Tail dependence (contd.) and rank correlation of elliptical copulas

Tail dependence (contd.) and rank correlation of elliptical copulas

Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu, R}^{t}$ with ν degrees of freedom and and correlation matrix R. Then we have
$\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.

Tail dependence (contd.) and rank correlation of elliptical copulas

Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu, R}^{t}$ with ν degrees of freedom and and correlation matrix R. Then we have
$\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a Gaussian copula $C_{\rho}^{G a}$, where ρ is the linear correlation coefficient of X_{1} and X_{2}. Then we have $\rho_{\tau}\left(X_{1}, X_{2}\right)=\frac{2}{\pi} \arcsin \rho$ und $\rho_{S}\left(X_{1}, X_{2}\right)=\frac{6}{\pi} \arcsin \frac{\rho}{2}$.

Tail dependence (contd.) and rank correlation of elliptical copulas

Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu, R}^{t}$ with ν degrees of freedom and and correlation matrix R. Then we have
$\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a Gaussian copula $C_{\rho}^{G a}$, where ρ is the linear correlation coefficient of X_{1} and X_{2}. Then we have $\rho_{\tau}\left(X_{1}, X_{2}\right)=\frac{2}{\pi} \arcsin \rho$ und $\rho_{S}\left(X_{1}, X_{2}\right)=\frac{6}{\pi} \arcsin \frac{\rho}{2}$.
Theorem: Let $X \sim E_{d}(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}\left(X_{i}, X_{j}\right)=\frac{2}{\pi} \arcsin R_{i j}$, with $R_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i j} \Sigma_{j j}}}$ for $i, j=1,2, \ldots, d$.

Tail dependence (contd.) and rank correlation of elliptical copulas

Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu, R}^{t}$ with ν degrees of freedom and and correlation matrix R. Then we have
$\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a Gaussian copula $C_{\rho}^{G a}$, where ρ is the linear correlation coefficient of X_{1} and X_{2}. Then we have $\rho_{\tau}\left(X_{1}, X_{2}\right)=\frac{2}{\pi} \arcsin \rho$ und $\rho_{S}\left(X_{1}, X_{2}\right)=\frac{6}{\pi} \arcsin \frac{\rho}{2}$.
Theorem: Let $X \sim E_{d}(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}\left(X_{i}, X_{j}\right)=\frac{2}{\pi} \arcsin R_{i j}$, with $R_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i j} \Sigma_{j j}}}$ for $i, j=1,2, \ldots, d$.
Corollary: Let $\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ be a random vector with continuous marginal distributions and an elliptical copula $C_{\mu, \Sigma, \psi}^{E}$. Then we have $\rho_{\tau}\left(X_{i}, X_{j}\right)=\frac{2}{\pi} \arcsin R_{i j}$, with $R_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i i} \Sigma_{j j}}}$.

Tail dependence (contd.) and rank correlation of elliptical copulas

Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu, R}^{t}$ with ν degrees of freedom and and correlation matrix R. Then we have
$\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and a Gaussian copula $C_{\rho}^{G a}$, where ρ is the linear correlation coefficient of X_{1} and X_{2}. Then we have $\rho_{\tau}\left(X_{1}, X_{2}\right)=\frac{2}{\pi} \arcsin \rho$ und $\rho_{S}\left(X_{1}, X_{2}\right)=\frac{6}{\pi} \arcsin \frac{\rho}{2}$.
Theorem: Let $X \sim E_{d}(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}\left(X_{i}, X_{j}\right)=\frac{2}{\pi} \arcsin R_{i j}$, with $R_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i j} \Sigma_{j j}}}$ for $i, j=1,2, \ldots, d$.
Corollary: Let $\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ be a random vector with continuous marginal distributions and an elliptical copula $C_{\mu, \Sigma, \psi}^{E}$. Then we have $\rho_{\tau}\left(X_{i}, X_{j}\right)=\frac{2}{\pi} \arcsin R_{i j}$, with $R_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i i} \Sigma_{j j}}}$.
See McNeil et al. (2005) for a proof of the three last results.

Archimedian copulas

Archimedian copulas

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Archimedian copulas

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$. The pseudo-inverse function $\phi^{[-1]}:[0, \infty] \rightarrow[0,1]$ of ϕ is defined by

$$
\phi^{[-1]}(t)= \begin{cases}\phi^{-1}(t) & 0 \leq t \leq \phi(0) \\ 0 & \phi(0) \leq t \leq \infty\end{cases}
$$

Archimedian copulas

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$. The pseudo-inverse function $\phi^{[-1]}:[0, \infty] \rightarrow[0,1]$ of ϕ is defined by

$$
\phi^{[-1]}(t)= \begin{cases}\phi^{-1}(t) & 0 \leq t \leq \phi(0) \\ 0 & \phi(0) \leq t \leq \infty\end{cases}
$$

$\phi^{[-1]}$ is continuous and monotone decreasing on $[0, \infty]$, strictly monotone decreasing on $[0, \phi(0)]$ and $\phi^{[-1]}(\phi(u))=u$ for $u \in[0,1]$ holds. Moreover

$$
\phi\left(\phi^{[-1]}(t)= \begin{cases}t & 0 \leq t \leq \phi(0) \\ \phi(0) & \phi(0) \leq t \leq+\infty\end{cases}\right.
$$

Archimedian copulas

Disadvantages of elliptical copulas:

- no closed form representation in general,
- radial symmetry

Definition: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$. The pseudo-inverse function $\phi^{[-1]}:[0, \infty] \rightarrow[0,1]$ of ϕ is defined by

$$
\phi^{[-1]}(t)= \begin{cases}\phi^{-1}(t) & 0 \leq t \leq \phi(0) \\ 0 & \phi(0) \leq t \leq \infty\end{cases}
$$

$\phi^{[-1]}$ is continuous and monotone decreasing on [$0, \infty$], strictly monotone decreasing on $[0, \phi(0)]$ and $\phi^{[-1]}(\phi(u))=u$ for $u \in[0,1]$ holds. Moreover

$$
\phi\left(\phi^{[-1]}(t)= \begin{cases}t & 0 \leq t \leq \phi(0) \\ \phi(0) & \phi(0) \leq t \leq+\infty\end{cases}\right.
$$

If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$.

Archimedian copulas (contd.)

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex. A copula C generated as above is called an Archimedian copula with generator ϕ.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex. A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex. A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex. A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.
A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.
For $\theta=1: \quad C_{1}^{G u}=u_{1} u_{2}$.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.
A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.
For $\theta=1: C_{1}^{G u}=u_{1} u_{2} . \lim _{\theta \rightarrow \infty} C_{\theta}^{G u}=M\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}$.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.
A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.
For $\theta=1: C_{1}^{G u}=u_{1} u_{2} . \lim _{\theta \rightarrow \infty} C_{\theta}^{G u}=M\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}$.
The Gumbel Copulas have an upper tail dependence.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.
A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.
For $\theta=1: C_{1}^{G u}=u_{1} u_{2} . \lim _{\theta \rightarrow \infty} C_{\theta}^{G u}=M\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}$.
The Gumbel Copulas have an upper tail dependence.
Clayton Copulas: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$. Then
$C_{\theta}^{C l}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\left(u_{1}^{-\theta}+u_{2}^{-\theta}-1\right)^{-1 / \theta}$ is the
Clayton copula with parameter θ.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.
A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.
For $\theta=1: C_{1}^{G u}=u_{1} u_{2} . \lim _{\theta \rightarrow \infty} C_{\theta}^{G u}=M\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}$.
The Gumbel Copulas have an upper tail dependence.
Clayton Copulas: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$. Then
$C_{\theta}^{C l}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\left(u_{1}^{-\theta}+u_{2}^{-\theta}-1\right)^{-1 / \theta}$ is the
Clayton copula with parameter θ.
$\lim _{\theta \rightarrow 0} C_{\theta}^{C l}=u_{1} u_{2}$ and $\lim _{\theta \rightarrow \infty} C_{\theta}^{C l}=M=\min \left\{u_{1}, u_{2}\right\}$.

Archimedian copulas (contd.)

Theorem: Let $\phi:[0,1] \rightarrow[0,+\infty]$ be a continuous, strictly monotone decreasing function with $\phi(1)=0$ and let $\phi^{[-1]}$ be the pseudo-inverse function of ϕ. The function $C:[0,1]^{2} \rightarrow[0,1]$, with $C\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$ is a copula iff ϕ is convex.
A copula C generated as above is called an Archimedian copula with generator ϕ.
If $\phi(0)=+\infty$, then $\phi^{[-1]}=\phi^{-1}$ and $C\left(u_{1}, u_{2}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)$.
See Nelsen 1999 for a proof
Examples: Gumbel Copulas: $\phi(t)=(-\ln t)^{\theta}, \theta \geq 1, t \in[0,1]$. Then $C_{\theta}^{G u}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right)$ is the Gumbel copula with parameter θ.
For $\theta=1: C_{1}^{G u}=u_{1} u_{2} . \lim _{\theta \rightarrow \infty} C_{\theta}^{G u}=M\left(u_{1}, u_{2}\right)=\min \left\{u_{1}, u_{2}\right\}$.
The Gumbel Copulas have an upper tail dependence.
Clayton Copulas: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$. Then
$C_{\theta}^{C l}\left(u_{1}, u_{2}\right)=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\left(u_{1}^{-\theta}+u_{2}^{-\theta}-1\right)^{-1 / \theta}$ is the
Clayton copula with parameter θ.
$\lim _{\theta \rightarrow 0} C_{\theta}^{C l}=u_{1} u_{2}$ and $\lim _{\theta \rightarrow \infty} C_{\theta}^{C l}=M=\min \left\{u_{1}, u_{2}\right\}$.
The Clayton copulas have a lower tail depencence.

Archimedian copulas (contd.)

Archimedian copulas (contd.)

Example:
Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.

Archimedian copulas (contd.)

Example:
Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.

Archimedian copulas (contd.)

Example:
Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.

Archimedian copulas (contd.)

Example:

Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.
Example Kendalls Tau for the Gumbel copula and the Clayton copula

Archimedian copulas (contd.)

Example:

Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.
Example Kendalls Tau for the Gumbel copula and the Clayton copula Gumbel: $\phi(t)=(\ln t)^{\theta}, \theta \geq 1$.

Archimedian copulas (contd.)

Example:

Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.
Example Kendalls Tau for the Gumbel copula and the Clayton copula Gumbel: $\phi(t)=(\ln t)^{\theta}, \theta \geq 1$.
$\rho_{\tau}(\theta)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t=1-\frac{1}{\theta}$.

Archimedian copulas (contd.)

Example:

Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.
Example Kendalls Tau for the Gumbel copula and the Clayton copula Gumbel: $\phi(t)=(\ln t)^{\theta}, \theta \geq 1$.
$\rho_{\tau}(\theta)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t=1-\frac{1}{\theta}$.
Clayton: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$.

Archimedian copulas (contd.)

Example:

Let $\phi(t)=1-t, t \in[0,1]$. Then $\phi^{[-1]}(t)=\max \{1-t, 0\}$ and
$C_{\phi}\left(u_{1}, u_{2}\right):=\phi^{[-1]}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)\right)=\max \left\{u_{1}+u_{2}-1,0\right\}=W\left(u_{1}, u_{2}\right)$.
Thus the Fréchet lower bound is an Archimedian copula.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and an Archimedian copula C generated by ϕ. Then $\rho_{\tau}\left(X_{1}, X_{2}\right)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t$ holds.
See Nelsen 1999 for a proof.
Example Kendalls Tau for the Gumbel copula and the Clayton copula Gumbel: $\phi(t)=(\ln t)^{\theta}, \theta \geq 1$.
$\rho_{\tau}(\theta)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t=1-\frac{1}{\theta}$.
Clayton: $\phi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$.
$\rho_{\tau}(\theta)=1+4 \int_{0}^{1} \frac{\phi(t)}{\phi^{\prime}(t)} d t=\frac{\theta}{\theta+2}$.

Multivariate Archimedian copulas

Multivariate Archimedian copulas

Definition: A function g : $[0, \infty) \rightarrow[0, \infty)$ is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for $k \in \mathbb{N}_{*}:\left.(-1)^{k}\left(\frac{d^{k}}{d s^{k}} g(s)\right)\right|_{s=t} \geq 0, \forall t \in(0, \infty)$.

Multivariate Archimedian copulas

Definition: A function $g:[0, \infty) \rightarrow[0, \infty)$ is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for $k \in \mathbb{N}_{*}:\left.(-1)^{k}\left(\frac{d^{k}}{d s^{k}} g(s)\right)\right|_{s=t} \geq 0, \forall t \in(0, \infty)$.
Theorem: (Kimberling 1974)
Let $\phi:[0,1] \rightarrow[0, \infty]$ be a continuous, strictly monotone decreasing function with $\phi(0)=\infty$ and $\phi(1)=0$. The function $C:[0,1]^{d} \rightarrow[0,1]$, $C(u):=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)+\ldots+\phi\left(u_{d}\right)\right)$ is a copula for all $d \geq 2$ iff ϕ^{-1} is completely monotone on $[0, \infty)$.

Multivariate Archimedian copulas

Definition: A function $g:[0, \infty) \rightarrow[0, \infty)$ is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for $k \in \mathbb{N}_{*}:\left.(-1)^{k}\left(\frac{d^{k}}{d s^{k}} g(s)\right)\right|_{s=t} \geq 0, \forall t \in(0, \infty)$.
Theorem: (Kimberling 1974)
Let $\phi:[0,1] \rightarrow[0, \infty]$ be a continuous, strictly monotone decreasing function with $\phi(0)=\infty$ and $\phi(1)=0$. The function $C:[0,1]^{d} \rightarrow[0,1]$, $C(u):=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)+\ldots+\phi\left(u_{d}\right)\right)$ is a copula for all $d \geq 2$ iff ϕ^{-1} is completely monotone on $[0, \infty)$.
Lemma: A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is completely monotone with $\psi(0)=1$ iff ψ is the Laplace-Stieltjes transform of some distribution function G on $[0, \infty)$, i.e. $\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x), s \geq 0$.

Multivariate Archimedian copulas

Definition: A function g : $[0, \infty) \rightarrow[0, \infty)$ is called completely monotone iff all higher order derivatives of g exist and the following inequalities hold for $k \in \mathbb{N}_{*}:\left.(-1)^{k}\left(\frac{d^{k}}{d s^{k}} g(s)\right)\right|_{s=t} \geq 0, \forall t \in(0, \infty)$.
Theorem: (Kimberling 1974)
Let $\phi:[0,1] \rightarrow[0, \infty]$ be a continuous, strictly monotone decreasing function with $\phi(0)=\infty$ and $\phi(1)=0$. The function $C:[0,1]^{d} \rightarrow[0,1]$, $C(u):=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)+\ldots+\phi\left(u_{d}\right)\right)$ is a copula for all $d \geq 2$ iff ϕ^{-1} is completely monotone on $[0, \infty)$.
Lemma: A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is completely monotone with $\psi(0)=1$ iff ψ is the Laplace-Stieltjes transform of some distribution function G on $[0, \infty)$, i.e. $\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x), s \geq 0$.
See McNeil et al. (2005) for a proof.

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e. $\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e. $\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.
Then
$\operatorname{Prob}\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{d} \leq u_{d}\right)=\psi\left(\psi^{-1}\left(u_{1}\right)+\psi^{-1}\left(u_{2}\right)+\ldots+\psi^{-1}\left(u_{d}\right)\right)$
and the distribution function of $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is an Archimedian copula with generator ψ^{-1}.

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e. $\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.
Then
$\operatorname{Prob}\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{d} \leq u_{d}\right)=\psi\left(\psi^{-1}\left(u_{1}\right)+\psi^{-1}\left(u_{2}\right)+\ldots+\psi^{-1}\left(u_{d}\right)\right)$
and the distribution function of $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is an Archimedian copula with generator ψ^{-1}.
Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e.
$\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.
Then
$\operatorname{Prob}\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{d} \leq u_{d}\right)=\psi\left(\psi^{-1}\left(u_{1}\right)+\psi^{-1}\left(u_{2}\right)+\ldots+\psi^{-1}\left(u_{d}\right)\right)$
and the distribution function of $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is an Archimedian copula with generator ψ^{-1}.

Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e.
$\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.
Then
$\operatorname{Prob}\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{d} \leq u_{d}\right)=\psi\left(\psi^{-1}\left(u_{1}\right)+\psi^{-1}\left(u_{2}\right)+\ldots+\psi^{-1}\left(u_{d}\right)\right)$
and the distribution function of $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is an Archimedian copula with generator ψ^{-1}.

Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation
- depend on a small number of parameters in general

Multivariate Archimedian copulas (contd.)

Theorem: Let G be a distribution function on $[0, \infty)$ such that $G(0)=0$. Let ψ be the Laplace-Stieltjes transform of G, i.e.
$\psi(s)=\int_{0}^{\infty} e^{-s x} d G(x)$ for $s \geq 0$. Let X be a r.v. with distribution function G and let $U_{1}, U_{2}, \ldots, U_{d}$ be conditionally independent r.v. for $X=x, x \in \mathbb{R}^{+}$, with conditional distribution function
$F_{U_{k} \mid X=x}(u)=\exp \left(-x \psi^{-1}(u)\right)$ for $u \in[0,1]$.
Then
$\operatorname{Prob}\left(U_{1} \leq u_{1}, U_{2} \leq u_{2}, \ldots, U_{d} \leq u_{d}\right)=\psi\left(\psi^{-1}\left(u_{1}\right)+\psi^{-1}\left(u_{2}\right)+\ldots+\psi^{-1}\left(u_{d}\right)\right)$
and the distribution function of $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is an Archimedian copula with generator ψ^{-1}.

Advantages and disadvantages of Archimedian copulas:

- can model a broader class of dependencies
- have a closed form representation
- depend on a small number of parameters in general
- the generator function needs to fulfill quite restrictive technical assumptions

Simulation of Gaussian copulas

Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix $R \in \mathbb{R}^{d \times d}$ and its Cholesky factorization $A A^{T}=R$ with $A \in \mathbb{R}^{d \times d}$. If
$Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)$ are independent, then $\mu+A Z \sim N_{d}(\mu, R)$.

Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix $R \in \mathbb{R}^{d \times d}$ and its Cholesky factorization $A A^{T}=R$ with $A \in \mathbb{R}^{d \times d}$. If $Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)$ are independent, then $\mu+A Z \sim N_{d}(\mu, R)$.

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{R}^{G a}, R$ positive definite with all ones on the main diagonal.

- Compute the Cholesly factorization of $R: R=A A^{T}$.

Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix $R \in \mathbb{R}^{d \times d}$ and its Cholesky factorization $A A^{T}=R$ with $A \in \mathbb{R}^{d \times d}$. If $Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)$ are independent, then $\mu+A Z \sim N_{d}(\mu, R)$.

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{R}^{G a}, R$ positive definite with all ones on the main diagonal.

- Compute the Cholesly factorization of $R: R=A A^{T}$.
- Simulate d independent standard normally distributed r.v.

$$
Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)
$$

Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix $R \in \mathbb{R}^{d \times d}$ and its Cholesky factorization $A A^{T}=R$ with $A \in \mathbb{R}^{d \times d}$. If $Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)$ are independent, then $\mu+A Z \sim N_{d}(\mu, R)$.

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{R}^{G a}, R$ positive definite with all ones on the main diagonal.

- Compute the Cholesly factorization of $R: R=A A^{T}$.
- Simulate d independent standard normally distributed r.v.

$$
Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)
$$

- Set $X:=A Z$

Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix $R \in \mathbb{R}^{d \times d}$ and its Cholesky factorization $A A^{T}=R$ with $A \in \mathbb{R}^{d \times d}$. If $Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)$ are independent, then $\mu+A Z \sim N_{d}(\mu, R)$.

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{R}^{G a}, R$ positive definite with all ones on the main diagonal.

- Compute the Cholesly factorization of $R: R=A A^{T}$.
- Simulate d independent standard normally distributed r.v. $Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)$
- Set $X:=A Z$
- Set $U_{k}:=\phi\left(X_{k}\right)$ for $k=1,2, \ldots, d$, where ϕ is the standard normal distribution function.

Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix $R \in \mathbb{R}^{d \times d}$ and its Cholesky factorization $A A^{T}=R$ with $A \in \mathbb{R}^{d \times d}$. If $Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)$ are independent, then $\mu+A Z \sim N_{d}(\mu, R)$.

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{R}^{G a}, R$ positive definite with all ones on the main diagonal.

- Compute the Cholesly factorization of $R: R=A A^{T}$.
- Simulate d independent standard normally distributed r.v.

$$
Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)
$$

- Set $X:=A Z$
- Set $U_{k}:=\phi\left(X_{k}\right)$ for $k=1,2, \ldots, d$, where ϕ is the standard normal distribution function.
- Output $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right) ; U$ has distribution function $C_{R}^{G a}$.

Simulation of t -copulas

Simulation of t-copulas

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{\nu, R}^{t}, R$ positive definite with all ones on the main diagonal, $\nu \in \mathbb{N}$.

- Compute the Cholesly factorization of $R: R=A A^{T}$.

Simulation of t-copulas

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{\nu, R}^{t}, R$ positive definite with all ones on the main diagonal, $\nu \in \mathbb{N}$.

- Compute the Cholesly factorization of $R: R=A A^{T}$.
- Simulate d independent standard normally distributed r.v.

$$
Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)
$$

Simulation of t-copulas

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{\nu, R}^{t}, R$ positive definite with all ones on the main diagonal, $\nu \in \mathbb{N}$.

- Compute the Cholesly factorization of $R: R=A A^{T}$.
- Simulate d independent standard normally distributed r.v. $Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)$
- Simulate a r.v. $S \sim \chi_{\nu}^{2}$ independent from von Z_{1}, \ldots, Z_{d}.

Simulation of t-copulas

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{\nu, R}^{t}, R$ positive definite with all ones on the main diagonal, $\nu \in \mathbb{N}$.

- Compute the Cholesly factorization of $R: R=A A^{T}$.
- Simulate d independent standard normally distributed r.v.

$$
Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)
$$

- Simulate a r.v. $S \sim \chi_{\nu}^{2}$ independent from von Z_{1}, \ldots, Z_{d}.
- Set $Y:=A Z$

Simulation of t-copulas

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{\nu, R}^{t}, R$ positive definite with all ones on the main diagonal, $\nu \in \mathbb{N}$.

- Compute the Cholesly factorization of $R: R=A A^{T}$.
- Simulate d independent standard normally distributed r.v.

$$
Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)
$$

- Simulate a r.v. $S \sim \chi_{\nu}^{2}$ independent from von Z_{1}, \ldots, Z_{d}.
- Set $Y:=A Z$
- Set $X:=\frac{\sqrt{\nu}}{\sqrt{5}} Y$

Simulation of t-copulas

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{\nu, R}^{t}, R$ positive definite with all ones on the main diagonal, $\nu \in \mathbb{N}$.

- Compute the Cholesly factorization of $R: R=A A^{T}$.
- Simulate d independent standard normally distributed r.v.

$$
Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)
$$

- Simulate a r.v. $S \sim \chi_{\nu}^{2}$ independent from von Z_{1}, \ldots, Z_{d}.
- Set $Y:=A Z$
- Set $X:=\frac{\sqrt{\nu}}{\sqrt{5}} Y$
- Set $U_{k}=t_{\nu}\left(X_{k}\right)$ for $k=1,2, \ldots, d$, where t_{ν} is the distribution function of a standard t-distribution with ν degrees of freedom.

Simulation of t-copulas

Algorithm: for the generation of a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ whose distribution function is the copula $C_{\nu, R}^{t}, R$ positive definite with all ones on the main diagonal, $\nu \in \mathbb{N}$.

- Compute the Cholesly factorization of $R: R=A A^{T}$.
- Simulate d independent standard normally distributed r.v.

$$
Z_{1}, Z_{2}, \ldots, Z_{d} \sim N(0,1)
$$

- Simulate a r.v. $S \sim \chi_{\nu}^{2}$ independent from von Z_{1}, \ldots, Z_{d}.
- Set $Y:=A Z$
- Set $X:=\frac{\sqrt{\nu}}{\sqrt{5}} Y$
- Set $U_{k}=t_{\nu}\left(X_{k}\right)$ for $k=1,2, \ldots, d$, where t_{ν} is the distribution function of a standard t-distribution with ν degrees of freedom.
- Output $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right) ; U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ has distribution function $C_{\nu, R}^{t}$.

Simulation of Archimedian copulas

Simulation of Archimedian copulas

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with a given Archimedian copula as cumulative distribution function

Simulation of Archimedian copulas

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d \in \mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)+\ldots+\varphi\left(u_{d}\right)\right)$ specified in terms of its generator φ.

Simulation of Archimedian copulas

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d \in \mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)+\ldots+\varphi\left(u_{d}\right)\right)$ specified in terms of its generator φ.

- Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi=\varphi^{-1}$.

Simulation of Archimedian copulas

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d \in \mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)+\ldots+\varphi\left(u_{d}\right)\right)$ specified in terms of its generator φ.

- Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi=\varphi^{-1}$.
- Simulate d i.i.d. r.v. $V_{1}, V_{2}, \ldots, V_{d}$ uniformly distributed on $[0,1]$.

Simulation of Archimedian copulas

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d \in \mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)+\ldots+\varphi\left(u_{d}\right)\right)$ specified in terms of its generator φ.

- Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi=\varphi^{-1}$.
- Simulate d i.i.d. r.v. $V_{1}, V_{2}, \ldots, V_{d}$ uniformly distributed on $[0,1]$.
- Set $U=\left(\psi\left(-\ln \left(V_{1}\right) / X\right), \psi\left(-\ln \left(V_{2}\right) / X\right), \ldots, \psi\left(-\ln \left(V_{d}\right) / X\right)\right)$. The distribution function of U is C.

Simulation of Archimedian copulas

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d \in \mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)+\ldots+\varphi\left(u_{d}\right)\right)$ specified in terms of its generator φ.

- Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi=\varphi^{-1}$.
- Simulate d i.i.d. r.v. $V_{1}, V_{2}, \ldots, V_{d}$ uniformly distributed on $[0,1]$.
- Set $U=\left(\psi\left(-\ln \left(V_{1}\right) / X\right), \psi\left(-\ln \left(V_{2}\right) / X\right), \ldots, \psi\left(-\ln \left(V_{d}\right) / X\right)\right)$. The distribution function of U is C.

Output: U

Simulation of Archimedian copulas

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d \in \mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)+\ldots+\varphi\left(u_{d}\right)\right)$ specified in terms of its generator φ.

- Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi=\varphi^{-1}$.
- Simulate d i.i.d. r.v. $V_{1}, V_{2}, \ldots, V_{d}$ uniformly distributed on $[0,1]$.
- Set $U=\left(\psi\left(-\ln \left(V_{1}\right) / X\right), \psi\left(-\ln \left(V_{2}\right) / X\right), \ldots, \psi\left(-\ln \left(V_{d}\right) / X\right)\right)$. The distribution function of U is C.

Output: U
The generator $\varphi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$ yields the Clayton copula $C_{\theta}^{C l}$.

Simulation of Archimedian copulas

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d \in \mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)+\ldots+\varphi\left(u_{d}\right)\right)$ specified in terms of its generator φ.

- Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi=\varphi^{-1}$.
- Simulate d i.i.d. r.v. $V_{1}, V_{2}, \ldots, V_{d}$ uniformly distributed on $[0,1]$.
- Set $U=\left(\psi\left(-\ln \left(V_{1}\right) / X\right), \psi\left(-\ln \left(V_{2}\right) / X\right), \ldots, \psi\left(-\ln \left(V_{d}\right) / X\right)\right)$. The distribution function of U is C.

Output: U
The generator $\varphi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$ yields the Clayton copula $C_{\theta}^{C l}$. Alternatively also $\tilde{\varphi}(t)=t^{-\theta}-1$ is a generator of the Clayton copula.

Simulation of Archimedian copulas

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with a given Archimedian copula as cumulative distribution function Input: The dimension $d \in \mathbb{N}$, the Archimedian Copula $C(u)=\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)+\ldots+\varphi\left(u_{d}\right)\right)$ specified in terms of its generator φ.

- Simulate a variable X with distribution function G, such that the Laplace-Stieltjes transform ψ of G is the inverse function of the generator φ of the input copula, $\psi=\varphi^{-1}$.
- Simulate d i.i.d. r.v. $V_{1}, V_{2}, \ldots, V_{d}$ uniformly distributed on $[0,1]$.
- Set $U=\left(\psi\left(-\ln \left(V_{1}\right) / X\right), \psi\left(-\ln \left(V_{2}\right) / X\right), \ldots, \psi\left(-\ln \left(V_{d}\right) / X\right)\right)$. The distribution function of U is C.

Output: U
The generator $\varphi(t)=\left(t^{-\theta}-1\right) / \theta, \theta>0$ yields the Clayton copula $C_{\theta}^{C l}$. Alternatively also $\tilde{\varphi}(t)=t^{-\theta}-1$ is a generator of the Clayton copula.
For $X \sim \operatorname{Gamma}(1 / \theta, 1)$ with d.f. $f_{X}(x)=\left(x^{1 / \theta-1} e^{-x}\right) / \Gamma(1 / \theta)$ we have:
$E\left(e^{-s X}\right)=\int_{0}^{\infty} e^{-s x} \frac{1}{\Gamma(1 / \theta)} x^{1 / \theta-1} e^{-x} d x=(s+1)^{-1 / \theta}=\tilde{\varphi}^{-1}(s)$.

Simulation of the Clayton copula $(\theta>0)$

Simulation of the Clayton copula ($\theta>0$)

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with the Clayton $C_{\theta}^{C l}$ copula as distribution function.

Simulation of the Clayton copula ($\theta>0$)

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with the Clayton $C_{\theta}^{C l}$ copula as distribution function.
Input: The dimension $d \in \mathbb{N}$, the parameter $\theta>0$.

Simulation of the Clayton copula ($\theta>0$)

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with the Clayton $C_{\theta}^{C l}$ copula as distribution function.
Input: The dimension $d \in \mathbb{N}$, the parameter $\theta>0$.

- Simulate $X \sim \operatorname{Gamma}(1 / \theta, 1)$.

Simulation of the Clayton copula ($\theta>0$)

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with the Clayton $C_{\theta}^{C l}$ copula as distribution function.
Input: The dimension $d \in \mathbb{N}$, the parameter $\theta>0$.

- Simulate $X \sim \operatorname{Gamma}(1 / \theta, 1)$.
- Set $\psi(s):=(s+1)^{-\frac{1}{\theta}}$ for $s \geq 0$.

Simulation of the Clayton copula ($\theta>0$)

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with the Clayton $C_{\theta}^{C l}$ copula as distribution function.
Input: The dimension $d \in \mathbb{N}$, the parameter $\theta>0$.

- Simulate $X \sim \operatorname{Gamma}(1 / \theta, 1)$.
- Set $\psi(s):=(s+1)^{-\frac{1}{\theta}}$ for $s \geq 0$.
- Simulate d i.i.d. r.v. $V_{1}, V_{2}, \ldots, V_{d}$ uniformly distributed on $[0,1]$.

Simulation of the Clayton copula ($\theta>0$)

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with the Clayton $C_{\theta}^{C l}$ copula as distribution function.
Input: The dimension $d \in \mathbb{N}$, the parameter $\theta>0$.

- Simulate $X \sim \operatorname{Gamma}(1 / \theta, 1)$.
- Set $\psi(s):=(s+1)^{-\frac{1}{\theta}}$ for $s \geq 0$.
- Simulate d i.i.d. r.v. $V_{1}, V_{2}, \ldots, V_{d}$ uniformly distributed on $[0,1]$.
- The distribution function of

$$
U=\left(\psi\left(-\ln \left(V_{1}\right) / X\right), \psi\left(-\ln \left(V_{2}\right) / X\right), \ldots, \psi\left(-\ln \left(V_{d}\right) / X\right)\right)
$$

is the Clayton copula $C_{\theta}^{C l}$.

Simulation of the Clayton copula ($\theta>0$)

A generic algorithm to generate a random vector $U=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ with the Clayton $C_{\theta}^{C l}$ copula as distribution function.
Input: The dimension $d \in \mathbb{N}$, the parameter $\theta>0$.

- Simulate $X \sim \operatorname{Gamma}(1 / \theta, 1)$.
- Set $\psi(s):=(s+1)^{-\frac{1}{\theta}}$ for $s \geq 0$.
- Simulate d i.i.d. r.v. $V_{1}, V_{2}, \ldots, V_{d}$ uniformly distributed on $[0,1]$.
- The distribution function of

$$
U=\left(\psi\left(-\ln \left(V_{1}\right) / X\right), \psi\left(-\ln \left(V_{2}\right) / X\right), \ldots, \psi\left(-\ln \left(V_{d}\right) / X\right)\right)
$$

is the Clayton copula $C_{\theta}^{C l}$.
Output: U

Simulation of the Gumbel copula ($\theta \geq 1$)

Simulation of the Gumbel copula ($\theta \geq 1$)

Let X be a positive stable r.v., $X \sim \operatorname{St}(1 / \theta, 1, \gamma, 0)$ with $\gamma=(\cos (\pi /(2 \theta)))^{\theta}>0\left(\right.$ and $\left.\alpha=\frac{1}{\theta}, \beta=1, \delta=0\right)$

Simulation of the Gumbel copula ($\theta \geq 1$)

Let X be a positive stable r.v., $X \sim \operatorname{St}(1 / \theta, 1, \gamma, 0)$ with $\gamma=(\cos (\pi /(2 \theta)))^{\theta}>0\left(\right.$ and $\left.\alpha=\frac{1}{\theta}, \beta=1, \delta=0\right)$

The Laplace-Stieltjes transform of F_{X} is the generator $\varphi(t)=\exp \left(-t^{1 / \theta}\right)$ of the Gumbel copula $C_{\theta}^{G u}$.

Simulation of the Gumbel copula ($\theta \geq 1$)

Let X be a positive stable r.v., $X \sim S t(1 / \theta, 1, \gamma, 0)$ with $\gamma=(\cos (\pi /(2 \theta)))^{\theta}>0\left(\right.$ and $\left.\alpha=\frac{1}{\theta}, \beta=1, \delta=0\right)$

The Laplace-Stieltjes transform of F_{X} is the generator $\varphi(t)=\exp \left(-t^{1 / \theta}\right)$ of the Gumbel copula $C_{\theta}^{G u}$.

The simulation of $Z \sim S T(\alpha, \beta, 1,0)$ is not straightforward (see Nolan 2002).

Simulation of the Gumbel copula ($\theta \geq 1$)

Let X be a positive stable r.v., $X \sim S t(1 / \theta, 1, \gamma, 0)$ with $\gamma=(\cos (\pi /(2 \theta)))^{\theta}>0\left(\right.$ and $\left.\alpha=\frac{1}{\theta}, \beta=1, \delta=0\right)$

The Laplace-Stieltjes transform of F_{X} is the generator $\varphi(t)=\exp \left(-t^{1 / \theta}\right)$ of the Gumbel copula $C_{\theta}^{G u}$.

The simulation of $Z \sim S T(\alpha, \beta, 1,0)$ is not straightforward (see Nolan 2002).

For $\alpha \neq 1$ we get: $X=\delta+\gamma Z \sim \operatorname{St}(\alpha, \beta, \gamma, \delta)$.

Calibration of copulas

Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.

Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.
Input: A sample $\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ of a c.d.f. F with continuous marginal distributions $F_{1}, F_{2}, \ldots, F_{d}$.

Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.
Input: A sample $\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ of a c.d.f. F with continuous marginal distributions $F_{1}, F_{2}, \ldots, F_{d}$.
Output: A copula C_{θ} and an estimator $\hat{\theta}$ for the parameter vector θ of the copula C_{θ} such which $F(x) \approx C_{\hat{\theta}}\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right)$ holds.

Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.
Input: A sample $\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ of a c.d.f. F with continuous marginal distributions $F_{1}, F_{2}, \ldots, F_{d}$.
Output: A copula C_{θ} and an estimator $\hat{\theta}$ for the parameter vector θ of the copula C_{θ} such which $F(x) \approx C_{\hat{\theta}}\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right)$ holds.
Question 1: Which family of (known) copulas to use?

Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.
Input: A sample $\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ of a c.d.f. F with continuous marginal distributions $F_{1}, F_{2}, \ldots, F_{d}$.
Output: A copula C_{θ} and an estimator $\hat{\theta}$ for the parameter vector θ of the copula C_{θ} such which $F(x) \approx C_{\hat{\theta}}\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right)$ holds.
Question 1: Which family of (known) copulas to use?
Answer: Selection of a suitable family of copulas based on (a) the visual comparison of the graphical representations of the data set on one side and of known copulas on the other, and (b) the empirical tail dependence coefficients.

Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a given multi-dimensional data set.
Input: A sample $\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ of a c.d.f. F with continuous marginal distributions $F_{1}, F_{2}, \ldots, F_{d}$.
Output: A copula C_{θ} and an estimator $\hat{\theta}$ for the parameter vector θ of the copula C_{θ} such which $F(x) \approx C_{\hat{\theta}}\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right)$ holds.
Question 1: Which family of (known) copulas to use?
Answer: Selection of a suitable family of copulas based on (a) the visual comparison of the graphical representations of the data set on one side and of known copulas on the other, and (b) the empirical tail dependence coefficients.

Question 2: What are the parameters of the prespecified family of copulas used for the modelling?

Parameter estimation for $C_{R}^{G a}, C_{\nu, R}^{t}, C_{\theta}^{C l}$ and $C_{\theta}^{G u}$

$$
C_{R}^{G a}=\phi_{R}^{d}\left(\phi^{-1}\left(u_{1}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right)
$$

$$
R_{i j}=\sin \left(\pi\left(\rho_{\tau}\right)_{i j} / 2\right)
$$

Parameter estimation for $C_{R}^{G a}, C_{\nu, R}^{t}, C_{\theta}^{C l}$ and $C_{\theta}^{G u}$

$$
\begin{array}{ll}
C_{R}^{G a}=\phi_{R}^{d}\left(\phi^{-1}\left(u_{1}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right) & R_{i j}=\sin \left(\pi\left(\rho_{\tau}\right)_{i j} / 2\right) \\
C_{\nu, R}^{t}=t_{\nu, R}^{d}\left(t_{\nu}^{-1}\left(u_{1}\right), \ldots, t_{\nu}^{-1}\left(u_{d}\right)\right) & R_{i j}=\sin \left(\pi\left(\rho_{\tau}\right)_{i j} / 2\right)
\end{array}
$$

Parameter estimation for $C_{R}^{G a}, C_{\nu, R}^{t}, C_{\theta}^{C l}$ and $C_{\theta}^{G u}$

$$
\begin{array}{ll}
C_{R}^{G a}=\phi_{R}^{d}\left(\phi^{-1}\left(u_{1}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right) & R_{i j}=\sin \left(\pi\left(\rho_{\tau}\right)_{i j} / 2\right) \\
C_{\nu, R}^{t}=t_{\nu, R}^{d}\left(t_{\nu}^{-1}\left(u_{1}\right), \ldots, t_{\nu}^{-1}\left(u_{d}\right)\right) & R_{i j}=\sin \left(\pi\left(\rho_{\tau}\right)_{i j} / 2\right) \\
C_{\theta}^{G u}(u)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\ldots+\left(-\ln u_{d}^{\theta}\right]^{1 / \theta}\right)\right. & \theta=1 /\left(1-\left(\rho_{\tau}\right)_{i j}\right)
\end{array}
$$

Parameter estimation for $C_{R}^{G a}, C_{\nu, R}^{t}, C_{\theta}^{C l}$ and $C_{\theta}^{G u}$

$$
\begin{array}{ll}
C_{R}^{G a}=\phi_{R}^{d}\left(\phi^{-1}\left(u_{1}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right) & R_{i j}=\sin \left(\pi\left(\rho_{\tau}\right)_{i j} / 2\right) \\
C_{\nu, R}^{t}=t_{\nu, R}^{d}\left(t_{\nu}^{-1}\left(u_{1}\right), \ldots, t_{\nu}^{-1}\left(u_{d}\right)\right) & R_{i j}=\sin \left(\pi\left(\rho_{\tau}\right)_{i j} / 2\right) \\
C_{\theta}^{G u}(u)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\ldots+\left(-\ln u_{d}^{\theta}\right]^{1 / \theta}\right)\right. & \theta=1 /\left(1-\left(\rho_{\tau}\right)_{i j}\right) \\
C_{\theta}^{C I}(u)=\left(u_{1}^{-\theta}+\ldots+u_{d}^{-\theta}-d+1\right)^{-1 / \theta} & \theta=2\left(\rho_{\tau}\right)_{i j} /\left(1-\left(\rho_{\tau}\right)_{i j}\right)
\end{array}
$$

Parameter estimation for $C_{R}^{G a}, C_{\nu, R}^{t}, C_{\theta}^{C l}$ and $C_{\theta}^{G u}$

$$
\begin{array}{ll}
C_{R}^{G a}=\phi_{R}^{d}\left(\phi^{-1}\left(u_{1}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right) & R_{i j}=\sin \left(\pi\left(\rho_{\tau}\right)_{i j} / 2\right) \\
C_{\nu, R}^{t}=t_{\nu, R}^{d}\left(t_{\nu}^{-1}\left(u_{1}\right), \ldots, t_{\nu}^{-1}\left(u_{d}\right)\right) & R_{i j}=\sin \left(\pi\left(\rho_{\tau}\right)_{i j} / 2\right) \\
C_{\theta}^{G u}(u)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\ldots+\left(-\ln u_{d}^{\theta}\right]^{1 / \theta}\right)\right. & \theta=1 /\left(1-\left(\rho_{\tau}\right)_{i j}\right) \\
C_{\theta}^{C l}(u)=\left(u_{1}^{-\theta}+\ldots+u_{d}^{-\theta}-d+1\right)^{-1 / \theta} & \theta=2\left(\rho_{\tau}\right)_{i j} /\left(1-\left(\rho_{\tau}\right)_{i j}\right)
\end{array}
$$

where

$$
\begin{aligned}
\left(\rho_{\tau}\right)_{i j} & =\rho_{\tau}\left(X_{k, i}, X_{k, j}\right) \\
& =P\left(\left(X_{k, i}-X_{l, i}\right)\left(X_{k, j}-X_{l, j}\right)>0\right)-P\left(\left(X_{k, i}-X_{l, i}\right)\left(X_{k, j}-X_{l, j}\right)<0\right) \\
& =E\left(\operatorname{sign}\left(\left(X_{k, i}-X_{l, j}\right)\left(X_{k, j}-X_{l, j}\right)\right)\right) .
\end{aligned}
$$

Parameter estimation for $C_{R}^{G a}, C_{\nu, R}^{t}, C_{\theta}^{C l}$ and $C_{\theta}^{G u}$

$$
\begin{array}{ll}
C_{R}^{G a}=\phi_{R}^{d}\left(\phi^{-1}\left(u_{1}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right) & R_{i j}=\sin \left(\pi\left(\rho_{\tau}\right)_{i j} / 2\right) \\
C_{\nu, R}^{t}=t_{\nu, R}^{d}\left(t_{\nu}^{-1}\left(u_{1}\right), \ldots, t_{\nu}^{-1}\left(u_{d}\right)\right) & R_{i j}=\sin \left(\pi\left(\rho_{\tau}\right)_{i j} / 2\right) \\
C_{\theta}^{G u}(u)=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\ldots+\left(-\ln u_{d}^{\theta}\right]^{1 / \theta}\right)\right. & \theta=1 /\left(1-\left(\rho_{\tau}\right)_{i j}\right) \\
C_{\theta}^{C l}(u)=\left(u_{1}^{-\theta}+\ldots+u_{d}^{-\theta}-d+1\right)^{-1 / \theta} & \theta=2\left(\rho_{\tau}\right)_{i j} /\left(1-\left(\rho_{\tau}\right)_{i j}\right)
\end{array}
$$

where

$$
\begin{aligned}
\left(\rho_{\tau}\right)_{i j} & =\rho_{\tau}\left(X_{k, i}, X_{k, j}\right) \\
& =P\left(\left(X_{k, i}-X_{l, i}\right)\left(X_{k, j}-X_{l, j}\right)>0\right)-P\left(\left(X_{k, i}-X_{l, i}\right)\left(X_{k, j}-X_{l, j}\right)<0\right) \\
& =E\left(\operatorname{sign}\left(\left(X_{k, i}-X_{l, j}\right)\left(X_{k, j}-X_{l, j}\right)\right)\right) .
\end{aligned}
$$

Standard empirical estimator of Kendalls Tau:
$\widehat{\rho}_{i j}=\binom{n}{2}^{-1} \sum_{1 \leq k<I \leq n} \operatorname{sign}\left(\left(X_{k, i}-X_{l, i}\right)\left(X_{k, j}-X_{l, j}\right)\right)$.

Calibration of the correlation matrix for Gaussian and t-copulas

Calibration of the correlation matrix for Gaussian and t-copulas
It may happen that $\hat{R}=\left(\hat{R}_{i j}\right), \hat{R}_{i j}=\sin \left(\pi \widehat{\rho}_{\tau i j} / 2\right)$, is not positive definite.

Calibration of the correlation matrix for Gaussian and t-copulas

It may happen that $\hat{R}=\left(\hat{R}_{i j}\right), \hat{R}_{i j}=\sin \left(\pi \widehat{\rho}_{\tau i j} / 2\right)$, is not positive definite. Replace \hat{R} by a correlation matrix R^{*}, selected such the "distance" between R^{*} and \hat{R} is "small".

Calibration of the correlation matrix for Gaussian and t-copulas

It may happen that $\hat{R}=\left(\hat{R}_{i j}\right), \hat{R}_{i j}=\sin \left(\pi \widehat{\rho}_{\tau i j} / 2\right)$, is not positive definite. Replace \hat{R} by a correlation matrix R^{*}, selected such the "distance" between R^{*} and \hat{R} is "small".
Eigenvalue approach (Rousseeuw and Molenberghs 1993)

- Compute the spectral decomposition $\hat{R}=\Gamma \Lambda \Gamma^{\top}$ of \hat{R}, where Λ is a diagonal matrix, containing the eigenvalues of \hat{R} on the diagonal, and Γ is an orthogonal matrix with the eigenvectors of \hat{R} in its columns.

Calibration of the correlation matrix for Gaussian and t-copulas

It may happen that $\hat{R}=\left(\hat{R}_{i j}\right), \hat{R}_{i j}=\sin \left(\pi \widehat{\rho}_{\tau i j} / 2\right)$, is not positive definite. Replace \hat{R} by a correlation matrix R^{*}, selected such the "distance" between R^{*} and \hat{R} is "small".
Eigenvalue approach (Rousseeuw and Molenberghs 1993)

- Compute the spectral decomposition $\hat{R}=\Gamma \Lambda \Gamma^{\top}$ of \hat{R}, where Λ is a diagonal matrix, containing the eigenvalues of \hat{R} on the diagonal, and Γ is an orthogonal matrix with the eigenvectors of \hat{R} in its columns.
- Replace the negative eigenvalues in Λ by some small number $\delta>0$ to obtain $\tilde{\Lambda}$.

Calibration of the correlation matrix for Gaussian and t-copulas

It may happen that $\hat{R}=\left(\hat{R}_{i j}\right), \hat{R}_{i j}=\sin \left(\pi \widehat{\rho}_{\tau i j} / 2\right)$, is not positive definite. Replace \hat{R} by a correlation matrix R^{*}, selected such the "distance" between R^{*} and \hat{R} is "small".
Eigenvalue approach (Rousseeuw and Molenberghs 1993)

- Compute the spectral decomposition $\hat{R}=\Gamma \Lambda \Gamma^{T}$ of \hat{R}, where Λ is a diagonal matrix, containing the eigenvalues of \hat{R} on the diagonal, and Γ is an orthogonal matrix with the eigenvectors of \hat{R} in its columns.
- Replace the negative eigenvalues in Λ by some small number $\delta>0$ to obtain $\tilde{\Lambda}$.
- Compute $\tilde{R}=\Gamma \tilde{\Lambda} \Gamma^{T}$. \tilde{R} is symmetric and positive definite but not necessarily a correlation matrix; the diagonal elements $\hat{R}_{i i}$ might be unequal 1 .

Calibration of the correlation matrix for Gaussian and t-copulas

It may happen that $\hat{R}=\left(\hat{R}_{i j}\right), \hat{R}_{i j}=\sin \left(\pi \widehat{\rho}_{\tau i j} / 2\right)$, is not positive definite. Replace \hat{R} by a correlation matrix R^{*}, selected such the "distance" between R^{*} and \hat{R} is "small".
Eigenvalue approach (Rousseeuw and Molenberghs 1993)

- Compute the spectral decomposition $\hat{R}=\Gamma \Lambda \Gamma^{T}$ of \hat{R}, where Λ is a diagonal matrix, containing the eigenvalues of \hat{R} on the diagonal, and Γ is an orthogonal matrix with the eigenvectors of \hat{R} in its columns.
- Replace the negative eigenvalues in Λ by some small number $\delta>0$ to obtain $\tilde{\Lambda}$.
- Compute $\tilde{R}=\Gamma \tilde{\Lambda} \Gamma^{T}$. \tilde{R} is symmetric and positive definite but not necessarily a correlation matrix; the diagonal elements $\hat{R}_{i i}$ might be unequal 1.
- Set $R^{*}:=D \tilde{R} D$ where D is a diagonal matrix with

$$
D_{k, k}=1 / \sqrt{\tilde{R}_{k, k}} .
$$

Estimation of the number of the degrees of freedom ν for t-copulas

Estimation of the number of the degrees of freedom ν for t-copulas

1. Let $\hat{F}_{1}, \ldots, \hat{F}_{d}$ be the estimated marginal distributions.

Estimation of the number of the degrees of freedom ν for t-copulas

1. Let $\hat{F}_{1}, \ldots, \hat{F}_{d}$ be the estimated marginal distributions.
2. Generate a pseudo-sample of the copula

$$
\hat{U}_{k}=\left(\hat{U}_{k, 1}, \hat{U}_{k, 2}, \ldots, \hat{U}_{k, d}\right):=\left(\hat{F}_{1}\left(X_{k, 1}\right), \ldots, \hat{F}_{d}\left(X_{k, d}\right)\right),
$$

for $k=1,2, \ldots, n$ (see Genest und Rivest 1993).

Estimation of the number of the degrees of freedom ν for t-copulas

1. Let $\hat{F}_{1}, \ldots, \hat{F}_{d}$ be the estimated marginal distributions.
2. Generate a pseudo-sample of the copula

$$
\hat{U}_{k}=\left(\hat{U}_{k, 1}, \hat{U}_{k, 2}, \ldots, \hat{U}_{k, d}\right):=\left(\hat{F}_{1}\left(X_{k, 1}\right), \ldots, \hat{F}_{d}\left(X_{k, d}\right)\right),
$$

for $k=1,2, \ldots, n$ (see Genest und Rivest 1993).
\hat{F}_{k} can be generated by :

- a parametric estimation method;
\hat{F}_{k} is assumed to be a certain parametric distribution and the parameter is estimated by a maximum likelihood (ML) approach

Estimation of the number of the degrees of freedom ν for t-copulas

1. Let $\hat{F}_{1}, \ldots, \hat{F}_{d}$ be the estimated marginal distributions.
2. Generate a pseudo-sample of the copula

$$
\hat{U}_{k}=\left(\hat{U}_{k, 1}, \hat{U}_{k, 2}, \ldots, \hat{U}_{k, d}\right):=\left(\hat{F}_{1}\left(X_{k, 1}\right), \ldots, \hat{F}_{d}\left(X_{k, d}\right)\right),
$$

for $k=1,2, \ldots, n$ (see Genest und Rivest 1993).
\hat{F}_{k} can be generated by :

- a parametric estimation method;
\hat{F}_{k} is assumed to be a certain parametric distribution and the parameter is estimated by a maximum likelihood (ML) approach
- a non-parametric estimation method;
\hat{F}_{i} is the empirical distribution function $\hat{F}_{i}(x)=\frac{1}{n+1} \sum_{t=1}^{n} I_{\left\{X_{t, i} \leq x\right\}}$, $1 \leq i \leq d$.

Estimation of the number of the degrees of freedom ν for t-copulas (contd.)

Estimation of the number of the degrees of freedom ν for t-copulas (contd.)
Maximum likelihood estimator of $\nu: \nu=\arg \max _{\xi} \ln L\left(\xi ; \hat{U}_{1}, \hat{U}_{2}, \ldots, \hat{U}_{n}\right)$

Estimation of the number of the degrees of freedom ν for t-copulas (contd.)

Maximum likelihood estimator of $\nu: \nu=\arg \max _{\xi} \ln L\left(\xi ; \hat{U}_{1}, \hat{U}_{2}, \ldots, \hat{U}_{n}\right)$ where

$$
L\left(\xi ; \hat{U}_{1}, \hat{U}_{2}, \ldots, \hat{U}_{n}\right)=\Pi_{k=1}^{n} c_{\xi, R}^{t}\left(\hat{U}_{k}\right)
$$

and $c_{\xi, R}^{t}$ is the density of the t-copula $C_{\xi, R}^{t}$.
This implies

$$
\sum_{k=1}^{n} \ln g_{\xi, R}\left(t_{\xi}^{-1}\left(\hat{U}_{k, 1}\right), \ldots, t_{\xi}^{-1}\left(\hat{U}_{k, d}\right)\right)-\sum_{k=1}^{n} \sum_{j=1}^{d} \ln g_{\xi}\left(t_{\xi}^{-1}\left(\hat{U}_{k, j}\right)\right)
$$

Estimation of the number of the degrees of freedom ν for t-copulas (contd.)

Maximum likelihood estimator of $\nu: \nu=\arg \max _{\xi} \ln L\left(\xi ; \hat{U}_{1}, \hat{U}_{2}, \ldots, \hat{U}_{n}\right)$ where

$$
L\left(\xi ; \hat{U}_{1}, \hat{U}_{2}, \ldots, \hat{U}_{n}\right)=\Pi_{k=1}^{n} c_{\xi, R}^{t}\left(\hat{U}_{k}\right)
$$

and $c_{\xi, R}^{t}$ is the density of the t-copula $C_{\xi, R}^{t}$.
This implies

$$
\begin{gathered}
\ln L\left(\xi ; \hat{U}_{1}, \hat{U}_{2}, \ldots, \hat{U}_{n}\right)= \\
\sum_{k=1}^{n} \ln g_{\xi, R}\left(t_{\xi}^{-1}\left(\hat{U}_{k, 1}\right), \ldots, t_{\xi}^{-1}\left(\hat{U}_{k, d}\right)\right)-\sum_{k=1}^{n} \sum_{j=1}^{d} \ln g_{\xi}\left(t_{\xi}^{-1}\left(\hat{U}_{k, j}\right)\right),
\end{gathered}
$$

where $g_{\xi, R}$ is the cumulative density function of a d-dimensional t-distribution with expectation 0ξ degrees of freedom and correlation matrix R, and g_{ξ} is the density function of a univariate standard t-distribution with ξ degrees of freedom.

