Elliptical copulas

Elliptical copulas

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that $\phi_{X-\mu}=\psi\left(t^{T} \Sigma t\right)$ holds for the characteristic function $\phi_{X-\mu}$ of $X-\mu$.
Then X is an elliptically distributed random vector with parameters μ, Σ, ψ. Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.

Elliptical copulas

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that $\phi_{X-\mu}=\psi\left(t^{T} \Sigma t\right)$ holds for the characteristic function $\phi_{X-\mu}$ of $X-\mu$.
Then X is an elliptically distributed random vector with parameters μ, Σ, ψ. Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.
ψ is the generating function (or the generator) of X.

Elliptical copulas

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that $\phi_{X-\mu}=\psi\left(t^{T} \Sigma t\right)$ holds for the characteristic function $\phi_{X-\mu}$ of $X-\mu$.
Then X is an elliptically distributed random vector with parameters μ, Σ, ψ. Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.
ψ is the generating function (or the generator) of X.
For $d=1$ the elliptical distributions coincide with the symmetric distributions. (Convince yourself! Exploit the stochastic representation of elliptical distributions.)

Elliptical copulas

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that $\phi_{X-\mu}=\psi\left(t^{T} \Sigma t\right)$ holds for the characteristic function $\phi_{X-\mu}$ of $X-\mu$. Then X is an elliptically distributed random vector with parameters μ, Σ, ψ. Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.
ψ is the generating function (or the generator) of X.
For $d=1$ the elliptical distributions coincide with the symmetric distributions. (Convince yourself! Exploit the stochastic representation of elliptical distributions.)
Theorem:(Stochastic representation)
A d-dimensional random vector X is elliptically distributed, $X \sim E_{d}(\mu, \Sigma, \psi)$ with $\operatorname{rang}(\Sigma)=k$, iff there exist a matrix $A \in \mathbb{R}^{d \times k}$, $A^{T} A=\Sigma$, a nonnegative r.v. R and a k-dimensional random vector U uniformly distributed on the unit ball $\mathcal{S}^{k-1}=\left\{z \in \mathbb{R}^{k}: z^{T} z=1\right\}$, such that R and U are independent and $X \stackrel{d}{=} \mu+R A U$.

Elliptical copulas

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a function such that $\phi_{X-\mu}=\psi\left(t^{T} \Sigma t\right)$ holds for the characteristic function $\phi_{X-\mu}$ of $X-\mu$. Then X is an elliptically distributed random vector with parameters μ, Σ, ψ. Notation: $X \sim E_{d}(\mu, \Sigma, \psi)$.
ψ is the generating function (or the generator) of X.
For $d=1$ the elliptical distributions coincide with the symmetric distributions. (Convince yourself! Exploit the stochastic representation of elliptical distributions.)
Theorem:(Stochastic representation)
A d-dimensional random vector X is elliptically distributed, $X \sim E_{d}(\mu, \Sigma, \psi)$ with $\operatorname{rang}(\Sigma)=k$, iff there exist a matrix $A \in \mathbb{R}^{d \times k}$, $A^{T} A=\Sigma$, a nonnegative r.v. R and a k-dimensional random vector U uniformly distributed on the unit ball $\mathcal{S}^{k-1}=\left\{z \in \mathbb{R}^{k}: z^{T} z=1\right\}$, such that R and U are independent and $X \stackrel{d}{=} \mu+R A U$.
Remark: An elliptically distributed random vector X ist radial symmetric, i.e. $X-\mu \stackrel{d}{=} \mu-X$.

Elliptical copulas (contd.)

Elliptical copulas (contd.)

Definition: Let $X \sim E_{d}(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and continuous marginal distributions $F_{1}, F_{2}, \ldots, F_{d}$. The unique copula C of X (or F) with $C(u)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)$, is called an elliptical copula.

Elliptical copulas (contd.)

Definition: Let $X \sim E_{d}(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and continuous marginal distributions $F_{1}, F_{2}, \ldots, F_{d}$. The unique copula C of X (or F) with $C(u)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right.$), is called an elliptical copula.
Example: Gaussian copulas are elliptical copulas

Elliptical copulas (contd.)

Definition: Let $X \sim E_{d}(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and continuous marginal distributions $F_{1}, F_{2}, \ldots, F_{d}$. The unique copula C of X (or F) with $C(u)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right.$), is called an elliptical copula.
Example: Gaussian copulas are elliptical copulas Let $C_{R}^{G a}$ be the copula of a d-dimensional normal distribution with correlation matrix R. Then $C_{R}^{G a}(u)=\phi_{R}^{d}\left(\phi^{-1}\left(u_{1}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right)$ holds, where ϕ_{R}^{d} is the c.d.f. of a d-dimensional normal distribution with expected vector 0 and correlation matrix R, and ϕ^{-1} is the inverse of the standard normal distribution function.

Elliptical copulas (contd.)

Definition: Let $X \sim E_{d}(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and continuous marginal distributions $F_{1}, F_{2}, \ldots, F_{d}$. The unique copula C of X (or F) with $C(u)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)$, is called an elliptical copula.
Example: Gaussian copulas are elliptical copulas Let $C_{R}^{G a}$ be the copula of a d-dimensional normal distribution with correlation matrix R. Then $C_{R}^{G a}(u)=\phi_{R}^{d}\left(\phi^{-1}\left(u_{1}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right)$ holds, where ϕ_{R}^{d} is the c.d.f. of a d-dimensional normal distribution with expected vector 0 and correlation matrix R, and ϕ^{-1} is the inverse of the standard normal distribution function.
Since the normal distribution is elliptic, the Gaussian copula $C_{R}^{G a}$ is by definition an elliptic copula.

Elliptical copulas (contd.)

Definition: Let $X \sim E_{d}(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and continuous marginal distributions $F_{1}, F_{2}, \ldots, F_{d}$. The unique copula C of X (or F) with $C(u)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right.$), is called an elliptical copula.
Example: Gaussian copulas are elliptical copulas
Let $C_{R}^{G a}$ be the copula of a d-dimensional normal distribution with correlation matrix R. Then $C_{R}^{G a}(u)=\phi_{R}^{d}\left(\phi^{-1}\left(u_{1}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right)$ holds, where ϕ_{R}^{d} is the c.d.f. of a d-dimensional normal distribution with expected vector 0 and correlation matrix R, and ϕ^{-1} is the inverse of the standard normal distribution function.
Since the normal distribution is elliptic, the Gaussian copula $C_{R}^{G a}$ is by definition an elliptic copula.
In the bivariate case we have:

$$
C_{R}^{G a}\left(u_{1}, u_{2}\right)=\int_{-\infty}^{\phi^{-1}\left(u_{1}\right)} \int_{-\infty}^{\phi^{-1}\left(u_{2}\right)} \frac{1}{2 \pi\left(1-\rho^{2}\right)^{1 / 2}} \exp \left\{\frac{-\left(x_{1}^{2}-2 \rho x_{1} x_{2}+x_{2}^{2}\right)}{2\left(1-\rho^{2}\right)}\right\} d x_{1} d x_{2}
$$

where $\rho \in(-1,1)$.

Another example of elliptical copulas: the t-copula

Another example of elliptical copulas: the t-copula

 Definition: Let $X \stackrel{d}{=} \mu+\frac{\sqrt{\alpha}}{\sqrt{S}} A Z \sim t_{d}(\alpha, \mu, \Sigma)$, where $\mu \in \mathbb{R}^{d}, \alpha \in \mathbb{N}$, $\alpha>1, S \sim \chi_{\alpha}^{2}, A \in \mathbb{R}^{d \times k}$ with $A A^{t}=\Sigma, Z \sim N_{k}\left(0, I_{k}\right)$, and S and Z independent. We say that X has a d-dimensional t-distribution with expectation μ (for $\alpha>1$) and covariance matrix $\operatorname{Cov}(X)=\frac{\alpha}{\alpha-2} \Sigma$. ($\alpha>2$ should hold, $\operatorname{Cov}(X)$ does not exist for $\alpha \leq 2$.)
Another example of elliptical copulas: the t-copula

Definition: Let $X \stackrel{d}{=} \mu+\frac{\sqrt{\alpha}}{\sqrt{S}} A Z \sim t_{d}(\alpha, \mu, \Sigma)$, where $\mu \in \mathbb{R}^{d}, \alpha \in \mathbb{N}$, $\alpha>1, S \sim \chi_{\alpha}^{2}, A \in \mathbb{R}^{d \times k}$ with $A A^{t}=\Sigma, Z \sim N_{k}\left(0, I_{k}\right)$, and S and Z independent. We say that X has a d-dimensional t-distribution with expectation μ (for $\alpha>1$) and covariance matrix $\operatorname{Cov}(X)=\frac{\alpha}{\alpha-2} \Sigma$. ($\alpha>2$ should hold, $\operatorname{Cov}(X)$ does not exist for $\alpha \leq 2$.)
Definition: The (unique) copula $C_{\alpha, R}^{t}$ of X is called t-copula:

$$
C_{\alpha, R}^{t}(u)=t_{\alpha, R}^{d}\left(t_{\alpha}^{-1}\left(u_{1}\right), \ldots, t_{\alpha}^{-1}\left(u_{d}\right)\right) .
$$

$R_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i i} \Sigma_{j j}}}, i, j=1,2 \ldots, d$, is the correlation matrix of $A Z$. $t_{\alpha, R}^{d}$ is the cdf of $\frac{\sqrt{\alpha}}{\sqrt{5}} Y$, where $S \sim \chi_{\alpha}^{2}, Z \sim N_{k}(0, R)$, and S, Y are independent. t_{α} are the marginal distributions of $t_{\alpha, R}^{d}$.

Another example of elliptical copulas: the t-copula

Definition: Let $X \stackrel{d}{=} \mu+\frac{\sqrt{\alpha}}{\sqrt{5}} A Z \sim t_{d}(\alpha, \mu, \Sigma)$, where $\mu \in \mathbb{R}^{d}, \alpha \in \mathbb{N}$, $\alpha>1, S \sim \chi_{\alpha}^{2}, A \in \mathbb{R}^{d \times k}$ with $A A^{t}=\Sigma, Z \sim N_{k}\left(0, I_{k}\right)$, and S and Z independent. We say that X has a d-dimensional t-distribution with expectation $\mu($ for $\alpha>1)$ and covariance matrix $\operatorname{Cov}(X)=\frac{\alpha}{\alpha-2} \Sigma$. ($\alpha>2$ should hold, $\operatorname{Cov}(X)$ does not exist for $\alpha \leq 2$.)
Definition: The (unique) copula $C_{\alpha, R}^{t}$ of X is called t-copula:

$$
C_{\alpha, R}^{t}(u)=t_{\alpha, R}^{d}\left(t_{\alpha}^{-1}\left(u_{1}\right), \ldots, t_{\alpha}^{-1}\left(u_{d}\right)\right) .
$$

$R_{i j}=\frac{\Sigma_{i}}{\sqrt{\Sigma_{i j} \Sigma_{j i}}}, i, j=1,2 \ldots, d$, is the correlation matrix of $A Z$.
$t_{\alpha, R}^{d}$ is the cdf of $\frac{\sqrt{\alpha}}{\sqrt{5}} Y$, where $S \sim \chi_{\alpha}^{2}, Z \sim N_{k}(0, R)$, and S, Y are independent. t_{α} are the marginal distributions of $t_{\alpha, R}^{d}$.
In the bivariate case $(d=2)$:

$$
C_{\alpha, R}^{t}\left(u_{1}, u_{2}\right)=\int_{-\infty}^{t_{\alpha}^{-1}\left(u_{1}\right)} \int_{-\infty}^{t_{\alpha}^{-1}\left(u_{2}\right)} \frac{1}{2 \pi\left(1-\rho^{2}\right)^{1 / 2}}\left\{1+\frac{x_{1}^{2}-2 \rho x_{1} x_{2}+x_{2}^{2}}{\alpha\left(1-\rho^{2}\right)}\right\}^{-\frac{\alpha+2}{2}} d x_{1} d x_{2}
$$

for $\rho \in(-1,1) . R_{12}$ is the linear correlation coefficient of the corresponding bivariate t_{α}-distribution for $\alpha>2$.

Further properties of copulas

Further properties of copulas

Definition: (Radial symmetry)
A d-dimensional random vector X (or a d-variate distribution function) is called radial symmetric around a, for some $a \in \mathbb{R}^{d}$, iff $X-a \stackrel{d}{=} a-X$.

Further properties of copulas

Definition: (Radial symmetry)
A d-dimensional random vector X (or a d-variate distribution function) is called radial symmetric around a, for some $a \in \mathbb{R}^{d}$, iff $X-a \stackrel{d}{=} a-X$.
Example: An elliptically distributed random vector $X \sim E_{d}(\mu, \Sigma, \psi) \in \mathbb{R}^{d}$ is radial symmetric around μ.

Further properties of copulas

Definition: (Radial symmetry)
A d-dimensional random vector X (or a d-variate distribution function) is called radial symmetric around a, for some $a \in \mathbb{R}^{d}$, iff $X-a \stackrel{d}{=} a-X$.
Example: An elliptically distributed random vector $X \sim E_{d}(\mu, \Sigma, \psi) \in \mathbb{R}^{d}$ is radial symmetric around μ.
Definition: (Radial symmetry of copulas)
A copula C is called radial symmetric iff

$$
\left(U_{1}-0.5, \ldots, U_{d}-0.5\right) \stackrel{d}{=}\left(0.5-U_{1}, \ldots, 0.5-U_{d}\right) \Longleftrightarrow U \stackrel{d}{=} 1-U,
$$

where $\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is a random vector with distribution function C. For a radial symmetric copula $C=\hat{C}$ holds.

Further properties of copulas

Definition: (Radial symmetry)
A d-dimensional random vector X (or a d-variate distribution function) is called radial symmetric around a, for some $a \in \mathbb{R}^{d}$, iff $X-a \stackrel{d}{=} a-X$.
Example: An elliptically distributed random vector $X \sim E_{d}(\mu, \Sigma, \psi) \in \mathbb{R}^{d}$ is radial symmetric around μ.
Definition: (Radial symmetry of copulas)
A copula C is called radial symmetric iff

$$
\left(U_{1}-0.5, \ldots, U_{d}-0.5\right) \stackrel{d}{=}\left(0.5-U_{1}, \ldots, 0.5-U_{d}\right) \Longleftrightarrow U \stackrel{d}{=} 1-U,
$$

where $\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is a random vector with distribution function C. For a radial symmetric copula $C=\hat{C}$ holds.
Example: Elliptical copulas are radial symmetric.

Further properties of copulas

Definition: (Radial symmetry)
A d-dimensional random vector X (or a d-variate distribution function) is called radial symmetric around a, for some $a \in \mathbb{R}^{d}$, iff $X-a \stackrel{d}{=} a-X$.
Example: An elliptically distributed random vector $X \sim E_{d}(\mu, \Sigma, \psi) \in \mathbb{R}^{d}$ is radial symmetric around μ.
Definition: (Radial symmetry of copulas)
A copula C is called radial symmetric iff

$$
\left(U_{1}-0.5, \ldots, U_{d}-0.5\right) \stackrel{d}{=}\left(0.5-U_{1}, \ldots, 0.5-U_{d}\right) \Longleftrightarrow U \stackrel{d}{=} 1-U,
$$

where $\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is a random vector with distribution function C. For a radial symmetric copula $C=\hat{C}$ holds.
Example: Elliptical copulas are radial symmetric.
The Gumbel and Clayton Copulas are not radial symmetric. Why?

The density function of a copula

The density function of a copula

Not every copula has a density function. For example the co-monotony copula M and the anti-monotony copula W do not have a density function.

The density function of a copula

Not every copula has a density function. For example the co-monotony copula M and the anti-monotony copula W do not have a density function.

If the density function c of a copula C exists, then we have

$$
c\left(u_{1}, u_{2}, \ldots, u_{d}\right)=\frac{\partial C\left(u_{1}, u_{2}, \ldots, u_{d}\right)}{\partial u_{1} \partial u_{2} \ldots \partial u_{d}} .
$$

The density function of a copula

Not every copula has a density function. For example the co-monotony copula M and the anti-monotony copula W do not have a density function.

If the density function c of a copula C exists, then we have

$$
c\left(u_{1}, u_{2}, \ldots, u_{d}\right)=\frac{\partial C\left(u_{1}, u_{2}, \ldots, u_{d}\right)}{\partial u_{1} \partial u_{2} \ldots \partial u_{d}}
$$

Let C be the copula of a distribution F with differentiable marginal distributions F_{1}, \ldots, F_{d}. By differentiating

$$
C\left(u_{1}, \ldots, u_{d}\right)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)
$$

we obtain the density c of C :

$$
c\left(u_{1}, \ldots, u_{d}\right)=\frac{f\left(F_{1}^{-1}\left(u_{1}\right), \ldots, F_{d}^{-1}\left(u_{d}\right)\right)}{f_{1}\left(F_{1}^{-1}\left(u_{1}\right)\right) \ldots f_{d}\left(F_{d}^{-1}\left(u_{d}\right)\right)}
$$

where f is the density function of F, f_{i} are the marginal density functions, and F_{i}^{-1} are the inverse functions of F_{i}, for $1 \leq i \leq d$,

Exchangeability

Exchangeability

Definition:

A random vector X is called exchangeable iff
$\left(X_{1}, \ldots, X_{d}\right) \stackrel{d}{=}\left(X_{\pi(1)}, \ldots, X_{\pi(d)}\right)$ for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1,2, \ldots, d)$.
A copula C is called exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on $[0,1]$).

Exchangeability

Definition:

A random vector X is called exchangeable iff
$\left(X_{1}, \ldots, X_{d}\right) \stackrel{d}{=}\left(X_{\pi(1)}, \ldots, X_{\pi(d)}\right)$ for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1,2, \ldots, d)$.
A copula C is called exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on $[0,1])$.
For such a copula $C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=C\left(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)}\right)$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1,2, \ldots, d)$.

Exchangeability

Definition:

A random vector X is called exchangeable iff
$\left(X_{1}, \ldots, X_{d}\right) \stackrel{d}{=}\left(X_{\pi(1)}, \ldots, X_{\pi(d)}\right)$ for any permutation
$(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1,2, \ldots, d)$.
A copula C is called exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on $[0,1])$.
For such a copula $C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=C\left(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)}\right)$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1,2, \ldots, d)$.

Examples of exchangeable copulas:

Gumbel, Clayton, and also the Gaussian copula $C_{P}^{G a}$ and the t-Copula $C_{\nu, P}^{t}$, if P is an equicorrelation matrix, i.e. $R=\rho J_{d}+(1-\rho) I_{d}$.
$J_{d} \in \mathbb{R}^{d \times d}$ is a matrix consisting only of ones, and $I_{d} \in \mathbb{R}^{d \times d}$ is the d-dimensional identity matrix.

Exchangeability

Definition:

A random vector X is called exchangeable iff
$\left(X_{1}, \ldots, X_{d}\right) \stackrel{d}{=}\left(X_{\pi(1)}, \ldots, X_{\pi(d)}\right)$ for any permutation
$(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1,2, \ldots, d)$.
A copula C is called exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on $[0,1]$).
For such a copula $C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=C\left(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)}\right)$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1,2, \ldots, d)$.

Examples of exchangeable copulas:

Gumbel, Clayton, and also the Gaussian copula $C_{P}^{G a}$ and the t-Copula
$C_{\nu, P}^{t}$, if P is an equicorrelation matrix, i.e. $R=\rho J_{d}+(1-\rho) I_{d}$.
$J_{d} \in \mathbb{R}^{d \times d}$ is a matrix consisting only of ones, and $I_{d} \in \mathbb{R}^{d \times d}$ is the d-dimensional identity matrix.
For bivariate exchangeable copulas we have:

$$
P\left(U_{2} \leq u_{2} \mid U_{1}=u_{1}\right)=P\left(U_{1} \leq u_{2} \mid U_{2}=u_{1}\right) .
$$

Tail dependence coefficients of elliptical copulas

Tail dependence coefficients of elliptical copulas

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a normally distributed random vector. Then $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.

Tail dependence coefficients of elliptical copulas

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a normally distributed random vector. Then $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.
Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and let $C_{\rho}^{\text {Ga }}$ be a Gaussian copula, where ρ is the linear correlation coefficient of X_{1} and X_{2}. The $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.

Tail dependence coefficients of elliptical copulas

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a normally distributed random vector. Then $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.
Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and let $C_{\rho}^{G a}$ be a Gaussian copula, where ρ is the linear correlation coefficient of X_{1} and X_{2}. The $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T} \sim t_{2}(0, \nu, R)$ be a random vector with a t-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix R. For $R_{12}>-1$ we have

$$
\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)
$$

Tail dependence coefficients of elliptical copulas

Theorem: Let $\left(X_{1}, X_{2}\right)^{T}$ be a normally distributed random vector. Then $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.
Corollary: Let $\left(X_{1}, X_{2}\right)^{T}$ be a random vector with continuous marginal distributions and let $C_{\rho}^{\text {Ga }}$ be a Gaussian copula, where ρ is the linear correlation coefficient of X_{1} and X_{2}. The $\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=0$ holds.
Theorem: Let $\left(X_{1}, X_{2}\right)^{T} \sim t_{2}(0, \nu, R)$ be a random vector with a t-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix R. For $R_{12}>-1$ we have

$$
\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)
$$

The proof is similar to the proof of the analogous theorem about the Gaussian copulas.
Hint:

$$
X_{2} \left\lvert\, X_{1}=x \sim\left(\frac{\nu+1}{\nu+x^{2}}\right)^{1 / 2} \frac{X_{2}-\rho x}{\sqrt{1-\rho^{2}}} \sim t_{\nu+1}\right.
$$

