha}(L)=\mu+\sigma q_{\alpha}(\Phi)=$ $\mu+\sigma \Phi^{-1}(\alpha)$ holds, where Φ is the d.f. of a r.v. $X \sim N(0,1)$.

Value at Risk (contd.)

Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F):=\inf \{x \in \mathbb{R}: F(x) \geq \alpha\}$ be α-quantile of F.
For the loss function L and its distribution function F the following holds:

$$
V_{a} R_{\alpha}(L)=q_{\alpha}(F)=F^{\leftarrow}(\alpha)
$$

Example: Let $L \sim N\left(\mu, \sigma^{2}\right)$. Then $\operatorname{Va}_{\alpha}(L)=\mu+\sigma q_{\alpha}(\Phi)=$ $\mu+\sigma \Phi^{-1}(\alpha)$ holds, where Φ is the d.f. of a r.v. $X \sim N(0,1)$.
Exercise: Consider a portfolio consisting of 5 pieces of an asset A. The today's price of A is $S_{0}=100$. The daily logarithmic returns are i.i.d., i.e. $X_{1}=\ln \frac{S_{1}}{S_{0}}, X_{2}=\ln \frac{S_{2}}{S_{1}}, \ldots \sim N(0,0.01)$. Let L_{1} be the 1-day portfolio loss in the time interval (today, tomorrow).
(a) Compute $\mathrm{Va}_{\mathrm{0}}^{\mathrm{0} .99}\left(L_{1}\right)$.
(b) Compute $\operatorname{Va} R_{0.99}\left(L_{100}\right)$ and $\operatorname{Va} R_{0.99}\left(L_{100}\right)$, where L_{100} is the 100-day portfolio loss over a horizon of 100 days starting with today. L_{100}^{Δ} is the linearization of the above mentioned 100-day PF-portfolio loss.
Hint: For $Z \sim N(0,1)$ use the equality $F_{Z}^{-1}(0.99) \approx 2.3$,
3. Conditional Value at Risk $C V_{a} R_{\alpha}(L)$ (or Expected Shortfall (ES))
3. Conditional Value at Risk $C V_{a} R_{\alpha}(L)$ (or Expected Shorffall (ES))

A disadvantage of V aR: It tells nothing about the amount of loss in the case that a large loss $L \geq \operatorname{Va}_{\alpha}(L)$ happens.
3. Conditional Value at Risk $C V_{a} R_{\alpha}(L)$ (or Expected Shorffall (ESS))

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \geq V_{a} R_{\alpha}(L)$ happens.
Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_{L}. $C V_{a} R_{\alpha}(L):=E S_{\alpha}(L)=E\left(L \mid L \geq V_{a} R_{\alpha}(L)\right)$.
3. Conditional Value at Risk $C V_{a} R_{\alpha}(L)$ (or Expected Shortfall (ES))

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \geq \operatorname{VaR}_{\alpha}(L)$ happens.
Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_{L}.
$C V_{a} R_{\alpha}(L):=E S_{\alpha}(L)=E\left(L \mid L \geq V_{a} R_{\alpha}(L)\right)$.
If F_{L} is continuous:
$C V_{a} R_{\alpha}(L)=E\left(L \mid L \geq \operatorname{Va}_{\alpha}(L)\right)=\frac{E\left(\left.L\right|_{\left.q_{\alpha}(L), \infty\right)}(L)\right)}{P\left(L \geq q_{\alpha}(L)\right)}=$
$\frac{1}{1-\alpha} E\left(L I_{\left[q_{\alpha}(L), \infty\right)}\right)=\frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} I d F_{L}(I)$
I_{A} is the indicator function of the set $A: I_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}$
3. Conditional Value at Risk $C V_{a} R_{\alpha}(L)$ (or Expected Shortfall (ES))

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \geq \operatorname{VaR}_{\alpha}(L)$ happens.
Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_{L}.
$C V_{a} R_{\alpha}(L):=E S_{\alpha}(L)=E\left(L \mid L \geq V_{a} R_{\alpha}(L)\right)$.
If F_{L} is continuous:
$C V_{a} R_{\alpha}(L)=E\left(L \mid L \geq \operatorname{Va}_{\alpha}(L)\right)=\frac{E\left(\left.L\right|_{\left.q_{\alpha}(L), \infty\right)}(L)\right)}{P\left(L \geq q_{\alpha}(L)\right)}=$
$\frac{1}{1-\alpha} E\left(L L_{\left[q_{\alpha}(L), \infty\right)}\right)=\frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} I d F_{L}(I)$
I_{A} is the indicator function of the set $A: I_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}$
If F_{L} is discrete the generalized $C V a R$ is defined as follows:
$G C V_{a} R_{\alpha}(L):=\frac{1}{1-\alpha}\left[E\left(L I_{\left[q_{\alpha}(L), \infty\right)}\right)+q_{\alpha}\left(1-\alpha-P\left(L>q_{\alpha}(L)\right)\right)\right]$
3. Conditional Value at Risk $C V_{a} R_{\alpha}(L)$ (or Expected Shortfall (ES))

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \geq V_{a} R_{\alpha}(L)$ happens.
Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_{L}.
$C V_{a} R_{\alpha}(L):=E S_{\alpha}(L)=E\left(L \mid L \geq V_{a} R_{\alpha}(L)\right)$.
If F_{L} is continuous:
$C \operatorname{VaR}_{\alpha}(L)=E\left(L \mid L \geq \operatorname{Va}_{\alpha}(L)\right)=\frac{E\left(\left.L\right|_{\left.q_{\alpha}(L), \alpha\right)}(L)\right)}{P\left(L \geq q_{\alpha}(L)\right)}=$
$\frac{1}{1-\alpha} E\left(L L_{\left[q_{\alpha}(L), \infty\right)}\right)=\frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} I d F_{L}(I)$
I_{A} is the indicator function of the set $A: I_{A}(x)= \begin{cases}1 & x \in A \\ 0 & x \notin A\end{cases}$
If F_{L} is discrete the generalized $C V a R$ is defined as follows:
$G C V_{a} R_{\alpha}(L):=\frac{1}{1-\alpha}\left[E\left(L I_{\left[q_{\alpha}(L), \infty\right)}\right)+q_{\alpha}\left(1-\alpha-P\left(L>q_{\alpha}(L)\right)\right)\right]$
Lemma Let α be a given confidence level and L a continuous loss function with distribution F_{L}.
Then $\operatorname{CVaR}_{\alpha}(L)=\frac{1}{1-\alpha} \int_{\alpha}^{1} \operatorname{Va} R_{p}(L) d p$ holds.

Conditional Value at Risk (contd.)

Example 1:

(a) Let $L \sim \operatorname{Exp}(\lambda)$. Compute $C V a R_{\alpha}(L)$.
(b) Let the distribution function F_{L} of the loss function L be given as follows : $F_{L}(x)=1-(1+\gamma x)^{-1 / \gamma}$ for $x \geq 0$ and $\gamma \in(0,1)$. Compute $\mathrm{CVa}_{\alpha}(\mathrm{L})$.

Conditional Value at Risk (contd.)

Example 1:

(a) Let $L \sim \operatorname{Exp}(\lambda)$. Compute $C V_{a} R_{\alpha}(L)$.
(b) Let the distribution function F_{L} of the loss function L be given as follows : $F_{L}(x)=1-(1+\gamma x)^{-1 / \gamma}$ for $x \geq 0$ and $\gamma \in(0,1)$. Compute $\mathrm{CVaR}_{\alpha}(\mathrm{L})$.

Example 2:

Let $L \sim N(0,1)$. Let ϕ und Φ be the density and the distribution function of L, respectively. Show that $C V a R_{\alpha}(L)=\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{1-\alpha}$ holds.
Let $L^{\prime} \sim N\left(\mu, \sigma^{2}\right)$. Show that $C \operatorname{Va} R_{\alpha}\left(L^{\prime}\right)=\mu+\sigma \frac{\phi\left(\Phi^{-1}(\alpha)\right)}{1-\alpha}$ holds.

Conditional Value at Risk (contd.)

Example 1:

(a) Let $L \sim \operatorname{Exp}(\lambda)$. Compute $C V a R_{\alpha}(L)$.
(b) Let the distribution function F_{L} of the loss function L be given as follows : $F_{L}(x)=1-(1+\gamma x)^{-1 / \gamma}$ for $x \geq 0$ and $\gamma \in(0,1)$. Compute $\mathrm{CVaR}_{\alpha}(\mathrm{L})$.

Example 2:

Let $L \sim N(0,1)$. Let ϕ und Φ be the density and the distribution function of L, respectively. Show that $C V_{a} R_{\alpha}(L)=\frac{\phi\left(\Phi^{-1}(\alpha)\right)}{1-\alpha}$ holds.
Let $L^{\prime} \sim N\left(\mu, \sigma^{2}\right)$. Show that $\operatorname{CVa}_{\alpha}\left(L^{\prime}\right)=\mu+\sigma \frac{\phi\left(\Phi^{-1}(\alpha)\right)}{1-\alpha}$ holds.

Exercise:

Let the loss L be distributed according to the Student's t-distribution with $\nu>1$ degrees of freedom. The density of L is

$$
g_{\nu}(x)=\frac{\Gamma((\nu+1) / 2)}{\sqrt{\nu \pi} \Gamma(\nu / 2)}\left(1+\frac{x^{2}}{\nu}\right)^{-(\nu+1) / 2}
$$

Show that $\operatorname{CVa}_{\alpha}(L)=\frac{g_{\nu}\left(t_{\nu}^{-1}(\alpha)\right)}{1-\alpha}\left(\frac{\nu+\left(t_{\nu}^{-1}(a)\right)^{2}}{\nu-1}\right)$, where t_{ν} is the distribution function of L.

Methods for the computation of VaR und CVaR

Consider the portfolio value $V_{m}=f\left(t_{m}, Z_{m}\right)$, where Z_{m} is the vector of risk factors.

Let the loss function over the interval $\left[t_{m}, t_{m+1}\right]$ be given as $L_{m+1}={ }_{[m]}\left(X_{m+1}\right)$, where X_{m+1} is the vector of the risk factor changes, i.e.

$$
X_{m+1}=Z_{m+1}-Z_{m}
$$

Consider observations (historical data) of risk factor values Z_{m-n+1}, \ldots, Z_{m}.
How to use these data to compute/estimate $\operatorname{VaR}\left(L_{m+1}\right), C V a R\left(L_{m+1}\right)$?

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.
The empirical distribution function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{\left[x_{k},+\infty\right)}(x)
$$

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.
The empirical distribution function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{\left[x_{k},+\infty\right)}(x)
$$

The empirical quantile

$$
q_{\alpha}\left(F_{n}\right)=\inf \left\{x \in \mathbb{R}: F_{n}(x) \geq \alpha\right\}=F_{n}^{\leftarrow}(\alpha)
$$

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.
The empirical distribution function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{\left[x_{k},+\infty\right)}(x)
$$

The empirical quantile

$$
q_{\alpha}\left(F_{n}\right)=\inf \left\{x \in \mathbb{R}: F_{n}(x) \geq \alpha\right\}=F_{n}^{\leftarrow}(\alpha)
$$

Assumption: $x_{1}>x_{2}>\ldots>x_{n}$. Then $q_{\alpha}\left(F_{n}\right)=x_{[n(1-\alpha)]+1}$ holds, where $[y]:=\sup \{n \in \mathbb{N}: n \leq y\}$ for every $y \in \mathbb{R}$.

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.
The empirical distribution function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{\left[x_{k},+\infty\right)}(x)
$$

The empirical quantile

$$
q_{\alpha}\left(F_{n}\right)=\inf \left\{x \in \mathbb{R}: F_{n}(x) \geq \alpha\right\}=F_{n}^{\leftarrow}(\alpha)
$$

Assumption: $x_{1}>x_{2}>\ldots>x_{n}$. Then $q_{\alpha}\left(F_{n}\right)=x_{[n(1-\alpha)]+1}$ holds, where $[y]:=\sup \{n \in \mathbb{N}: n \leq y\}$ for every $y \in \mathbb{R}$.
Lemma
Let $\hat{q}_{\alpha}(F):=q_{\alpha}\left(F_{n}\right)$ and let F be a strictly increasing function. Then $\lim _{n \rightarrow \infty} \hat{q}_{\alpha}(F)=q_{\alpha}(F)$ holds $\forall \alpha \in(0,1)$, i.e. the estimator $\hat{q}_{\alpha}(F)$ is consistent.

The empirical VaR and the empirical CVaR

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample of i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F.
The empirical distribution function

$$
F_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} I_{\left[x_{k},+\infty\right)}(x)
$$

The empirical quantile

$$
q_{\alpha}\left(F_{n}\right)=\inf \left\{x \in \mathbb{R}: F_{n}(x) \geq \alpha\right\}=F_{n}^{\leftarrow}(\alpha)
$$

Assumption: $x_{1}>x_{2}>\ldots>x_{n}$. Then $q_{\alpha}\left(F_{n}\right)=x_{[n(1-\alpha)]+1}$ holds, where $[y]:=\sup \{n \in \mathbb{N}: n \leq y\}$ for every $y \in \mathbb{R}$.
Lemma
Let $\hat{q}_{\alpha}(F):=q_{\alpha}\left(F_{n}\right)$ and let F be a strictly increasing function. Then $\lim _{n \rightarrow \infty} \hat{q}_{\alpha}(F)=q_{\alpha}(F)$ holds $\forall \alpha \in(0,1)$, i.e. the estimator $\hat{q}_{\alpha}(F)$ is consistent.
The empirical estimator of CVaR is $\widehat{\mathrm{CVaR}}_{\alpha}(F)=\frac{\sum_{k=1}^{[(1-\alpha)]+1} x_{k}}{[(n(1-\alpha)]+1}$

A non-parametric bootstrapping approach to compute the confidence interval for the estimator

A non-parametric bootstrapping approach to compute the confidence interval for the estimator

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. with distribution function F and let $x_{1}>x_{2}>\ldots>x_{n}$ be an ordered sample of F.

A non-parametric bootstrapping approach to compute the confidence interval for the estimator

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. with distribution function F and let $x_{1}>x_{2}>\ldots>x_{n}$ be an ordered sample of F.
Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta=q_{\alpha}(F)$, and the corresponding confidence interval.

A non-parametric bootstrapping approach to compute the confidence interval for the estimator

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. with distribution function F and let $x_{1}>x_{2}>\ldots>x_{n}$ be an ordered sample of F.
Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta=q_{\alpha}(F)$, and the corresponding confidence interval.
Let $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$ be an estimator of θ, e.g. $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)=x_{[(n(1-\alpha)]+1}$ $\theta=q_{\alpha}(F)$.
The required confidence interval is an (a, b) with $a=a\left(x_{1}, \ldots, x_{n}\right)$ u. $b=b\left(x_{1}, \ldots, x_{n}\right)$, such that $P(a<\theta<b)=p$, for a given confidence level p.

A non-parametric bootstrapping approach to compute the confidence interval for the estimator

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. with distribution function F and let $x_{1}>x_{2}>\ldots>x_{n}$ be an ordered sample of F.
Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta=q_{\alpha}(F)$, and the corresponding confidence interval.
Let $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)$ be an estimator of θ, e.g. $\hat{\theta}\left(x_{1}, \ldots, x_{n}\right)=x_{[(n(1-\alpha)]+1}$ $\theta=q_{\alpha}(F)$.
The required confidence interval is an (a, b) with $a=a\left(x_{1}, \ldots, x_{n}\right)$ u. $b=b\left(x_{1}, \ldots, x_{n}\right)$, such that $P(a<\theta<b)=p$, for a given confidence level p.

Case I: F is known.
Generate N samples $\tilde{x}_{1}^{(i)}, \tilde{x}_{2}^{(i)}, \ldots, \tilde{x}_{n}^{(i)}, 1 \leq i \leq N$, by simulation from F (N should be large)
Let $\tilde{\theta}_{i}=\hat{\theta}\left(\tilde{x}_{1}^{(i)}, \tilde{x}_{2}^{(i)}, \ldots, \tilde{x}_{n}^{(i)}\right), 1 \leq i \leq N$.

Case I (cont.)

The empirical distribution function of $\hat{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is given as

$$
F_{N}^{\hat{\theta}}:=\frac{1}{N} \sum_{i=1}^{N} I_{\left.\tilde{\theta}_{i}, \infty\right)}
$$

and it tends to $F^{\hat{\theta}}$ for $N \rightarrow \infty$.
The required conficence interval is given as

$$
\left(q_{\frac{1-p}{2}}\left(F_{N}^{\hat{\theta}}\right), q_{\frac{1+p}{2}}\left(F_{N}^{\hat{\theta}}\right)\right)
$$

(assuming that the sample sizes N und n are large enough).

Case II: F is not known. Apply bootstrapping!
The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x) .
$$

For n large $F_{n} \approx F$ holds.

Case II: F is not known. Apply bootstrapping!
The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x) .
$$

For n large $F_{n} \approx F$ holds.
Generate samples from F_{n} be choosing n elementes in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$.

Case II: F is not known. Apply bootstrapping!
The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x) .
$$

For n large $F_{n} \approx F$ holds.
Generate samples from F_{n} be choosing n elementes in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$. Compute $\theta_{i}^{*}=\hat{\theta}\left(x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}\right)$.

Case II: F is not known. Apply bootstrapping!
The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x) .
$$

For n large $F_{n} \approx F$ holds.
Generate samples from F_{n} be choosing n elementes in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$. Compute $\theta_{i}^{*}=\hat{\theta}\left(x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}\right)$.
The empirical distribution of θ_{i}^{*} is given as $F_{N}^{\theta^{*}}(x)=\frac{1}{N} \sum_{i=1}^{N} I_{\left[\theta_{i}^{*}, \infty\right)}(x)$; it approximates the d.f. $F^{\hat{\theta}}$ of $\hat{\theta}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ for $N \rightarrow \infty$.

Case II: F is not known. Apply bootstrapping!
The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x) .
$$

For n large $F_{n} \approx F$ holds.
Generate samples from F_{n} be choosing n elementes in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$. Compute $\theta_{i}^{*}=\hat{\theta}\left(x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}\right)$.
The empirical distribution of θ_{i}^{*} is given as $F_{N}^{\theta^{*}}(x)=\frac{1}{N} \sum_{i=1}^{N} I_{\left[\theta_{i}^{*}, \infty\right)}(x)$; it approximates the d.f. $F^{\hat{\theta}}$ of $\hat{\theta}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ for $N \rightarrow \infty$.
A confidence interval (a, b) with confidence level p is given by

$$
a=q_{(1-p) / 2}\left(F_{N}^{\theta^{*}}\right) \quad b=q_{(1+p) / 2}\left(F_{N}^{\theta^{*}}\right)
$$

Case II: F is not known. Apply bootstrapping!
The empirical distribution function of $X_{i}, 1 \leq i \leq n$, is given as

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I_{\left[x_{i}, \infty\right)}(x) .
$$

For n large $F_{n} \approx F$ holds.
Generate samples from F_{n} be choosing n elementes in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$. Compute $\theta_{i}^{*}=\hat{\theta}\left(x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}\right)$.
The empirical distribution of θ_{i}^{*} is given as $F_{N}^{\theta^{*}}(x)=\frac{1}{N} \sum_{i=1}^{N} I_{\left[\theta_{i}^{*}, \infty\right)}(x)$; it approximates the d.f. $F^{\hat{\theta}}$ of $\hat{\theta}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ for $N \rightarrow \infty$.
A confidence interval (a, b) with confidence level p is given by

$$
a=q_{(1-p) / 2}\left(F_{N}^{\theta^{*}}\right) \quad b=q_{(1+p) / 2}\left(F_{N}^{\theta^{*}}\right) .
$$

Thus $a=\theta_{[N(1+p) / 2]+1}^{*}, b=\theta_{[N(1-p) / 2]+1}^{*}$, where $\theta_{1}^{*} \geq \ldots \geq \theta_{N}^{*}$.

Summary of the non-parametric bootstrapping approach to

 compute confidence intervalsInput: Sample $x_{1}, x_{2}, \ldots, x_{n}$ of the i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$ with distribution function F and an estimator $\hat{\theta}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of an unknown parameter $\theta(F)$, A confidence level $p \in(0,1)$.
Output: A confidence interval I_{p} for θ with confidence level p.

- Generate N new Samples $x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}, 1 \leq i \leq N$, by chosing elements in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and putting them back right after the choice.
- Compute $\theta_{i}^{*}=\hat{\theta}\left(x_{1}^{*(i)}, x_{2}^{*(i)}, \ldots, x_{n}^{*(i)}\right)$.
- Setz $I_{p}:=\left(\theta_{[N(1+p) / 2]+1, N}^{*}, \theta_{[N(1-p) / 2]+1, N}^{*}\right)$, where $\theta_{1, N}^{*} \geq \theta_{2, N}^{*} \geq \ldots \theta_{N, N}^{*}$ is obtained by sorting $\theta_{1}^{*}, \theta_{2}^{*}, \ldots, \theta_{N}^{*}$.

An approximative solution without bootstrapping

An approximative solution without bootstrapping

Input: A sample $x_{1}, x_{2}, \ldots, x_{n}$ of the random variables $X_{i}, 1 \leq i \leq n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in(0,1)$.

An approximative solution without bootstrapping

Input: A sample $x_{1}, x_{2}, \ldots, x_{n}$ of the random variables $X_{i}, 1 \leq i \leq n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in(0,1)$.
Output: A $p^{\prime} \in(0,1)$, with $p \leq p^{\prime} \leq p+\epsilon$, for some small ϵ, and a confidence interval (a, b) for $q_{\alpha}(F)$, i.e. $a=a\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, $b=b\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, such that
$P\left(a<q_{\alpha}(F)<b\right)=p^{\prime}$ and $P\left(a \geq q_{\alpha}(F)\right)=P\left(b \leq q_{\alpha}(F)\right) \leq(1-p) / 2$ holds.

An approximative solution without bootstrapping

Input: A sample $x_{1}, x_{2}, \ldots, x_{n}$ of the random variables $X_{i}, 1 \leq i \leq n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in(0,1)$.
Output: A $p^{\prime} \in(0,1)$, with $p \leq p^{\prime} \leq p+\epsilon$, for some small ϵ, and a confidence interval (a, b) for $q_{\alpha}(F)$, i.e. $a=a\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, $b=b\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, such that
$P\left(a<q_{\alpha}(F)<b\right)=p^{\prime}$ and $P\left(a \geq q_{\alpha}(F)\right)=P\left(b \leq q_{\alpha}(F)\right) \leq(1-p) / 2$ holds.

Assume w.l.o.g. that the sample is sorted $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$.
Determine $i>j, i, j \in\{1,2, \ldots, n\}$, and the smallest $p^{\prime}>p$, such that

$$
\begin{gathered}
P\left(x_{i}<q_{\alpha}(F)<x_{j}\right)=p^{\prime} \quad(*) \quad \text { and } \\
P\left(x_{i} \geq q_{\alpha}(F)\right) \leq(1-p) / 2 \text { and } P\left(x_{j} \leq q_{\alpha}(F)\right) \leq(1-p) / 2(* *) .
\end{gathered}
$$

An approximative solution without bootstrapping (contd.)
Let $Y_{\alpha}:=\#\left\{x_{k}: x_{k}>q_{\alpha}(F)\right\}$

An approximative solution without bootstrapping (contd.)
Let $Y_{\alpha}:=\#\left\{x_{k}: x_{k}>q_{\alpha}(F)\right\}$
We get $P\left(x_{j} \leq q_{\alpha}(F)\right) \approx P\left(x_{j}<q_{\alpha}(F)\right)=P\left(Y_{\alpha} \leq j-1\right)$
$P\left(x_{i} \geq q_{\alpha}(F)\right) \approx P\left(x_{i}>q_{\alpha}(F)\right)=1-P\left(Y_{\alpha} \leq i-1\right)$

An approximative solution without bootstrapping (contd.)
Let $Y_{\alpha}:=\#\left\{x_{k}: x_{k}>q_{\alpha}(F)\right\}$
We get $P\left(x_{j} \leq q_{\alpha}(F)\right) \approx P\left(x_{j}<q_{\alpha}(F)\right)=P\left(Y_{\alpha} \leq j-1\right)$
$P\left(x_{i} \geq q_{\alpha}(F)\right) \approx P\left(x_{i}>q_{\alpha}(F)\right)=1-P\left(Y_{\alpha} \leq i-1\right)$
$Y_{\alpha} \sim \operatorname{Bin}(n, 1-\alpha)$ since $\operatorname{Prob}\left(x_{k} \geq q_{\alpha}(F)\right) \approx 1-\alpha$ for a sample point x_{k}.

An approximative solution without bootstrapping (contd.)
Let $Y_{\alpha}:=\#\left\{x_{k}: x_{k}>q_{\alpha}(F)\right\}$
We get $P\left(x_{j} \leq q_{\alpha}(F)\right) \approx P\left(x_{j}<q_{\alpha}(F)\right)=P\left(Y_{\alpha} \leq j-1\right)$
$P\left(x_{i} \geq q_{\alpha}(F)\right) \approx P\left(x_{i}>q_{\alpha}(F)\right)=1-P\left(Y_{\alpha} \leq i-1\right)$
$Y_{\alpha} \sim \operatorname{Bin}(n, 1-\alpha)$ since $\operatorname{Prob}\left(x_{k} \geq q_{\alpha}(F)\right) \approx 1-\alpha$ for a sample point x_{k}.

Compute $P\left(x_{j} \leq q_{\alpha}(F)\right)$ and $P\left(x_{i} \geq q_{\alpha}(F)\right)$ for different i and j until indices $i, j \in\{1,2, \ldots, n\}, i>j$, which fulfill $(* *)$ are found.

An approximative solution without bootstrapping (contd.)
Let $Y_{\alpha}:=\#\left\{x_{k}: x_{k}>q_{\alpha}(F)\right\}$
We get $P\left(x_{j} \leq q_{\alpha}(F)\right) \approx P\left(x_{j}<q_{\alpha}(F)\right)=P\left(Y_{\alpha} \leq j-1\right)$
$P\left(x_{i} \geq q_{\alpha}(F)\right) \approx P\left(x_{i}>q_{\alpha}(F)\right)=1-P\left(Y_{\alpha} \leq i-1\right)$
$Y_{\alpha} \sim \operatorname{Bin}(n, 1-\alpha)$ since $\operatorname{Prob}\left(x_{k} \geq q_{\alpha}(F)\right) \approx 1-\alpha$ for a sample point x_{k}.

Compute $P\left(x_{j} \leq q_{\alpha}(F)\right)$ and $P\left(x_{i} \geq q_{\alpha}(F)\right)$ for different i and j until indices $i, j \in\{1,2, \ldots, n\}, i>j$, which fulfill $(* *)$ are found.

Set $b:=x_{j}$ and $a:=x_{i}$.

