Definition: Let X be a *d*-dimensional random vector. Let $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi : [0, \infty) \to \mathbb{R}$ be a function such that $\phi_{X-\mu} = \psi(t^T \Sigma t)$ holds for the characteristic function $\phi_{X-\mu}$ of $X - \mu$. Then X is an elliptically distributed random vector with parameters μ , Σ , ψ . Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Definition: Let X be a *d*-dimensional random vector. Let $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi : [0, \infty) \to \mathbb{R}$ be a function such that $\phi_{X-\mu} = \psi(t^T \Sigma t)$ holds for the characteristic function $\phi_{X-\mu}$ of $X - \mu$. Then X is an elliptically distributed random vector with parameters μ , Σ , ψ . Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 ψ is the generating function (or the generator) of X.

Definition: Let X be a *d*-dimensional random vector. Let $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi : [0, \infty) \to \mathbb{R}$ be a function such that $\phi_{X-\mu} = \psi(t^T \Sigma t)$ holds for the characteristic function $\phi_{X-\mu}$ of $X - \mu$. Then X is an elliptically distributed random vector with parameters μ , Σ , ψ . Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 ψ is the generating function (or the generator) of X.

For d = 1 the elliptical distributions coincide with the symmetric distributions. (*Convince yourself! Exploit the stochastic representation of elliptical distributions.*)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Definition: Let X be a *d*-dimensional random vector. Let $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi : [0, \infty) \to \mathbb{R}$ be a function such that $\phi_{X-\mu} = \psi(t^T \Sigma t)$ holds for the characteristic function $\phi_{X-\mu}$ of $X - \mu$. Then X is an elliptically distributed random vector with parameters μ , Σ , ψ . Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 ψ is the generating function (or the generator) of X.

For d = 1 the elliptical distributions coincide with the symmetric distributions. (*Convince yourself! Exploit the stochastic representation of elliptical distributions.*)

Theorem:(Stochastic representation)

A *d*-dimensional random vector X is elliptically distributed, $X \sim E_d(\mu, \Sigma, \psi)$ with $rang(\Sigma) = k$, iff there exist a matrix $A \in \mathbb{R}^{d \times k}$, $A^T A = \Sigma$, a nonnegative r.v. R and a k-dimensional random vector U uniformly distributed on the unit ball $S^{k-1} = \{z \in \mathbb{R}^k : z^T z = 1\}$, such that R and U are independent and $X \stackrel{d}{=} \mu + RAU$.

Definition: Let X be a *d*-dimensional random vector. Let $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi : [0, \infty) \to \mathbb{R}$ be a function such that $\phi_{X-\mu} = \psi(t^T \Sigma t)$ holds for the characteristic function $\phi_{X-\mu}$ of $X - \mu$. Then X is an elliptically distributed random vector with parameters μ , Σ , ψ . Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 ψ is the generating function (or the generator) of X.

For d = 1 the elliptical distributions coincide with the symmetric distributions. (*Convince yourself! Exploit the stochastic representation of elliptical distributions.*)

Theorem:(Stochastic representation)

A *d*-dimensional random vector X is elliptically distributed, $X \sim E_d(\mu, \Sigma, \psi)$ with $rang(\Sigma) = k$, iff there exist a matrix $A \in \mathbb{R}^{d \times k}$, $A^T A = \Sigma$, a nonnegative r.v. R and a k-dimensional random vector U uniformly distributed on the unit ball $S^{k-1} = \{z \in \mathbb{R}^k : z^T z = 1\}$, such that R and U are independent and $X \stackrel{d}{=} \mu + RAU$. Remark: An elliptically distributed random vector X ist radial symmetric

Remark: An elliptically distributed random vector X ist *radial symmetric*, i.e. $X - \mu \stackrel{d}{=} \mu - X$.

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and continuous marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and continuous marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: Gaussian copulas are elliptical copulas

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and continuous marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Example: Gaussian copulas are elliptical copulas Let C_R^{Ga} be the copula of a *d*-dimensional normal distribution with correlation matrix *R*. Then $C_R^{Ga}(u) = \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d))$ holds, where ϕ_R^d is the c.d.f. of a *d*-dimensional normal distribution with expected vector 0 and correlation matrix *R*, and ϕ^{-1} is the inverse of the standard normal distribution function.

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and continuous marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Example: Gaussian copulas are elliptical copulas Let C_R^{Ga} be the copula of a *d*-dimensional normal distribution with correlation matrix *R*. Then $C_R^{Ga}(u) = \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d))$ holds, where ϕ_R^d is the c.d.f. of a *d*-dimensional normal distribution with expected vector 0 and correlation matrix *R*, and ϕ^{-1} is the inverse of the standard normal distribution function.

Since the normal distribution is elliptic, the Gaussian copula C_R^{Ga} is by definition an elliptic copula.

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and continuous marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Example: Gaussian copulas are elliptical copulas Let C_R^{Ga} be the copula of a *d*-dimensional normal distribution with correlation matrix *R*. Then $C_R^{Ga}(u) = \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d))$ holds, where ϕ_R^d is the c.d.f. of a *d*-dimensional normal distribution with expected vector 0 and correlation matrix *R*, and ϕ^{-1} is the inverse of the standard normal distribution function.

Since the normal distribution is elliptic, the Gaussian copula C_R^{Ga} is by definition an elliptic copula.

In the bivariate case we have:

$$\begin{split} C^{Ga}_{R}(u_{1},u_{2}) &= \int_{-\infty}^{\phi^{-1}(u_{1})} \int_{-\infty}^{\phi^{-1}(u_{2})} \frac{1}{2\pi (1-\rho^{2})^{1/2}} \exp\left\{\frac{-(x_{1}^{2}-2\rho x_{1}x_{2}+x_{2}^{2})}{2(1-\rho^{2})}\right\} dx_{1} dx_{2},\\ \text{where } \rho \in (-1,1). \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Another example of elliptical copulas: the t-copula

Another example of elliptical copulas: the t-copula Definition: Let $X \stackrel{d}{=} \mu + \frac{\sqrt{\alpha}}{\sqrt{S}}AZ \sim t_d(\alpha, \mu, \Sigma)$, where $\mu \in \mathbb{R}^d$, $\alpha \in \mathbb{N}$, $\alpha > 1$, $S \sim \chi^2_{\alpha}$, $A \in \mathbb{R}^{d \times k}$ with $AA^t = \Sigma$, $Z \sim N_k(0, I_k)$, and S and Z independent. We say that X has a d-dimensional t-distribution with expectation μ (for $\alpha > 1$) and covariance matrix $Cov(X) = \frac{\alpha}{\alpha-2}\Sigma$. ($\alpha > 2$ should hold, Cov(X) does not exist for $\alpha \leq 2$.)

Another example of elliptical copulas: the t-copula Definition: Let $X \stackrel{d}{=} \mu + \frac{\sqrt{\alpha}}{\sqrt{S}}AZ \sim t_d(\alpha, \mu, \Sigma)$, where $\mu \in \mathbb{R}^d$, $\alpha \in \mathbb{N}$, $\alpha > 1$, $S \sim \chi^2_{\alpha}$, $A \in \mathbb{R}^{d \times k}$ with $AA^t = \Sigma$, $Z \sim N_k(0, I_k)$, and S and Zindependent. We say that X has a d-dimensional t-distribution with expectation μ (for $\alpha > 1$) and covariance matrix $Cov(X) = \frac{\alpha}{\alpha - 2}\Sigma$. ($\alpha > 2$ should hold, Cov(X) does not exist for $\alpha \leq 2$.) Definition: The (unique) copula $C^t_{\alpha,R}$ of X is called t-copula:

$$C^t_{\alpha,R}(u) = t^d_{\alpha,R}(t^{-1}_{\alpha}(u_1),\ldots,t^{-1}_{\alpha}(u_d)).$$

$$\begin{split} R_{ij} &= \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{ji}}}, \ i, j = 1, 2 \dots, d, \text{ is the correlation matrix of } AZ. \\ t^d_{\alpha,R} \text{ is the cdf of } \frac{\sqrt{\alpha}}{\sqrt{S}}Y \text{ , where } S \sim \chi^2_{\alpha}, \ Z \sim N_k(0, R), \text{ and } S, \ Y \text{ are independent. } t_{\alpha} \text{ are the marginal distributions of } t^d_{\alpha,R}. \end{split}$$

Another example of elliptical copulas: the t-copula Definition: Let $X \stackrel{d}{=} \mu + \frac{\sqrt{\alpha}}{\sqrt{S}}AZ \sim t_d(\alpha, \mu, \Sigma)$, where $\mu \in \mathbb{R}^d$, $\alpha \in \mathbb{N}$, $\alpha > 1$, $S \sim \chi^2_{\alpha}$, $A \in \mathbb{R}^{d \times k}$ with $AA^t = \Sigma$, $Z \sim N_k(0, I_k)$, and S and Zindependent. We say that X has a d-dimensional t-distribution with expectation μ (for $\alpha > 1$) and covariance matrix $Cov(X) = \frac{\alpha}{\alpha - 2}\Sigma$. ($\alpha > 2$ should hold, Cov(X) does not exist for $\alpha \leq 2$.) Definition: The (unique) copula $C^t_{\alpha,R}$ of X is called t-copula:

$$C^t_{\alpha,R}(u) = t^d_{\alpha,R}(t^{-1}_{\alpha}(u_1),\ldots,t^{-1}_{\alpha}(u_d)).$$

$$\begin{split} R_{ij} &= \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}, \ i,j = 1, 2 \dots, d, \text{ is the correlation matrix of } AZ. \\ t^d_{\alpha,R} \text{ is the cdf of } \frac{\sqrt{\alpha}}{\sqrt{S}}Y \text{ , where } S \sim \chi^2_{\alpha}, \ Z \sim N_k(0,R), \text{ and } S, \ Y \text{ are independent. } t_{\alpha} \text{ are the marginal distributions of } t^d_{\alpha,R}. \\ \text{In the bivariate case } (d = 2): \end{split}$$

$$C_{\alpha,R}^{t}(u_{1},u_{2}) = \int_{-\infty}^{t_{\alpha}^{-1}(u_{1})} \int_{-\infty}^{t_{\alpha}^{-1}(u_{2})} \frac{1}{2\pi(1-\rho^{2})^{1/2}} \left\{ 1 + \frac{x_{1}^{2} - 2\rho x_{1}x_{2} + x_{2}^{2}}{\alpha(1-\rho^{2})} \right\}^{-\frac{\alpha+2}{2}} dx_{1} dx_{2}$$

for $\rho \in (-1, 1)$. R_{12} is the linear correlation coefficient of the corresponding bivariate t_{α} -distribution for $\alpha > 2$.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

called *radial symmetric around a*, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

called *radial symmetric around a*, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is

called *radial symmetric around a*, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry of copulas) A copula *C* is called radial symmetric iff

$$(U_1 - 0.5, \ldots, U_d - 0.5) \stackrel{d}{=} (0.5 - U_1, \ldots, 0.5 - U_d) \iff U \stackrel{d}{=} 1 - U,$$

where $(U_1, U_2, ..., U_d)$ is a random vector with distribution function *C*. For a radial symmetric copula $C = \hat{C}$ holds.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is

called *radial symmetric around a*, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry of copulas) A copula *C* is called radial symmetric iff

$$(U_1 - 0.5, \ldots, U_d - 0.5) \stackrel{d}{=} (0.5 - U_1, \ldots, 0.5 - U_d) \iff U \stackrel{d}{=} 1 - U,$$

where $(U_1, U_2, ..., U_d)$ is a random vector with distribution function C. For a radial symmetric copula $C = \hat{C}$ holds.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: Elliptical copulas are radial symmetric.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is

called *radial symmetric around a*, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry of copulas) A copula *C* is called radial symmetric iff

$$(U_1 - 0.5, \ldots, U_d - 0.5) \stackrel{d}{=} (0.5 - U_1, \ldots, 0.5 - U_d) \iff U \stackrel{d}{=} 1 - U,$$

where $(U_1, U_2, ..., U_d)$ is a random vector with distribution function *C*. For a radial symmetric copula $C = \hat{C}$ holds.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)</

Example: Elliptical copulas are radial symmetric.

The Gumbel and Clayton Copulas are not radial symmetric. Why?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ● 臣 ● の Q @

Not every copula has a density function. For example the co-monotony copula M and the anti-monotony copula W do not have a density function.

Not every copula has a density function. For example the co-monotony copula M and the anti-monotony copula W do not have a density function.

If the density function c of a copula C exists, then we have

$$c(u_1, u_2, \ldots, u_d) = \frac{\partial C(u_1, u_2, \ldots, u_d)}{\partial u_1 \partial u_2 \ldots \partial u_d}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Not every copula has a density function. For example the co-monotony copula M and the anti-monotony copula W do not have a density function.

If the density function c of a copula C exists, then we have

$$c(u_1, u_2, \ldots, u_d) = \frac{\partial C(u_1, u_2, \ldots, u_d)}{\partial u_1 \partial u_2 \ldots \partial u_d}.$$

Let C be the copula of a distribution F with differentiable marginal distributions F_1, \ldots, F_d . By differentiating

$$C(u_1,\ldots,u_d)=F(F_1^{\leftarrow}(u_1),\ldots,F_d^{\leftarrow}(u_d))$$

we obtain the density c of C:

$$c(u_1,\ldots,u_d) = \frac{f(F_1^{-1}(u_1),\ldots,F_d^{-1}(u_d))}{f_1(F_1^{-1}(u_1))\ldots f_d(F_d^{-1}(u_d))}$$

where f is the density function of F, f_i are the marginal density functions, and F_i^{-1} are the inverse functions of F_i , for $1 \le i \le d$,

Definition:

A random vector X is called **exchangeable** iff

 $(X_1,\ldots,X_d) \stackrel{d}{=} (X_{\pi(1)},\ldots,X_{\pi(d)})$ for any permutation $(\pi(1),\pi(2),\ldots,\pi(d))$ of $(1,2,\ldots,d)$.

A copula C is called **exchangeable** iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0, 1]).

Definition:

A random vector X is called **exchangeable** iff

 $(X_1,\ldots,X_d) \stackrel{d}{=} (X_{\pi(1)},\ldots,X_{\pi(d)})$ for any permutation $(\pi(1),\pi(2),\ldots,\pi(d))$ of $(1,2,\ldots,d)$.

A copula C is called **exchangeable** iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0, 1]).

For such a copula $C(u_1, u_2, \ldots, u_d) = C(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)})$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1, 2, \ldots, d)$.

Definition:

A random vector X is called **exchangeable** iff

 $(X_1,\ldots,X_d) \stackrel{d}{=} (X_{\pi(1)},\ldots,X_{\pi(d)})$ for any permutation $(\pi(1),\pi(2),\ldots,\pi(d))$ of $(1,2,\ldots,d)$.

A copula C is called **exchangeable** iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0, 1]).

For such a copula $C(u_1, u_2, \ldots, u_d) = C(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)})$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1, 2, \ldots, d)$.

Examples of exchangeable copulas:

Gumbel, Clayton, and also the Gaussian copula C_P^{Ga} and the t-Copula $C_{\nu,P}^{t}$, if P is an *equicorrelation matrix*, i.e. $R = \rho J_d + (1 - \rho)I_d$. $J_d \in \mathbb{R}^{d \times d}$ is a matrix consisting only of ones, and $I_d \in \mathbb{R}^{d \times d}$ is the *d*-dimensional identity matrix.

Definition:

A random vector X is called **exchangeable** iff

 $(X_1,\ldots,X_d) \stackrel{d}{=} (X_{\pi(1)},\ldots,X_{\pi(d)})$ for any permutation $(\pi(1),\pi(2),\ldots,\pi(d))$ of $(1,2,\ldots,d)$.

A copula C is called **exchangeable** iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0, 1]).

For such a copula $C(u_1, u_2, \ldots, u_d) = C(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)})$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1, 2, \ldots, d)$.

Examples of exchangeable copulas:

Gumbel, Clayton, and also the Gaussian copula C_P^{Ga} and the t-Copula $C_{\nu,P}^{t}$, if P is an *equicorrelation matrix*, i.e. $R = \rho J_d + (1 - \rho)I_d$. $J_d \in \mathbb{R}^{d \times d}$ is a matrix consisting only of ones, and $I_d \in \mathbb{R}^{d \times d}$ is the *d*-dimensional identity matrix.

For bivariate exchangeable copulas we have:

$$P(U_2 \leq u_2 | U_1 = u_1) = P(U_1 \leq u_2 | U_2 = u_1).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_{ρ}^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_{ρ}^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T \sim t_2(0, \nu, R)$ be a random vector with a *t*-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix *R*. For $R_{12} > -1$ we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1-R_{12}}} \right)$$

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_{ρ}^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T \sim t_2(0, \nu, R)$ be a random vector with a *t*-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix *R*. For $R_{12} > -1$ we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2 \bar{t}_{\nu+1} \left(\sqrt{\nu+1} rac{\sqrt{1-R_{12}}}{\sqrt{1-R_{12}}}
ight)$$

The proof is similar to the proof of the analogous theorem about the Gaussian copulas.

Hint:

$$X_2|X_1 = x \sim \left(\frac{\nu+1}{\nu+x^2}\right)^{1/2} \frac{X_2 - \rho x}{\sqrt{1-\rho^2}} \sim t_{\nu+1}$$

- 1-