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Examples of finance instruments affected by credit risk

◮ bond portfolios

◮ OTC (“over the counter”) transactions

◮ trades with credit derivatives

◮ ...
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respectively, set up at time T0.
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The loss given default for bond i at time T : LGDi = (1− λi )Li

Model the default of bond i until time T by a Bernoulli distributed r.v. Xi

with with pi = P(Xi = 1):

Xi =

{

1 bond i defaults
0 otherwise

Total loss at time T : L =
∑n

i=1 Xi · LGDi =
∑n

i=1 Xi (1− λi )Li .

L is a r.v. and its distribution depends from the c.d.f. of
(X1, . . . ,Xn, λ1, . . . , λn)

T ab.
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Let dij , i = 1, 2, . . . , n, j = 0, 1, . . . ,m + 1 be threshold values such that
di ,0 = −∞ und di ,m+1 = ∞ and Si = j ⇐⇒ Yi ∈ (di ,j , di ,j+1].

Let Fi be the distribution function of Yi . The probability of default for
obligor i is pi = Fi (di ,1).

The probability that the fisrt k obligors default:

p1,2,...,k := P(Y1 ≤ d1,1,Y2 ≤ d2,1, . . . ,Yk ≤ dk,1)

= C (F1(d1,1),F2(d2,1), . . . ,Fk (dk,1), 1, 1, . . . , 1) = C (p1, p2, . . . , pk , 1, . . . , 1)

Thus the totalt defalut probability depends essentially on the copula C of
(Y1,Y2, . . . ,Yn).
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The status variables S = (S1, S2, . . . , Sn) can only take two values 0 or 1,
i.e. m = 1.

The latent variables Y = (Y1,Y2, . . . ,Yn)
T depend on the value of the

assets of the obligors as follows.

Merton’s model
The balance sheet of each firm consists of assets and liabilities. The
latter are devided in debt and equities.

Notations:

VA,i (T ): value of assets of firm i at time point T

Ki := Ki(T ): value of the debt of firm i at time point T

VE ,i (T ): value of equity of firm i at time point T

Assumption: future asset value is modelled by a geometric Brownian
motion
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DDi is called distance-to-default.


