What is credit risk?

<ロ> <個> < 国> < 国> < 国> < 国> < 国> < 回> < <</p>

What is credit risk?

Citation from McNeil, Frey und Embrechts (2005):

Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners. This subsumes both losses due to **defaults** and losses caused by **changes in credit quality** such as the downgrading of a counterparty in an internal or external rating system.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

What is credit risk?

Citation from McNeil, Frey und Embrechts (2005):

Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners. This subsumes both losses due to **defaults** and losses caused by **changes in credit quality** such as the downgrading of a counterparty in an internal or external rating system.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Examples of finance instruments affected by credit risk

bond portfolios

...

- OTC ("over the counter") transactions
- trades with credit derivatives

Let P be a portfolio of n risky bonds of nominal value L_i , i = 1, 2, ..., n, respectively, set up at time T_0 .

Let P be a portfolio of n risky bonds of nominal value L_i , i = 1, 2, ..., n, respectively, set up at time T_0 .

 p_i : the probability that (the issuer of) bond *i* defaults until time *T*, $T > T_0$

Let P be a portfolio of n risky bonds of nominal value L_i , i = 1, 2, ..., n, respectively, set up at time T_0 .

 p_i : the probability that (the issuer of) bond *i* defaults until time *T*, $T > T_0$

 $\lambda_i \in [0,1]$: "recovery rate" of bond i

 $1 - \lambda_i$: percentage of lost value of bond i in case of default until time T

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let P be a portfolio of n risky bonds of nominal value L_i , i = 1, 2, ..., n, respectively, set up at time T_0 .

 p_i : the probability that (the issuer of) bond i defaults until time T, $T > T_0$

 $\lambda_i \in [0,1]$: "recovery rate" of bond i

 $1-\lambda_i$: percentage of lost value of bond i in case of default until time ${\cal T}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The loss given default for bond *i* at time T: $LGD_i = (1 - \lambda_i)L_i$

Let P be a portfolio of n risky bonds of nominal value L_i , i = 1, 2, ..., n, respectively, set up at time T_0 .

 \textit{p}_i : the probability that (the issuer of) bond i defaults until time $\mathcal{T},$ $\mathcal{T} > \mathcal{T}_0$

 $\lambda_i \in [0,1]$: "recovery rate" of bond i

 $1-\lambda_i$: percentage of lost value of bond i in case of default until time \mathcal{T}

The loss given default for bond *i* at time T: $LGD_i = (1 - \lambda_i)L_i$

Model the default of bond i until time T by a Bernoulli distributed r.v. X_i with with $p_i = P(X_i = 1)$:

 $X_i = \begin{cases} 1 & \text{bond } i \text{ defaults} \\ 0 & \text{otherwise} \end{cases}$

Let P be a portfolio of n risky bonds of nominal value L_i , i = 1, 2, ..., n, respectively, set up at time T_0 .

 p_i : the probability that (the issuer of) bond *i* defaults until time *T*, $T > T_0$

 $\lambda_i \in [0,1]$: "recovery rate" of bond i

 $1 - \lambda_i$: percentage of lost value of bond *i* in case of default until time T

The loss given default for bond *i* at time T: $LGD_i = (1 - \lambda_i)L_i$

Model the default of bond i until time T by a Bernoulli distributed r.v. X_i with with $p_i = P(X_i = 1)$:

 $X_i = \begin{cases} 1 & \text{bond } i \text{ defaults} \\ 0 & \text{otherwise} \end{cases}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Total loss at time T: $L = \sum_{i=1}^{n} X_i \cdot LGD_i = \sum_{i=1}^{n} X_i (1 - \lambda_i)L_i$.

Let P be a portfolio of n risky bonds of nominal value L_i , i = 1, 2, ..., n, respectively, set up at time T_0 .

 p_i : the probability that (the issuer of) bond *i* defaults until time *T*, $T > T_0$

 $\lambda_i \in [0,1]$: "recovery rate" of bond i

 $1 - \lambda_i$: percentage of lost value of bond *i* in case of default until time *T* The loss given default for bond *i* at time *T*: $LGD_i = (1 - \lambda_i)L_i$

Model the default of bond i until time T by a Bernoulli distributed r.v. X_i with with $p_i = P(X_i = 1)$:

 $X_i = \begin{cases} 1 & \text{bond } i \text{ defaults} \\ 0 & \text{otherwise} \end{cases}$

Total loss at time T: $L = \sum_{i=1}^{n} X_i \cdot LGD_i = \sum_{i=1}^{n} X_i (1 - \lambda_i)L_i$.

L is a r.v. and its distribution depends from the c.d.f. of $(X_1, \ldots, X_n, \lambda_1, \ldots, \lambda_n)^T$ ab.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ↔

 $\blacktriangleright L_i = L_1, \forall i$

• recovery rates are deterministic and $\lambda_i = \lambda_1$, $\forall i$

▶ X_i are i.i.d. with $p_i = p$ for all i, for some $p \in (0, 1)$.

 $\blacktriangleright L_i = L_1, \forall i$

• recovery rates are deterministic and $\lambda_i = \lambda_1$, $\forall i$

▶ X_i are i.i.d. with $p_i = p$ for all i, for some $p \in (0, 1)$.

Then we have $L = LGD_1 \cdot N$ with $N = \sum_{i=1}^n X_i \sim Binomial(n, p)$.

 $\blacktriangleright L_i = L_1, \forall i$

• recovery rates are deterministic and $\lambda_i = \lambda_1$, $\forall i$

▶ X_i are i.i.d. with $p_i = p$ for all i, for some $p \in (0, 1)$.

Then we have $L = LGD_1 \cdot N$ with $N = \sum_{i=1}^n X_i \sim Binomial(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into m + 1 homogeneous categories such that all obligors of a group have the same default probability.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 $\blacktriangleright L_i = L_1, \forall i$

• recovery rates are deterministic and $\lambda_i = \lambda_1$, $\forall i$

▶ X_i are i.i.d. with $p_i = p$ for all i, for some $p \in (0, 1)$.

Then we have $L = LGD_1 \cdot N$ with $N = \sum_{i=1}^n X_i \sim Binomial(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into m + 1 homogeneous categories such that all obligors of a group have the same default probability.

Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 $\blacktriangleright L_i = L_1, \forall i$

• recovery rates are deterministic and $\lambda_i = \lambda_1$, $\forall i$

▶ X_i are i.i.d. with $p_i = p$ for all i, for some $p \in (0, 1)$.

Then we have $L = LGD_1 \cdot N$ with $N = \sum_{i=1}^n X_i \sim Binomial(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into m + 1 homogeneous categories such that all obligors of a group have the same default probability.

Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.

 $S = (S_1, S_2, \ldots, S_n)$, $S_i \in \{0, 1, \ldots, m\}$, is a status vector representing the category assignment; $S_i = j \in \{1, 2, \ldots, m\}$ means that obligor *i* belongs to category *j*

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\blacktriangleright L_i = L_1, \forall i$

• recovery rates are deterministic and $\lambda_i = \lambda_1$, $\forall i$

▶ X_i are i.i.d. with $p_i = p$ for all i, for some $p \in (0, 1)$.

Then we have $L = LGD_1 \cdot N$ with $N = \sum_{i=1}^n X_i \sim Binomial(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into m + 1 homogeneous categories such that all obligors of a group have the same default probability.

Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.

 $S = (S_1, S_2, ..., S_n)$, $S_i \in \{0, 1, ..., m\}$, is a status vector representing the category assignment; $S_i = j \in \{1, 2, ..., m\}$ means that obligor *i* belongs to category *j* (e.g. categories could be the rating classes).

 $\blacktriangleright L_i = L_1, \forall i$

• recovery rates are deterministic and $\lambda_i = \lambda_1$, $\forall i$

▶ X_i are i.i.d. with $p_i = p$ for all i, for some $p \in (0, 1)$.

Then we have $L = LGD_1 \cdot N$ with $N = \sum_{i=1}^n X_i \sim Binomial(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into m + 1 homogeneous categories such that all obligors of a group have the same default probability.

Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.

 $S = (S_1, S_2, ..., S_n)$, $S_i \in \{0, 1, ..., m\}$, is a status vector representing the category assignment; $S_i = j \in \{1, 2, ..., m\}$ means that obligor *i* belongs to category *j* (e.g. categories could be the rating classes). $S_i = 0$ corresponds to default.

 $\blacktriangleright L_i = L_1, \forall i$

• recovery rates are deterministic and $\lambda_i = \lambda_1$, $\forall i$

▶ X_i are i.i.d. with $p_i = p$ for all i, for some $p \in (0, 1)$.

Then we have $L = LGD_1 \cdot N$ with $N = \sum_{i=1}^n X_i \sim Binomial(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into m + 1 homogeneous categories such that all obligors of a group have the same default probability.

Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.

 $S = (S_1, S_2, \ldots, S_n)$, $S_i \in \{0, 1, \ldots, m\}$, is a status vector representing the category assignment; $S_i = j \in \{1, 2, \ldots, m\}$ means that obligor *i* belongs to category *j* (e.g. categories could be the rating classes).

 $S_i = 0$ corresponds to default.

Then we have
$$X_i = \left\{ egin{array}{cc} 0 & S_i
eq 0 \ 1 & S_i = 0 \end{array}
ight.$$

<ロ> <個> < 国> < 国> < 国> < 国> < 国> < 回> < <</p>

 $S = (S_1, S_2, \dots, S_n)^T$ is modelled by means of latent variables $Y = (Y_1, Y_2, \dots, Y_n)^T$, e.g. Y_i could be the value of the assets of obligor i

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $S = (S_1, S_2, ..., S_n)^T$ is modelled by means of latent variables $Y = (Y_1, Y_2, ..., Y_n)^T$, e.g. Y_i could be the value of the assets of obligor *i* (firm value models).

 $S = (S_1, S_2, ..., S_n)^T$ is modelled by means of latent variables $Y = (Y_1, Y_2, ..., Y_n)^T$, e.g. Y_i could be the value of the assets of obligor *i* (firm value models).

Let d_{ij} , i = 1, 2, ..., n, j = 0, 1, ..., m + 1 be threshold values such that $d_{i,0} = -\infty$ und $d_{i,m+1} = \infty$ and $S_i = j \iff Y_i \in (d_{i,j}, d_{i,j+1}]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $S = (S_1, S_2, ..., S_n)^T$ is modelled by means of latent variables $Y = (Y_1, Y_2, ..., Y_n)^T$, e.g. Y_i could be the value of the assets of obligor *i* (firm value models).

Let d_{ij} , i = 1, 2, ..., n, j = 0, 1, ..., m + 1 be threshold values such that $d_{i,0} = -\infty$ und $d_{i,m+1} = \infty$ and $S_i = j \iff Y_i \in (d_{i,j}, d_{i,j+1}]$.

Let F_i be the distribution function of Y_i . The probability of default for obligor *i* is $p_i = F_i(d_{i,1})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $S = (S_1, S_2, ..., S_n)^T$ is modelled by means of latent variables $Y = (Y_1, Y_2, ..., Y_n)^T$, e.g. Y_i could be the value of the assets of obligor *i* (firm value models).

Let d_{ij} , i = 1, 2, ..., n, j = 0, 1, ..., m + 1 be threshold values such that $d_{i,0} = -\infty$ und $d_{i,m+1} = \infty$ and $S_i = j \iff Y_i \in (d_{i,j}, d_{i,j+1}]$.

Let F_i be the distribution function of Y_i . The probability of default for obligor *i* is $p_i = F_i(d_{i,1})$.

The probability that the fisrt k obligors default:

$$p_{1,2,\ldots,k} := P(Y_1 \le d_{1,1}, Y_2 \le d_{2,1}, \ldots, Y_k \le d_{k,1})$$

 $= C(F_1(d_{1,1}), F_2(d_{2,1}), \dots, F_k(d_{k,1}), 1, 1, \dots, 1) = C(p_1, p_2, \dots, p_k, 1, \dots, 1)$ Thus the totalt defalut probability depends essentially on the copula C of (Y_1, Y_2, \dots, Y_n) .

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三</p>

The status variables $S = (S_1, S_2, ..., S_n)$ can only take two values 0 or 1, i.e. m = 1.

The status variables $S = (S_1, S_2, ..., S_n)$ can only take two values 0 or 1, i.e. m = 1.

The latent variables $Y = (Y_1, Y_2, ..., Y_n)^T$ depend on the value of the assets of the obligors as follows.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The status variables $S = (S_1, S_2, ..., S_n)$ can only take two values 0 or 1, i.e. m = 1.

The latent variables $Y = (Y_1, Y_2, ..., Y_n)^T$ depend on the value of the assets of the obligors as follows.

Merton's model

The balance sheet of each firm consists of assets and liabilities. The latter are devided in debt and equities.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The status variables $S = (S_1, S_2, ..., S_n)$ can only take two values 0 or 1, i.e. m = 1.

The latent variables $Y = (Y_1, Y_2, ..., Y_n)^T$ depend on the value of the assets of the obligors as follows.

Merton's model

The balance sheet of each firm consists of assets and liabilities. The latter are devided in debt and equities.

Notations:

 $V_{A,i}(T)$: value of assets of firm *i* at time point T $K_i := K_i(T)$: value of the debt of firm *i* at time point T $V_{E,i}(T)$: value of equity of firm *i* at time point T

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assumption: future asset value is modelled by a geometric Brownian motion

<ロ> <個> < 国> < 国> < 国> < 国> < 国> < 回> < <</p>

$$V_{A,i}(T) = V_{A,i}(t) \exp\left\{\left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T-t) + \sigma_{A,i}\left(W_i(T) - W_i(t)\right)\right\},\$$

$$V_{A,i}(T) = V_{A,i}(t) \exp\left\{\left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T-t) + \sigma_{A,i}\left(W_i(T) - W_i(t)\right)\right\},$$

where

 $\mu_{A,i}$ is the drift, $\sigma_{A,i}$ is the volatility and $(W_i(t): 0 \le t \le T)$ is a standard Brownian motion (or equivalently a Wiener process).

$$V_{A,i}(T) = V_{A,i}(t) \exp\left\{\left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T-t) + \sigma_{A,i}\left(W_i(T) - W_i(t)\right)\right\},$$

where

 $\mu_{A,i}$ is the drift, $\sigma_{A,i}$ is the volatility and $(W_i(t): 0 \le t \le T)$ is a standard Brownian motion (or equivalently a Wiener process). Hence $(W_i(T) - W_i(t)) \sim N(0, T - t)$ and $\ln V_{A,i}(T) \sim N(\mu, \sigma^2)$ with

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$V_{A,i}(T) = V_{A,i}(t) \exp\left\{\left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T-t) + \sigma_{A,i}\left(W_i(T) - W_i(t)\right)\right\},$$

where

 $\mu_{A,i}$ is the drift, $\sigma_{A,i}$ is the volatility and $(W_i(t): 0 \le t \le T)$ is a standard Brownian motion (or equivalently a Wiener process). Hence $(W_i(T) - W_i(t)) \sim N(0, T - t)$ and $\ln V_{A,i}(T) \sim N(\mu, \sigma^2)$ with $\mu = \ln V_{A,i}(t) + \left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T - t)$ and $\sigma^2 = \sigma_{A,i}^2(T - t)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$V_{A,i}(T) = V_{A,i}(t) \exp\left\{\left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T-t) + \sigma_{A,i}\left(W_i(T) - W_i(t)\right)\right\},$$

where

 $\mu_{A,i}$ is the drift, $\sigma_{A,i}$ is the volatility and $(W_i(t): 0 \le t \le T)$ is a standard Brownian motion (or equivalently a Wiener process). Hence $(W_i(T) - W_i(t)) \sim N(0, T - t)$ and $\ln V_{A,i}(T) \sim N(\mu, \sigma^2)$ with $\mu = \ln V_{A,i}(t) + \left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T - t)$ and $\sigma^2 = \sigma_{A,i}^2(T - t)$. Further $X_i = I_{(-\infty,K_i)}(V_{A,i}(T))$ holds.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$V_{A,i}(T) = V_{A,i}(t) \exp\left\{\left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T-t) + \sigma_{A,i}\left(W_i(T) - W_i(t)\right)\right\},$$

where

$$\begin{split} & \mu_{A,i} \text{ is the drift, } \sigma_{A,i} \text{ is the volatility and } (W_i(t): 0 \leq t \leq T) \text{ is a} \\ & \text{standard Brownian motion (or equivalently a Wiener process).} \\ & \text{Hence } (W_i(T) - W_i(t)) \sim N(0, T - t) \text{ and } \ln V_{A,i}(T) \sim N(\mu, \sigma^2) \text{ with} \\ & \mu = \ln V_{A,i}(t) + \left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right) (T - t) \text{ and } \sigma^2 = \sigma_{A,i}^2 (T - t). \\ & \text{Further } X_i = I_{(-\infty,K_i)}(V_{A,i}(T)) \text{ holds.} \\ & \text{Set } Y_i = \frac{W_i(T) - W_i(t)}{\sqrt{T - t}} \sim N(0, 1). \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$V_{A,i}(T) = V_{A,i}(t) \exp\left\{\left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T-t) + \sigma_{A,i}\left(W_i(T) - W_i(t)\right)\right\},$$

where

 $\mu_{A,i}$ is the drift, $\sigma_{A,i}$ is the volatility and $(W_i(t): 0 \le t \le T)$ is a standard Brownian motion (or equivalently a Wiener process). Hence $(W_i(T) - W_i(t)) \sim N(0, T-t)$ and $\ln V_{A,i}(T) \sim N(\mu, \sigma^2)$ with $\mu = \ln V_{A,i}(t) + \left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T-t) \text{ and } \sigma^2 = \sigma_{A,i}^2(T-t).$ Further $X_i = I_{(-\infty,K_i)}(V_{A,i}(T))$ holds. Set $Y_i = \frac{W_i(T) - W_i(t)}{\sqrt{T-1}} \sim N(0, 1).$ Then we get: $X_i = I_{(-\infty,K_i)}(V_{A,i}(T)) = I_{(-\infty,-DD_i)}(Y_i)$ where $DD_{i} = \frac{\ln V_{A,i}(t) - \ln K_{i} + (\mu_{A,i} - \frac{\sigma_{A,i}^{2}}{2})(T-t)}{\sigma_{A,i}\sqrt{T-t}}$

・ロト・西・・田・・田・・日・

$$V_{A,i}(T) = V_{A,i}(t) \exp\left\{\left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T-t) + \sigma_{A,i}\left(W_i(T) - W_i(t)\right)\right\},$$

where

 $\mu_{A,i}$ is the drift, $\sigma_{A,i}$ is the volatility and $(W_i(t): 0 \le t \le T)$ is a standard Brownian motion (or equivalently a Wiener process). Hence $(W_i(T) - W_i(t)) \sim N(0, T-t)$ and $\ln V_{A,i}(T) \sim N(\mu, \sigma^2)$ with $\mu = \ln V_{A,i}(t) + \left(\mu_{A,i} - \frac{\sigma_{A,i}^2}{2}\right)(T-t) \text{ and } \sigma^2 = \sigma_{A,i}^2(T-t).$ Further $X_i = I_{(-\infty,K_i)}(V_{A,i}(T))$ holds. Set $Y_i = \frac{W_i(T) - W_i(t)}{\sqrt{T-1}} \sim N(0, 1).$ Then we get: $X_i = I_{(-\infty,K_i)}(V_{A,i}(T)) = I_{(-\infty,-DD_i)}(Y_i)$ where $DD_{i} = \frac{\ln V_{A,i}(t) - \ln K_{i} + (\mu_{A,i} - \frac{\sigma_{A,i}^{2}}{2})(T-t)}{\sigma_{A,i}\sqrt{T-t}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

DD_i is called **distance-to-default**.