
Monte Carlo methods in credit risk management



Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits.
The loss function is L =

∑m
i=1 Li and the single credit losses Li are

independent conditioned on a vector Z of economical impact factors.



Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits.
The loss function is L =

∑m
i=1 Li and the single credit losses Li are

independent conditioned on a vector Z of economical impact factors.

Goal: Determine VaRα(L) = qα(L), CVaRα = E (L|L > qα(L)),
CVaRi ,α = E (Li |L > qα(L)), for all i .



Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits.
The loss function is L =

∑m
i=1 Li and the single credit losses Li are

independent conditioned on a vector Z of economical impact factors.

Goal: Determine VaRα(L) = qα(L), CVaRα = E (L|L > qα(L)),
CVaRi ,α = E (Li |L > qα(L)), for all i .

Application of Monte Carlo (MC) simulation has to deal with the
simulation of rare events!
E.g. for α = 0, 99 only 1% of the standard MC simulations will lead to a
loss L, such that L > qα(L).



Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits.
The loss function is L =

∑m
i=1 Li and the single credit losses Li are

independent conditioned on a vector Z of economical impact factors.

Goal: Determine VaRα(L) = qα(L), CVaRα = E (L|L > qα(L)),
CVaRi ,α = E (Li |L > qα(L)), for all i .

Application of Monte Carlo (MC) simulation has to deal with the
simulation of rare events!
E.g. for α = 0, 99 only 1% of the standard MC simulations will lead to a
loss L, such that L > qα(L).

The standard MC estimator is:
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α (L) is unstable, i.e. it has a very high variance, if the number
of simulation runs is not very high.
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xi is the realization of Xi , i ∈ 1, n.

The strong low of large numbers implies lim
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θ̂(MC)
n = θ almost surely.

In case of rare events, e.g. h(x) = IA(x) with P(A) << 1, the
convergence is very slow.
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n = 1

n

∑n

i=1 h(xi )r(xi ), where xi is the

realization of Xi , i ∈ 1, n.

g is called importance sampling density (IS density).

Goal: choose an IS density g such that the variance of the IS estimator is
much smaller than the variance of the standard MC-estimator.

var
(

θ̂(IS)n

)

=
1

n2
(Eg (h

2(X )r2(X )) − θ2)

var
(

θ̂(MC)
n

)

=
1

n2
(E (h2(X )) − θ2)
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(A unique solution of the above equality exists for all relevant values of c ,
see e.g. Embrechts et al. for a proof).
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Define a probability measure Qt in (Ω,F), such that
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The IS algorithm does not change: Simulate independent realisations of

Xi in (Ω,F ,Qt) and set θ̂
(IS)
n = (1/n)

∑n

i=1 xi rt(xi ), where xi is the
realizations of Xi , for i ∈ 1, n.
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Yi are the loss indicators with default probability p̄i and ei = (1 − λi )Li
are the positive deterministic exposures in the case that a corresponding
loss happens. λi are the recovery rates and Li are the credit nominals, for
i = 1, 2, . . . ,m.

Let Z be a vector of economical impact factors, such that Yi |Z are
independent and Yi |(Z = z) ∼ Bernoulli(pi (z)), ∀i = 1, 2, . . . ,m.

Goal: Estimation of θ = P(L ≥ c) by means of IS, for some given c with
c >> E (L).

Simplified case: Yi are independent for i = 1, 2, . . . ,m.
Let Ω = {0, 1}m be the state space of the random vector Y .
Consider the probability measure P in Ω:

P({y}) =

m
∏

i=1

P(Yi = yi ) =

m
∏

i=1

p̄
yi
i (1− p̄i )

1−yi , for all y ∈ {0, 1}m.

The moment generating function of L is
ML(t) = E (etL) =

∏m
i=1(e

tei p̄i + 1− p̄i).



IS in the case of Bernoulli mixture models (contd.)
Consider a probability measure Qt :
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n
∏

i=1

(

exp{teiyi}

exp{tei}p̄i + 1− p̄i
p̄
yi
i (1− p̄i )

1−yi

)
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Let q̄t,i be new default probabilities

q̄t,i := exp{tei}p̄i/(exp{tei}p̄i + 1− p̄i ).

We have Qt({y}) =
∏m

i=1 q̄
yi
i (1 − q̄i)

1−yi , for y ∈ {0, 1}m.

Thus after applying the exponential tilting the default indicators are
independent with new default probabilities q̄t,i .

limt→∞ q̄t,i = 1 and limt→−∞ q̄t,i = 0 imply that EQt (L) takes all values
in (0,

∑m

i=1 ei ) for t ∈ R.

Choose t, such that
∑m

i=1 ei q̄t,i = c .


