
Risk and Management: Goals and Perspective

Etymology: Risicare

Risk (Oxford English Dictionary): (Exposure to) the possibility of loss,
injury, or other adverse or unwelcome circumstance; a chance or situation
involving such a possibility.
Finance: The possibility that an actual return on an investment will be
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injury, or other adverse or unwelcome circumstance; a chance or situation
involving such a possibility.
Finance: The possibility that an actual return on an investment will be
lower than the expected return.

Risk management: is the identification, assessment, and prioritization
of risks followed by coordinated and economical application of resources
to minimize, monitor, and control the probability and/or impact of
unfortunate events or to maximize the realization of opportunities.
Risk management’s objective is to assure uncertainty does not deflect the
endeavor from the business goals.



Risk and Management: Goals and Perspective

Subject of risk managment:

◮ Identification of risk sources (determination of exposure)

◮ Assessment of risk dependencies

◮ Measurement of risk

◮ Handling with risk

◮ Control and supervision of risk

◮ Monitoring and early detection of risk

◮ Development of a well structured risk management system



Risk and Management: Goals and Perspective

Main questions addressed by strategic risk managment:

◮ Which are the strategic risks?

◮ Which risks should be carried by the company?

◮ Which instruments should be used to control risk?

◮ What resources are needed to cover for risk?

◮ What are the risk adjusted measures of success used as steering
mechanisms?



Example:
Start capital V0 = 100
Game: lose or gain e 50 with probability 1/2, respectively.
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Game: lose or gain e 50 with probability 1/2, respectively.

The capital after the game is 150 or 50 with probability 0.5 each.
Let X := V1 − V0 be the gain and let L := V0 − V1 be the loss. The
distribution function of the random variable X (L) is called gain
distribution (GD) (loss distribution (LD)).

L ≥ 0 ⇒ Risk!

Some people prefer no gain and no loss with certainty rather than either
gain or loss with a probability of 1/2 each. They are risk averse.

The decision to play or not depends on the LD, which is generally
unknown.
Instead of knowledge about the LD the player would rather prefer to have
a number telling her/him how risky is the game!

Definition: A risk measure ρ is a mapping from the random variables
(r.v.) to the reals which assigns each r.v. L a real number ρ(L) ∈ IR .

Examples: standard deviation, quantile of the loss distribution, . . .



Types of risk

For an organization risk arises through events or activities which could
prevent the organization from fulfilling its goals and executing its
strategies.

Financial risk:

◮ Market risk

◮ Credit risk

◮ Operational risk

◮ Liquidity risk, legal (judicial) risk, reputational risk

The goal is to estimate these risks as precisely as possible, ideally based
on the loss distribution (LD).



Regulation and supervision

1974: Establishment of Basel Committee on Banking Supervision
(BCBS).

◮ Risk capital depending on GD/LD.

◮ Suggestions and guidelines on the requirements and methods used
to compute the risk capital. Aims at internationally accepted
standards for the computation of the risk capital and statutory
dispositions based on those standards.

◮ Control by the supervision agency.



Regulation and supervision: Historical view

1988 Basel I: International minimum capital requirements especially with
respect to (w.r.t.) credit risk.

1996 Standardised models for the assessment of market risk with an
option to use value at risk (VaR) models in larger banks

2007 Basel II: minimum capital requirements w.r.t. credit risk, market
risk and operational risk, procedure of control by supervision
agencies, market discipline (see http://www.bis.org).

2010 BASEL III - Improvement and further development of BASEL II
w.r.t. applicability, operational risk und liquidity risk

2017 BASEL IV - new standards for the computation of the minimum
capital requirements including a standartized lower bound for
risk-weighted assets
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Loss operators
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Loss operators
V (t) - Value of portfolio at time t
Time unit ∆t
Loss in time interval [t, t +∆t]: L[t,t+∆t] := −(V (t +∆t)− V (t))
Discretisation of time: tn := n∆t, n = 0, 1, 2, . . .

Ln+1 := L[tn,tn+1] = −(Vn+1 − Vn), where Vn := V (n∆t)

Example: An asset portfolio
The portfolio consists of αi units of asset Ai with price Sn,i at time tn,
i = 1, 2, . . . , d .
The portfolio value at time tn is Vn =

∑d
i=1 αiSn,i

Let Zn,i := ln Sn,i , Xn+1,i := ln Sn+1,i − ln Sn,i
Let wn,i := αiSn,i/Vn, i = 1, 2, . . . , d , be the relative portfolio weights.



Loss operator of an asset portfolio (cont.)

The following holds:

Ln+1 := −
d∑

i=1

αiSn,i

(
exp{Xn+1,i} − 1

)
=

−Vn

d∑

i=1

wn,i

(
exp{Xn+1,i} − 1

)
=: ln(Xn+1)



Loss operator of an asset portfolio (cont.)

The following holds:

Ln+1 := −
d∑

i=1

αiSn,i

(
exp{Xn+1,i} − 1

)
=

−Vn

d∑

i=1

wn,i

(
exp{Xn+1,i} − 1

)
=: ln(Xn+1)

Linearisation ex = 1 + x + o(x2) ∼ 1 + x implies

L∆n+1 = −Vn

d∑

i=1

wn,iXn+1,i =: l∆n (Xn+1),

where Ln+1 (L∆n+1]) is the (linearised) loss function and ln (l∆n ) is the

(linearised) loss operator.



The general case
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factors
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(
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)
=: ln(Xn+1), where
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(
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)
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The linearised loss:

L∆n+1 = −
(
ft(tn,Zn)∆t +

∑d
i=1 fzi (tn,Zn)Xn+1,i

)
,

where ft and fzi are the partial derivatives of f .

The linearised loss operator:

l∆n (x) := −
(
ft(tn,Zn)∆t +

∑d
i=1 fzi (tn,Zn)xi

)
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An European call option (ECO) on a certain asset S grants its holder
the right but not the obligation to buy asset S at a specified day T
(execution day) and at a specified price K (strike price). The option is
bought by the owner at a certain price at day 0.

Value of ECO at time t: C (t) = max{S(t)− K , 0},
where S(t) is the market price of asset S at time t.

A zero-coupon bond (ZCB) with maturity T is a contract, which gives
the holder of the contract e 1 at time T . The price of the contract at
time t is denoted by B(t,T ). By definition B(T ,T ) = 1.

A currency forward or an FX forward (FXF) is a contract between two
parties to buy/sell an amount V̄ of a foreign currency at a future time T
for a specified exchange rate ē. The party who is going to buy the foreign
currency is said to hold a long position and the party who will sell holds a
short position.
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Consider a portfolio consisting of αi units of ZCB i with maturity Ti and
price B(t,Ti ), i = 1, 2, . . . , d .

Portfolio value at time tn:

Vn =
d∑

i=1

αiB(tn,Ti) =
d∑

i=1

αiexp{−(Ti − tn)Zn,i} = f (tn,Zn) ,

where Zn,i := y(tn,Ti) are the risk factors.

Let Xn+1,i := Zn+1,i − Zn,i be the risk factor changes.
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A bond portfolio (contd.)

l[n](x) = −
d∑

i=1

αiB(tn,Ti) (exp{Zn,i∆t − (Ti − tn+1)xi} − 1)

L∆n+1 = −
d∑

i=1

αiB(tn,Ti) (Zn,i∆t − (Ti − tn+1)Xn+1,i )

Example 2: A currency forward portfolio
The party who buys the foreign currency holds a long position. The
party who sells holds a short position.

Observation:
A long position over V̄ units of an FX forward with maturity T

is equivalent to
(1) a long position over V̄ units of a foreign zero-coupon bond (ZCB)
with maturity T and (2) a short position over ēV̄ units of a domestic
zero-coupon bond with maturity T .
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Assumptions:
Euro investor holds a long position of a USD/EUR forward over V̄ USD.
Let B f (t,T ) (Bd (t,T )) be the price of a USD based (EUR-based) ZCB.
Let e(t) be the spot exchange rate for USD/EUR.

Value of the long position of the FX forward at time T :
VT = V̄ (e(T )− ē).

The short position of the domestic ZCB can be handled as in the
case of a bond portfolio (previous example).

The long losition in the foreign ZCB
has risk factors: Zn = (ln e(tn), y

f (tn,T ))T .

Value of the long position (in Euro): Vn = V̄ exp{Zn,1 − (T − tn)Zn,2}
The linearized loss: L∆n+1 = −Vn(Zn,2∆t + Xn+1,1 − (T − tn+1)Xn+1,2)

with Xn+1,1 := ln e(tn+1)− ln e(tn) and Xn+1,2 := y f (tn+1,T )− y f (tn,T )
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Consider an ECO over an asset S with execution date T , price ST at
time T and strike price K .

Value of the ECO at time T : max{ST − K , 0}
Price of ECO at time t < T : C = C (t, S , r , σ) (Black-Scholes model),
where S is the price of the asset, r is the interest rate and σ is the
volatility, all of them at time t.

Risk factors: Zn = (ln Sn, rn, σn)
T ;
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A European call option (ECO)

Consider an ECO over an asset S with execution date T , price ST at
time T and strike price K .

Value of the ECO at time T : max{ST − K , 0}
Price of ECO at time t < T : C = C (t, S , r , σ) (Black-Scholes model),
where S is the price of the asset, r is the interest rate and σ is the
volatility, all of them at time t.

Risk factors: Zn = (ln Sn, rn, σn)
T ;

Risk factor changes: Xn+1 = (ln Sn+1 − ln Sn, rn+1 − rn, σn+1 − σn)
T

Portfolio value: Vn = C (tn, Sn, rn, σn) = C
(
tn, exp(Zn,1),Zn,2,Zn,3

)

The linearized loss:
L∆n+1 = −(Ct∆t + CSSnXn+1,1 + CrXn+1,2 + CσXn+1,3)

The greeks: Ct - theta, CS - delta, Cr - rho, Cσ - Vega
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Purpose of the risk management:

◮ Determination of the minimum regulatory capital:
i.e. the capital, needed to cover possible losses.

◮ As a management tool:
to determine the limits of the amount of risk a unit within the company may take

Elementary risk measures computed without assessing the loss
distribution

◮ Notational amount: weighted sum of notational values of individual securities weighted by a

prespecified factor for each asset class

e.g. in Basel I (1998):

Cooke Ratio=
regulatory capital
risk-weighted sum

≥ 8%

Gewicht :=



0% for claims on governments and supranationals (OECD)

20% claims on banks

50% claims on individual investors with mortgage securities

100% claims on the private sector

Disadvantages: no difference between long and short positions,
diversification effects are not considered
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◮ Coefficients of sensitivity with respect to risk factors

Portfolio value at time tn: Vn = f (tn,Zn),
Zn ist a vector of d risk factors

Sensitivity coefficients: fzi =
δf
δzi

(tn,Zn), 1 ≤ i ≤ d

Example: “The Greeks” of a portfolio are the sensitivity coefficients

Disadvantages: assessment of risk arising due to simultaneous
changes of different risk factors is difficult;
aggregation of risks arising in different markets is difficult;

◮ Scenario based risk measures: Let n be the number of possible risk
factor changes (= scenarios).

Let χ = {X1,X2, . . . ,XN} be the set of scenarios and l[n](·) the
portfolio loss operator.

Assign a weight wi to every scenario i , 1 ≤ i ≤ N

Portfolio risk:

Ψ[χ,w ] = max{w1l[n](X1),w2l[n](X2), . . . ,wN l[n](XN)}
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Example: SPAN rules applied at CME (see Artzner et al., 1999)

A portfolio consists of units of a certain future contract and put and call
options on the same contract with the same maturity.

Scenarios i , 1 ≤ i ≤ 14:

Scenarios 1 to 8 Scenarios 9 to 14
Volatility Price of the future Volatility Price of the future

ր ր 1
3 ∗ Range ր ց 1

3 ∗ Range
ց ր 2

3 ∗ Range ց ց 2
3 ∗ Range

ր 3
3 ∗ Range ց 3

3 ∗ Range
−→

Scenarios i , i = 15, 16 represent an extreme increase or decrease of the
future price, respectively. The weights are wi = 1, for i ∈ {1, 2, . . . , 14},
and wi = 0.35, for i ∈ {15, 16}.
An appropriate model (zB. Black-Scholes) is used to generate the option
prices in the different scenarios.
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Risk measures based on the loss distribution
Let FL := FLn+1 be the loss distribution of Ln+1.
The parameters of FL are estimated in terms of historical data, either
directly or in terms of risk factors.

1. The standard deviation std(L) :=
√
σ2(FL)

It is used frequently in portfolio theory.

Disadvantages:

◮ STD exists only for distributions with E (F 2
L ) < ∞, not

applicable to leptocurtic (“fat tailed”) loss distributions;
◮ gains and losses equally influence the STD.

Example

L1 ∼ N(0, 2), L2 ∼ t4 (Student’s t-distribution with m = 4 degrees of freedom)

σ2(L1) = 2 and σ2(L2) =
m

m−2 = 2 hold

However the probability of losses is much larger for L2 than for L1.

Plot the logarithm of the quotient ln[P(L2 > x)/P(L1 > x)]!
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Let L be the loss distribution with distribution function FL and let
α ∈ (0, 1) be a given confindence level.
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2. Value at Risk (VaRα(L))

Let L be the loss distribution with distribution function FL and let
α ∈ (0, 1) be a given confindence level.

VaRα(L): the smallest number l , such that P(L > l) ≤ 1− α holds.

VaRα(L) = inf{l ∈ IR : P(L > l) ≤ 1− α} =

inf{l ∈ IR : 1− FL(l) ≤ 1− α} = inf{l ∈ IR : FL(l) ≥ α}

BIS (Bank of International Settlements) suggests VaR0.99(L) over a
horizon of 10 days as a measure for the market risk of a portfolio.

Definition: Let F : A → B be an increasing function. The function
F← : B → A ∪ {−∞,+∞}, y 7→ inf{x ∈ IR : F (x) ≥ y} is called
generalized inverse function of F .

Notice that inf ∅ = ∞.

If F is strictly monotone increasing, then F−1 = F← holds.

Exercise: Compute F← for F : [0,+∞) → [0, 1] with

F (x) =

{
1/2 0 ≤ x < 1
1 1 ≤ x
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Value at Risk (contd.)

Let F : IR → IR be a (monotone increasing) distribution function and
qα(F ) := inf{x ∈ IR : F (x) ≥ α} be α-quantile of F .

For the loss function L and its distribution function F the following holds:

VaRα(L) = qα(F ) = F←(α).

Example: Let L ∼ N(µ, σ2). Then VaRα(L) = µ+ σqα(Φ) =
µ+ σΦ−1(α) holds, where Φ is the d.f. of a r.v. X ∼ N(0, 1).

Exercise: Consider a portfolio consisting of 5 pieces of an asset A. The
today’s price of A is S0 = 100. The daily logarithmic returns are i.i.d., i.e.
X1 = ln S1

S0
, X2 = ln S2

S1
,. . . ∼ N(0, 0.01). Let L1 be the 1-day portfolio

loss in the time interval (today, tomorrow).

(a) Compute VaR0.99(L1).

(b) Compute VaR0.99(L100) and VaR0.99(L
∆
100), where L100 is the

100-day portfolio loss over a horizon of 100 days starting with
today. L∆100 is the linearization of the above mentioned 100-day
PF-portfolio loss.

Hint: For Z ∼ N(0, 1) use the equality F−1Z (0.99) ≈ 2.3.
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loss distribution with distribution function FL.
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A disadvantage of VaR: It tells nothing about the amount of loss in
the case that a large loss L ≥ VaRα(L) happens.

Definition: Let α be a given confidence level and L a continuous
loss distribution with distribution function FL.
CVaRα(L) := ESα(L) = E (L|L ≥ VaRα(L)).

If FL is continuous:

CVaRα(L) = E (L|L ≥ VaRα(L)) =
E(LI[qα(L),∞)(L))

P(L≥qα(L)) =
1

1−αE (LI[qα(L),∞)) =
1

1−α

∫ +∞

qα(L) ldFL(l)

IA is the indicator function of the set A: IA(x) =

{
1 x ∈ A
0 x 6∈ A

If FL is discrete the generalized CVaR is defined as follows:

GCVaRα(L) :=
1

1− α

[
E (LI[qα(L),∞)) + qα

(
1− α− P(L > qα(L))

)]

Lemma Let α be a given confidence level and L a continuous loss
function with distribution FL.
Then CVaRα(L) =

1
1−α

∫ 1

α VaRp(L)dp holds.



Conditional Value at Risk (contd.)
Example 1:

(a) Let L ∼ Exp(λ). Compute CVaRα(L).

(b) Let the distribution function FL of the loss function L be given as
follows : FL(x) = 1− (1 + γx)−1/γ for x ≥ 0 and γ ∈ (0, 1).
Compute CVaRα(L).
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(b) Let the distribution function FL of the loss function L be given as
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Example 2:
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Conditional Value at Risk (contd.)
Example 1:

(a) Let L ∼ Exp(λ). Compute CVaRα(L).

(b) Let the distribution function FL of the loss function L be given as
follows : FL(x) = 1− (1 + γx)−1/γ for x ≥ 0 and γ ∈ (0, 1).
Compute CVaRα(L).

Example 2:
Let L ∼ N(0, 1). Let φ und Φ be the density and the distribution

function of L, respectively. Show that CVaRα(L) =
φ(Φ−1(α))

1−α holds.

Let L′ ∼ N(µ, σ2). Show that CVaRα(L
′) = µ+ σ φ(Φ−1(α))

1−α holds.
Exercise:
Let the loss L be distributed according to the Student’s t-distribution
with ν > 1 degrees of freedom. The density of L is

gν(x) =
Γ((ν + 1)/2)√

νπΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

Show that CVaRα(L) =
gν (t

−1
ν

(α))
1−α

(
ν+(t−1

ν
(a))2

ν−1

)
, where tν is the

distribution function of L.



Methods for the computation of VaR und CVaR

Consider the portfolio value Vm = f (tm,Zm), where Zm is the vector of
risk factors.

Let the loss function over the interval [tm, tm+1] be given as
Lm+1 = l[m](Xm+1), where Xm+1 is the vector of the risk factor changes,
i.e.

Xm+1 = Zm+1 − Zm.

Consider observations (historical data) of risk factor values
Zm−n+1, . . . ,Zm.
How to use these data to compute/estimate VaR(Lm+1), CVaR(Lm+1)?
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with distribution function F .
The empirical distribution function

Fn(x) =
1

n

n∑

k=1

I[xk ,+∞)(x)

The empirical quantile

qα(Fn) = inf{x ∈ IR : Fn(x) ≥ α} = F←n (α)

Assumption: x1 > x2 > . . . > xn. Then qα(Fn) = x[n(1−α)]+1 holds, where
[y ] := sup{n ∈ IN : n ≤ y} for every y ∈ IR.

Lemma

Let q̂α(F ) := qα(Fn) and let F be a strictly increasing function. Then
limn→∞ q̂α(F ) = qα(F ) holds ∀α ∈ (0, 1), i.e. the estimator q̂α(F ) is
consistent.

The empirical estimator of CVaR is ĈVaRα(F ) =
∑[n(1−α)]+1

k=1 xk
[(n(1−α)]+1
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A non-parametric bootstrapping approach to compute the
confidence interval for the estimator

Let X1,X2, . . . ,Xn be i.i.d. with distribution function F and let
x1 > x2 > . . . > xn be an ordered sample of F .

Goal: computation of an estimator of a certain parameter θ depending on
F , e.g. θ = qα(F ), and the corresponding confidence interval.

Let θ̂(x1, . . . , xn) be an estimator of θ, e.g. θ̂(x1, . . . , xn) = x[(n(1−α)]+1

θ = qα(F ).
The required confidence interval is an (a, b) with a = a(x1, . . . , xn) u.
b = b(x1, . . . , xn), such that P(a < θ < b) = p, for a given confidence
level p.

Case I: F is known.
Generate N samples x̃

(i)
1 , x̃

(i)
2 , . . . , x̃

(i)
n , 1 ≤ i ≤ N , by simulation from F

(N should be large)

Let θ̃i = θ̂

(
x̃
(i)
1 , x̃

(i)
2 , . . . , x̃

(i)
n

)
, 1 ≤ i ≤ N .



Case I (cont.)
The empirical distribution function of θ̂(x1, x2, . . . , xn) is given as

F θ̂
N :=

1

N

N∑

i=1

I[θ̃i ,∞)

and it tends to F θ̂ for N → ∞.

The required conficence interval is given as

(
q 1−p

2
(F θ̂

N), q 1+p
2
(F θ̂

N)

)

(assuming that the sample sizes N und n are large enough).
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For n large Fn ≈ F holds.
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The empirical distribution function of Xi , 1 ≤ i ≤ n, is given as

Fn(x) =
1

n

n∑

i=1

I[xi ,∞)(x).

For n large Fn ≈ F holds.

Generate samples from Fn be choosing n elementes in {x1, x2, . . . , xn}
and putting every element back to the set immediately after its choice

Assume N such samples are generated: x
∗(i)
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Compute θ∗i = θ̂

(
x
∗(i)
1 , x

∗(i)
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∗(i)
n

)
.

The empirical distribution of θ∗i is given as F θ∗

N (x) = 1
N

∑N

i=1 I[θ∗

i
,∞)(x);

it approximates the d.f. F θ̂ of θ̂(X1,X2, . . . ,Xn) for N → ∞.

A confidence interval (a, b) with confidence level p is given by

a = q(1−p)/2(F
θ∗

N ) b = q(1+p)/2(F
θ∗

N ) .

Thus a = θ∗[N(1+p)/2]+1, b = θ∗[N(1−p)/2]+1, where θ∗1 ≥ . . . ≥ θ∗N .



Summary of the non-parametric bootstrapping approach to
compute confidence intervals

Input: Sample x1, x2, . . . , xn of the i.i.d. random variables X1,X2, . . . ,Xn

with distribution function F and an estimator θ̂(x1, x2, . . . , xn) of an
unknown parameter θ(F ), A confidence level p ∈ (0, 1).

Output: A confidence interval Ip for θ with confidence level p.

◮ Generate N new Samples x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n , 1 ≤ i ≤ N , by

chosing elements in {x1, x2, . . . , xn} and putting them back right
after the choice.

◮ Compute θ∗i = θ̂

(
x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n

)
.

◮ Setz Ip :=

(
θ∗[N(1+p)/2]+1,N , θ

∗
[N(1−p)/2]+1,N

)
, where

θ∗1,N ≥ θ∗2,N ≥ . . . θ∗N,N is obtained by sorting θ∗1 , θ
∗
2 , . . . , θ

∗
N .
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Input: A sample x1, x2, . . . , xn of the random variables Xi , 1 ≤ i ≤ n,
i.i.d. with unknown continuous distribution function F , a confidence level
p ∈ (0, 1).
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confidence interval (a, b) for qα(F ), i.e. a = a(x1, x2, . . . , xn),
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P(a < qα(F ) < b) = p′ and P(a ≥ qα(F )) = P(b ≤ qα(F ) ≤ (1−p)/2 holds.



An approximative solution without bootstrapping

Input: A sample x1, x2, . . . , xn of the random variables Xi , 1 ≤ i ≤ n,
i.i.d. with unknown continuous distribution function F , a confidence level
p ∈ (0, 1).

Output: A p′ ∈ (0, 1), with p ≤ p′ ≤ p + ǫ, for some small ǫ, and a
confidence interval (a, b) for qα(F ), i.e. a = a(x1, x2, . . . , xn),
b = b(x1, x2, . . . , xn), such that

P(a < qα(F ) < b) = p′ and P(a ≥ qα(F )) = P(b ≤ qα(F ) ≤ (1−p)/2 holds.

Assume w.l.o.g. that the sample is sorted x1 ≥ x2 ≥ . . . ≥ xn.

Determine i > j , i , j ∈ {1, 2, . . . , n}, and the smallest p′ > p, such that

P

(
xi < qα(F ) < xj

)
= p′ (∗) and

P

(
xi ≥ qα(F )

)
≤ (1− p)/2 and P

(
xj ≤ qα(F )

)
≤ (1 − p)/2(∗∗).
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Yα ∼ Bin(n, 1 − α) since Prob(xk ≥ qα(F )) ≈ 1− α for a sample point
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P(xi ≥ qα(F )) ≈ P(xi > qα(F )) = 1− P(Yα ≤ i − 1)

Yα ∼ Bin(n, 1 − α) since Prob(xk ≥ qα(F )) ≈ 1− α for a sample point
xk .

Compute P(xj ≤ qα(F )) and P(xi ≥ qα(F )) for different i and j until
indices i , j ∈ {1, 2, . . . , n}, i > j , which fulfill (∗∗) are found.



An approximative solution without bootstrapping (contd.)

Let Yα := #{xk : xk > qα(F )}

We get P(xj ≤ qα(F )) ≈ P(xj < qα(F )) = P(Yα ≤ j − 1)
P(xi ≥ qα(F )) ≈ P(xi > qα(F )) = 1− P(Yα ≤ i − 1)

Yα ∼ Bin(n, 1 − α) since Prob(xk ≥ qα(F )) ≈ 1− α for a sample point
xk .

Compute P(xj ≤ qα(F )) and P(xi ≥ qα(F )) for different i and j until
indices i , j ∈ {1, 2, . . . , n}, i > j , which fulfill (∗∗) are found.

Set b := xj and a := xi .



Possibilities to generate a sample of losses x1,. . .,xn

(i) Historical simulation
Let xm−n+1, . . . , xm be historical observations of the risk factor changes
Xm−n+1, . . . ,Xm;
the historically realized losses are given as lk = l[m](xm−k+1),
k = 1, 2, . . . , n,
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(i) Historical simulation
Let xm−n+1, . . . , xm be historical observations of the risk factor changes
Xm−n+1, . . . ,Xm;
the historically realized losses are given as lk = l[m](xm−k+1),
k = 1, 2, . . . , n,

Assumption: the historically realized losses are i.i.d.
The historically realized losses can be seen as a sample of the loss
distribution. Sort the historical losses to obtain l1,n ≥ l2,n ≥ . . . ≥ ln,n.

Empirical VaR: V̂aR = qα(F̂
L
n ) = l[n(1−α)]+1,n

Empirical CVaR: ĈVaR =
∑[n(1−α)]+1

i=1 li,n
[n(1−α)]+1 .

The aggregated loss over a given time interval
For example, for 10 time units, compute ⌊n/10⌋ aggregated loss

realizations l
(10)
k over the time intervals

[m − n + 10(k − 1) + 1,m− n + 10(k − 1) + 10], k = 1, . . . , ⌊n/10⌋:

l
(10)
k = l[m]

(
∑10

j=1 xm−n+10(k−1)+j

)
.

Then compute the empirical estimators of the risk measures.



Historical simulation (contd.)

Advantages:

◮ simple implementation

◮ considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xm−k = (Xm−k,1, . . . ,Xm−k,d ).



Historical simulation (contd.)

Advantages:

◮ simple implementation

◮ considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xm−k = (Xm−k,1, . . . ,Xm−k,d ).

Disadvantages:

◮ lots of historical data needed to get good estimators

◮ the estimated loss cannot be larger than the maximal loss
experienced in the past
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Estimator for VaR: V̂aR(Lm+1) = −VwT µ̂+ V
√

wT Σ̂wφ−1(α)
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The variance-covariance method (contd.)

Advantages:

◮ analytical solution

◮ simple implementation

◮ no simulationen needed

Disadvantages:

◮ Linearisation is not always appropriate, only for a short time horizon
reasonable

◮ The normal distribution assumption could lead to underestimation
of risks and should be argued upon (e.g. in terms of historical data)



(iii) Monte-Carlo approach

(1) historical observations of risk factor changes Xm−n+1, . . ., Xm.

(2) assumption on a parametric model for the cumulative distribution
function of Xk , m − n+ 1 ≤ k ≤ m;
e.g. a common distribution function F and independence

(3) estimation of the parameters of F .

(4) generation of N samples x̃1, x̃2, . . . , x̃N from F (N ≫ 1) and
computation of the losses lk = l[m](x̃k ), 1 ≤ k ≤ N

(5) computation of the empirical distribution of the loss function Lm+1:

F̂ Lm+1

N (x) =
1

N

N∑

k=1

I[lk ,∞)(x).

(5) computation of estimates for the VaR and CVAR of the loss

function: V̂aR(Lm+1) = (F̂ Lm+1

N

)
= l[N(1−α)]+1,N ,

ĈVaR(Lm+1) =
∑[N(1−α)]+1

k=1 lk,N
[N(1−α)]+1 ,

where the losses are sorted as l1,N ≥ l2,N ≥ . . . ≥ lN.N .
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Advantages:

◮ very flexible; can use any distribution F from which simulation is
possible

◮ time dependencies of the risk factor changes can be considered by
using time series
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Advantages:

◮ very flexible; can use any distribution F from which simulation is
possible

◮ time dependencies of the risk factor changes can be considered by
using time series

Disadvantages:

◮ computationally expensive; a large number of simulations needed to
obtain good estimates
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Example: The portfolio consists of one unit of asset S with price be St
at time t. The risk factor changes Xk+1 = ln(Stk+1

)− ln(Stk ) are i.i.d.
with distribution function Fθ for some unknown parameter θ.
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The VaR of the portfolio over [tk , tk+1] is given as

VaRα(Ltk+1) = S

(
1− exp{F←θ (1− α)}

)
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Depending on Fθ it can be complicated or impossible to compute CVaR
analytically.



Monte-Carlo approach

Example: The portfolio consists of one unit of asset S with price be St
at time t. The risk factor changes Xk+1 = ln(Stk+1

)− ln(Stk ) are i.i.d.
with distribution function Fθ for some unknown parameter θ.

θ can be estimated by means of historical data (e.g. maximum likelihood
approaches)

Let the price at time tk be S := Stk
The VaR of the portfolio over [tk , tk+1] is given as

VaRα(Ltk+1) = S

(
1− exp{F←θ (1− α)}

)
.

Depending on Fθ it can be complicated or impossible to compute CVaR
analytically.

Alternative: Monte-Carlo simulation.
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A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):
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where Zk , k ∈ IN, are i.i.d. and standard normally distributed, and a0,a1
and b1 are parameters, which should be estimated.



Example (contd.)

A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xk+1 = σk+1Zk+1 (1)

σ2
k+1 = a0 + a1X

2
k + b1σ

2
k (2)

where Zk , k ∈ IN, are i.i.d. and standard normally distributed, and a0,a1
and b1 are parameters, which should be estimated.

It is simple to simulate from this model.


