What is credit risk?

What is credit risk?

Citation from McNeil, Frey und Embrechts (2005):
Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners. This subsumes both losses due to defaults and losses caused by changes in credit quality such as the downgrading of a counterparty in an internal or external rating system.

What is credit risk?

Citation from McNeil, Frey und Embrechts (2005):
Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners. This subsumes both losses due to defaults and losses caused by changes in credit quality such as the downgrading of a counterparty in an internal or external rating system.

Examples of finance instruments affected by credit risk

- bond portfolios
- OTC ("over the counter") transactions
- trades with credit derivatives

A generic model of credit risk

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$
Model the default of bond i until time T by a Bernoulli distributed r.v. X_{i} with with $p_{i}=P\left(X_{i}=1\right)$:

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { bond } i \text { defaults } \\
0 & \text { otherwise }
\end{array}\right.
$$

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$
Model the default of bond i until time T by a Bernoulli distributed r.v. X_{i} with with $p_{i}=P\left(X_{i}=1\right)$:

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { bond } i \text { defaults } \\
0 & \text { otherwise }
\end{array}\right.
$$

Total loss at time $T: L=\sum_{i=1}^{n} X_{i} \cdot L G D_{i}=\sum_{i=1}^{n} X_{i}\left(1-\lambda_{i}\right) L_{i}$.

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$
Model the default of bond i until time T by a Bernoulli distributed r.v. X_{i} with with $p_{i}=P\left(X_{i}=1\right)$:

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { bond } i \text { defaults } \\
0 & \text { otherwise }
\end{array}\right.
$$

Total loss at time $T: L=\sum_{i=1}^{n} X_{i} \cdot L G D_{i}=\sum_{i=1}^{n} X_{i}\left(1-\lambda_{i}\right) L_{i}$.
L is a r.v. and its distribution depends from the c.d.f. of $\left(X_{1}, \ldots, X_{n}, \lambda_{1}, \ldots, \lambda_{n}\right)^{T} \mathrm{ab}$.

The simplest model

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.
Models with latent variables
The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
$\rightarrow X_{i}$ are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.
Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.
Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.
Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.
Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j (e.g. categories could be the rating classes).

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.
Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j (e.g. categories could be the rating classes). $S_{i}=0$ corresponds to default.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.
Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j (e.g. categories could be the rating classes).
$S_{i}=0$ corresponds to default.
Then we have $X_{i}=\left\{\begin{array}{cc}0 & S_{i} \neq 0 \\ 1 & S_{i}=0\end{array}\right.$

Models with latent variables (contd.)

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables
$Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i (firm value models).

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i (firm value models).
Let $d_{i j}, i=1,2, \ldots, n, j=0,1, \ldots, m+1$ be threshold values such that $d_{i, 0}=-\infty$ und $d_{i, m+1}=\infty$ and $S_{i}=j \Longleftrightarrow Y_{i} \in\left(d_{i, j}, d_{i, j+1}\right]$.

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i (firm value models).
Let $d_{i j}, i=1,2, \ldots, n, j=0,1, \ldots, m+1$ be threshold values such that $d_{i, 0}=-\infty$ und $d_{i, m+1}=\infty$ and $S_{i}=j \Longleftrightarrow Y_{i} \in\left(d_{i, j}, d_{i, j+1}\right]$.

Let F_{i} be the distribution function of Y_{i}. The probability of default for obligor i is $p_{i}=F_{i}\left(d_{i, 1}\right)$.

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables
$Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i (firm value models).
Let $d_{i j}, i=1,2, \ldots, n, j=0,1, \ldots, m+1$ be threshold values such that $d_{i, 0}=-\infty$ und $d_{i, m+1}=\infty$ and $S_{i}=j \Longleftrightarrow Y_{i} \in\left(d_{i, j}, d_{i, j+1}\right]$.

Let F_{i} be the distribution function of Y_{i}. The probability of default for obligor i is $p_{i}=F_{i}\left(d_{i, 1}\right)$.
The probability that the fisrt k obligors default:

$$
\begin{gather*}
p_{1,2, \ldots, k}:=P\left(Y_{1} \leq d_{1,1}, Y_{2} \leq d_{2,1}, \ldots, Y_{k} \leq d_{k, 1}\right) \\
=C\left(F_{1}\left(d_{1,1}\right), F_{2}\left(d_{2,1}\right), \ldots, F_{k}\left(d_{k, 1}\right), 1,1, \ldots, 1\right)=C\left(p_{1}, p_{2}, \ldots, p_{k}, 1,\right.
\end{gather*}
$$

Thus the totalt defalut probability depends essentially on the copula C of $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$.

The KMV model (see www.moodysanalytics.com)

The KMV model (see www.moodysanalytics.com)
The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The KMV model (see www.moodysanalytics.com)

The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$ depend on the value of the assets of the obligors as follows.

The KMV model (see www.moodysanalytics.com)

The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$ depend on the value of the assets of the obligors as follows.

Merton's model

The balance sheet of each firm consists of assets and liabilities. The latter are devided in debt and equities.

The KMV model (see www.moodysanalytics.com)

The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$ depend on the value of the assets of the obligors as follows.

Merton's model

The balance sheet of each firm consists of assets and liabilities. The latter are devided in debt and equities.
Notations:
$V_{A, i}(T)$: value of assets of firm i at time point T
$K_{i}:=K_{i}(T)$: value of the debt of firm i at time point T
$V_{E, i}(T)$: value of equity of firm i at time point T
Assumption: future asset value is modelled by a geometric Brownian motion

The KMV model (contd.)

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$,

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.
Set $Y_{i}=\frac{W_{i}(T)-W_{i}(t)}{\sqrt{T-t}} \sim N(0,1)$.

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a
standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.
Set $Y_{i}=\frac{W_{i}(T)-W_{i}(t)}{\sqrt{T-t}} \sim N(0,1)$.
Then we get: $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)=I_{\left(-\infty,-D D_{i}\right)}\left(Y_{i}\right)$ where
$D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}}$

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a
standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.
Set $Y_{i}=\frac{W_{i}(T)-W_{i}(t)}{\sqrt{T-t}} \sim N(0,1)$.
Then we get: $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)=I_{\left(-\infty,-D D_{i}\right)}\left(Y_{i}\right)$ where
$D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}}$
$D D_{i}$ is called distance-to-default.

