The probability generating function and its properties

The probability generating function and its properties
Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

Some properties of probability generating functions:

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

Some properties of probability generating functions:
(i) If $Y \sim \operatorname{Bernoulli}(p)$, then $g_{Y}(t)=1+p(t-1)$.

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

Some properties of probability generating functions:
(i) If $Y \sim \operatorname{Bernoulli}(p)$, then $g_{Y}(t)=1+p(t-1)$.
(ii) If $Y \sim \operatorname{Poisson}(\lambda)$, then $g_{Y}(t)=\exp \{\lambda(t-1)\}$.

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as
$g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.
Some properties of probability generating functions:
(i) If $Y \sim \operatorname{Bernoulli}(p)$, then $g_{Y}(t)=1+p(t-1)$.
(ii) If $Y \sim \operatorname{Poisson}(\lambda)$, then $g_{Y}(t)=\exp \{\lambda(t-1)\}$.
(iii) If the r.v. X_{1}, \ldots, X_{n} are independent, then

$$
g x_{1}+\ldots+X_{n}(t)=\prod_{i=1}^{n} g x_{i}(t) .
$$

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as
$g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.
Some properties of probability generating functions:
(i) If $Y \sim \operatorname{Bernoulli}(p)$, then $g_{Y}(t)=1+p(t-1)$.
(ii) If $Y \sim \operatorname{Poisson}(\lambda)$, then $g_{Y}(t)=\exp \{\lambda(t-1)\}$.
(iii) If the r.v. X_{1}, \ldots, X_{n} are independent, then

$$
g x_{1}+\ldots+X_{n}(t)=\prod_{i=1}^{n} g x_{i}(t) .
$$

(iv) Let Y be a r.v. with density function f and let $g_{X \mid Y=y}(t)$ be the pgf of $X \mid Y=y$. Then $g_{X}(t)=\int_{-\infty}^{\infty} g_{X \mid Y=y}(t) f(y) d y$.

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

Some properties of probability generating functions:
(i) If $Y \sim \operatorname{Bernoulli}(p)$, then $g_{Y}(t)=1+p(t-1)$.
(ii) If $Y \sim \operatorname{Poisson}(\lambda)$, then $g_{Y}(t)=\exp \{\lambda(t-1)\}$.
(iii) If the r.v. X_{1}, \ldots, X_{n} are independent, then

$$
g x_{1}+\ldots+X_{n}(t)=\prod_{i=1}^{n} g x_{i}(t) .
$$

(iv) Let Y be a r.v. with density function f and let $g_{X \mid Y=y}(t)$ be the pgf of $X \mid Y=y$. Then $g_{X}(t)=\int_{-\infty}^{\infty} g_{X \mid Y=y}(t) f(y) d y$.
(v) Let $g_{X}(t)$ be the pgf of X. Then $P(X=k)=\frac{1}{k!} g_{X}^{(k)}(0)$, where $g_{X}^{(k)}(t)=\frac{d^{k} g_{X}(t)}{d t^{k}}$.

The pgf of the loss distribution

The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss unit L_{0} (e.g. $L_{o}=10^{6}$ Euro):

The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss unit L_{0} (e.g. $L_{o}=10^{6}$ Euro):
$L G D_{i}=\left(1-\lambda_{i}\right) L_{i} \approx\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right] L_{0}=v_{i} L_{0}$ with $v_{i}:=\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right]$,
where $[x]=\arg \min _{t}\{|t-x|: t \in \mathbb{Z}, t-x \in(-1 / 2,1 / 2]\}$.

The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss unit L_{0} (e.g. $L_{o}=10^{6}$ Euro):
$L G D_{i}=\left(1-\lambda_{i}\right) L_{i} \approx\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right] L_{0}=v_{i} L_{0}$ with $v_{i}:=\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right]$,
where $[x]=\arg \min _{t}\{|t-x|: t \in \mathbb{Z}, t-x \in(-1 / 2,1 / 2]\}$.
The loss function is then given by $L=\sum_{i=1}^{n} \bar{X}_{i} v_{i} L_{0} \approx \sum_{i=1}^{n} X_{i} v_{i} L_{0}$, where \bar{X}_{i} is the loss indicator and $\left(X_{1}, \ldots, X_{n}\right)$ has a PMD with factor vector $\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ as described above.

The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss unit L_{0} (e.g. $L_{o}=10^{6}$ Euro):
$L G D_{i}=\left(1-\lambda_{i}\right) L_{i} \approx\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right] L_{0}=v_{i} L_{0}$ with $v_{i}:=\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right]$,
where $[x]=\arg \min _{t}\{|t-x|: t \in \mathbb{Z}, t-x \in(-1 / 2,1 / 2]\}$.
The loss function is then given by $L=\sum_{i=1}^{n} \bar{X}_{i} v_{i} L_{0} \approx \sum_{i=1}^{n} X_{i} v_{i} L_{0}$, where \bar{X}_{i} is the loss indicator and $\left(X_{1}, \ldots, X_{n}\right)$ has a PMD with factor vector $\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ as described above.

Step 1 Determine the pgf of (the approximative) number of losses $N=X_{1}+\ldots+X_{n}$

The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss unit L_{0} (e.g. $L_{o}=10^{6}$ Euro):
$L G D_{i}=\left(1-\lambda_{i}\right) L_{i} \approx\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right] L_{0}=v_{i} L_{0}$ with $v_{i}:=\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right]$,
where $[x]=\arg \min _{t}\{|t-x|: t \in \mathbb{Z}, t-x \in(-1 / 2,1 / 2]\}$.
The loss function is then given by $L=\sum_{i=1}^{n} \bar{X}_{i} v_{i} L_{0} \approx \sum_{i=1}^{n} X_{i} v_{i} L_{0}$, where \bar{X}_{i} is the loss indicator and $\left(X_{1}, \ldots, X_{n}\right)$ has a PMD with factor vector $\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ as described above.

Step 1 Determine the pgf of (the approximative) number of losses $N=X_{1}+\ldots+X_{n}$

$$
\begin{aligned}
& X_{i} \mid Z \sim \operatorname{Poi}\left(\lambda_{i}(Z)\right), \forall i \Longrightarrow g_{X_{i} \mid Z}(t)=\exp \left\{\lambda_{i}(Z)(t-1)\right\}, \forall i \Longrightarrow \\
& g_{N \mid Z}(t)=\prod_{i=1}^{n} g_{X_{i} \mid Z}(t)=\prod_{i=1}^{n} \exp \left\{\lambda_{i}(Z)(t-1)\right\}=\exp \{\mu(t-1)\}, \\
& \text { with } \mu:=\sum_{i=1}^{n} \lambda_{i}(Z)=\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} Z_{j}\right) .
\end{aligned}
$$

The pgf of the loss distribution (contd.)

The pgf of the loss distribution (contd.)

Then
$g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid Z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$

The pgf of the loss distribution (contd.)

Then
$g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid Z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$ $\int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} z_{j}\right)(t-1)\right\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$

The pgf of the loss distribution (contd.)

Then
$g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid Z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$
$\int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} z_{j}\right)(t-1)\right\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$
$\int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \{(t-1) \sum_{j=1}^{m}(\underbrace{\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}}_{\mu_{j}}) z_{j})\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$

The pgf of the loss distribution (contd.)

Then

$$
\begin{aligned}
& g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} z_{j}\right)(t-1)\right\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \{(t-1) \sum_{j=1}^{m}(\underbrace{\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}}_{\mu_{j}}) z_{j})\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{(t-1) \mu_{1} z_{1}\right\} f_{1}\left(z_{1}\right) d z_{1} \ldots \exp \left\{(t-1) \mu_{m} z_{m}\right\} f_{m}\left(z_{m}\right) d z_{m}= \\
& \prod_{j=1}^{m} \int_{0}^{\infty} \exp \left\{z_{j} \mu_{j}(t-1)\right\} \frac{1}{\beta_{j}^{\alpha_{j}} \Gamma\left(\alpha_{j}\right)} z_{j}^{\alpha_{j}-1} \exp \left\{-z_{j} / \beta_{j}\right\} d z_{j}
\end{aligned}
$$

The pgf of the loss distribution (contd.)

Then

$$
\begin{aligned}
& g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid Z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} z_{j}\right)(t-1)\right\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \{(t-1) \sum_{j=1}^{m}(\underbrace{\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}}_{\mu_{j}}) z_{j})\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{(t-1) \mu_{1} z_{1}\right\} f_{1}\left(z_{1}\right) d z_{1} \ldots \exp \left\{(t-1) \mu_{m} z_{m}\right\} f_{m}\left(z_{m}\right) d z_{m}= \\
& \prod_{j=1}^{m} \int_{0}^{\infty} \exp \left\{z_{j} \mu_{j}(t-1)\right\} \frac{1}{\beta_{j}^{\alpha_{j}} \Gamma\left(\alpha_{j}\right)} z_{j}^{\alpha_{j}-1} \exp \left\{-z_{j} / \beta_{j}\right\} d z_{j}
\end{aligned}
$$

The computation of each integral in the product obove yields

The pgf of the loss distribution (contd.)

Then

$$
\begin{aligned}
& g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid Z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} z_{j}\right)(t-1)\right\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \{(t-1) \sum_{j=1}^{m}(\underbrace{\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}}_{\mu_{j}}) z_{j})\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{(t-1) \mu_{1} z_{1}\right\} f_{1}\left(z_{1}\right) d z_{1} \ldots \exp \left\{(t-1) \mu_{m} z_{m}\right\} f_{m}\left(z_{m}\right) d z_{m}= \\
& \prod_{j=1}^{m} \int_{0}^{\infty} \exp \left\{z_{j} \mu_{j}(t-1)\right\} \frac{1}{\beta_{j}^{\alpha_{j}} \Gamma\left(\alpha_{j}\right)} z_{j}^{\alpha_{j}-1} \exp \left\{-z_{j} / \beta_{j}\right\} d z_{j}
\end{aligned}
$$

The computation of each integral in the product obove yields

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{1}{\Gamma\left(\alpha_{j}\right) \beta_{j}^{\alpha_{j}}} \exp \left\{z_{j} \mu_{j}(t-1)\right\} z_{j}^{\alpha_{j}-1} \exp \left\{-z_{j} / \beta_{j}\right\} d z_{j}=\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}} \text { with } \\
& \delta_{j}=\beta_{j} \mu_{j} /\left(1+\beta_{j} \mu_{j}\right) .
\end{aligned}
$$

The pgf of the loss distribution (contd.)

The pgf of the loss distribution (contd.)
Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.

The pgf of the loss distribution (contd.)
Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.
Step 2 Determine the pgf of the (approximated) loss distribution $L=\sum_{i=1}^{n} X_{i} v_{i} L_{0}$.

The pgf of the loss distribution (contd.)
Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.
Step 2 Determine the pgf of the (approximated) loss distribution $L=\sum_{i=1}^{n} X_{i} v_{i} L_{0}$.
The conditional loss due to default of debtor i is $L_{i} \mid Z=v_{i}\left(X_{i} \mid Z\right)$

The pgf of the loss distribution (contd.)
Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.
Step 2 Determine the pgf of the (approximated) loss distribution $L=\sum_{i=1}^{n} X_{i} v_{i} L_{0}$.
The conditional loss due to default of debtor i is $L_{i} \mid Z=v_{i}\left(X_{i} \mid Z\right)$
$L_{i} \mid Z$ are independent for $i=1,2, \ldots, n \Longrightarrow$

$$
g_{L_{i} \mid Z}(t)=E\left(t^{L_{i}} \mid Z\right)=E\left(t^{v_{i} X_{i}} \mid Z\right)=g_{X_{i} \mid Z}\left(t^{v_{i}}\right)=\exp \left\{\lambda_{i}(Z)\left(t^{v_{i}}-1\right)\right\} .
$$

The pgf of the loss distribution (contd.)

Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.
Step 2 Determine the pgf of the (approximated) loss distribution $L=\sum_{i=1}^{n} X_{i} v_{i} L_{0}$.

The conditional loss due to default of debtor i is $L_{i} \mid Z=v_{i}\left(X_{i} \mid Z\right)$
$L_{i} \mid Z$ are independent for $i=1,2, \ldots, n \Longrightarrow$
$g_{L_{i} \mid Z}(t)=E\left(t^{L_{i}} \mid Z\right)=E\left(t^{v_{i} X_{i}} \mid Z\right)=g_{X_{i} \mid Z}\left(t^{v_{i}}\right)=\exp \left\{\lambda_{i}(Z)\left(t^{v_{i}}-1\right)\right\}$.
The pgf of the conditional overall loss is

$$
\begin{aligned}
& g_{L \mid Z}(t)=g_{L_{1}+L_{2}+\ldots+L_{n} \mid Z}(t)=\prod_{i=1}^{n} g_{L_{i} \mid Z}(t)= \\
& \prod_{i=1}^{n} g_{X_{i} \mid Z}\left(t^{v_{i}}\right)=\exp \left\{\sum_{j=1}^{m} Z_{j}\left(\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}\left(t^{v_{i}}-1\right)\right)\right\} .
\end{aligned}
$$

The pgf of the loss distribution (contd.)

Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.
Step 2 Determine the pgf of the (approximated) loss distribution $L=\sum_{i=1}^{n} X_{i} v_{i} L_{0}$.
The conditional loss due to default of debtor i is $L_{i} \mid Z=v_{i}\left(X_{i} \mid Z\right)$
$L_{i} \mid Z$ are independent for $i=1,2, \ldots, n \Longrightarrow$
$g_{L_{i} \mid Z}(t)=E\left(t^{L_{i}} \mid Z\right)=E\left(t^{v_{i} X_{i}} \mid Z\right)=g_{X_{i} \mid Z}\left(t^{v_{i}}\right)=\exp \left\{\lambda_{i}(Z)\left(t^{v_{i}}-1\right)\right\}$.
The pgf of the conditional overall loss is
$g_{L \mid Z}(t)=g_{L_{1}+L_{2}+\ldots+L_{n} \mid Z}(t)=\prod_{i=1}^{n} g_{L_{i} \mid Z}(t)=$
$\prod_{i=1}^{n} g_{X_{i} \mid Z}\left(t^{v_{i}}\right)=\exp \left\{\sum_{j=1}^{m} z_{j}\left(\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}\left(t^{v_{i}}-1\right)\right)\right\}$.
Analogous computations as in the case of $g_{N}(t)$ yield:
$g_{L}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} \Lambda_{j}(t)}\right)^{\alpha_{j}}$ wobei $\Lambda_{j}(t)=\frac{1}{\mu_{j}} \sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j} t^{\nu_{i}}$.

The pgf of the loss distribution (contd.)

The pgf of the loss distribution (contd.)
Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.

The pgf of the loss distribution (contd.)
Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.
Assume that $\bar{\lambda}_{i}=\bar{\lambda}=0.15$, for $i=1,2, \ldots, n, \alpha_{j}=\alpha=1, \beta_{j}=\beta=1$, $a_{i, j}=1 / m, i=1,2, \ldots, n, j=1,2, \ldots, m$.

The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.
Assume that $\bar{\lambda}_{i}=\bar{\lambda}=0.15$, for $i=1,2, \ldots, n, \alpha_{j}=\alpha=1, \beta_{j}=\beta=1$, $a_{i, j}=1 / m, i=1,2, \ldots, n, j=1,2, \ldots, m$.
The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup\{0\}$:

The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.
Assume that $\bar{\lambda}_{i}=\bar{\lambda}=0.15$, for $i=1,2, \ldots, n, \alpha_{j}=\alpha=1, \beta_{j}=\beta=1$, $a_{i, j}=1 / m, i=1,2, \ldots, n, j=1,2, \ldots, m$.
The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup\{0\}$:
$P(N=k)=\frac{1}{k!} g_{N}^{(k)}(0)=\frac{1}{k!} \frac{d^{k} g_{N}}{d t^{k}}$.

The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.
Assume that $\bar{\lambda}_{i}=\bar{\lambda}=0.15$, for $i=1,2, \ldots, n, \alpha_{j}=\alpha=1, \beta_{j}=\beta=1$, $a_{i, j}=1 / m, i=1,2, \ldots, n, j=1,2, \ldots, m$.
The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup\{0\}$:
$P(N=k)=\frac{1}{k!} g_{N}^{(k)}(0)=\frac{1}{k!} \frac{d^{k} g_{N}}{d t^{k}}$.
For the computation of $P(N=k), k=0,1, \ldots, 100$, we can use the following recursive formula

The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.
Assume that $\bar{\lambda}_{i}=\bar{\lambda}=0.15$, for $i=1,2, \ldots, n, \alpha_{j}=\alpha=1, \beta_{j}=\beta=1$, $a_{i, j}=1 / m, i=1,2, \ldots, n, j=1,2, \ldots, m$.
The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup\{0\}$:
$P(N=k)=\frac{1}{k!} g_{N}^{(k)}(0)=\frac{1}{k!} \frac{d^{k} g_{N}}{d t^{k}}$.
For the computation of $P(N=k), k=0,1, \ldots, 100$, we can use the following recursive formula
$g_{N}^{(k)}(0)=\sum_{l=0}^{k-1}\binom{k-1}{l} g_{N}^{(k-1-l)}(0) \sum_{j=1}^{m} l!\alpha_{j} \delta_{j}^{l+1}$, where $k>1$.

