Risk theory and risk management in actuarial science
 Winter term 2019/2020

5 th work sheet

31. The Gumbel family C_{θ}^{Gu} and the Clayton family C_{θ}^{Cl} are two one-parametric families of copulas given as

$$
\begin{gathered}
C_{\theta}^{\mathrm{Gu}}\left(u_{1}, u_{2}\right):=\exp \left(-\left[\left(-\ln u_{1}\right)^{\theta}+\left(-\ln u_{2}\right)^{\theta}\right]^{1 / \theta}\right), \theta \geq 1, \text { and } \\
C_{\theta}^{\mathrm{Cl}}\left(u_{1}, u_{2}\right)=\left(u_{1}^{-\theta}+u_{2}^{-\theta}-1\right)^{-1 / \theta}, \theta>0
\end{gathered}
$$

(a) Compute Kendall's tau ρ_{τ} as well as the coefficients λ_{U}, λ_{L} of the upper and lower tail dependence for the copulas $C_{\theta}^{G u}, C_{\theta}^{C l}$, respectively.
(b) The independence copula Π is given by $\Pi\left(u_{1}, u_{2}\right):=u_{1} u_{2}$, for $\left(u_{1}, u_{2}\right) \in[0,1]^{2}$. Show that $C_{\theta}^{G u}$ tends to the independence copula Π if θ tends to 1 and to the upper Fréchet bound M if θ tends to infinity. In this case we say that the lower limit of the Gumbel copula is the independence copula Π and its upper limit is the Fréchet upper bound M. Analogously show that the lower limit of the Clayton copula is the independence copula Π for $\theta \rightarrow 0^{+}$and its upper limit is the Fréchet upper bound M for $\theta \rightarrow+\infty$. Now considerer an extension of the Clayton copula $C_{\theta}^{C l}$ for $\theta \in[-1,0)$, defined as an Archimedian copula with generator $\phi_{\theta}(t)=\frac{1}{\theta}\left(t^{-\theta}-1\right)$ for $t \in(0,1]$ and $\phi_{\theta}(0)=+\infty$. Show that for $\theta=-1$ the Clayton copula $C_{-1}^{C l}$ coincides with the Fréchet lower bound W.
32. (a) Let $\left(X_{1}, X_{2}\right)^{T}$ be a t-distributed random vektor with ν degrees of freedom, expected value $(0,0)$ and linear correlation coefficient matrix $\rho \in(-1,1]$, i.e. $\left(X_{1}, X_{2}\right)^{T} \sim t_{2}(\overrightarrow{0}, \nu, R)$ where R is 2×2 matrix with 1 on the diagonal and ρ outside the diagonal. Show that the following equality holds for $\rho>-1$:

$$
\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-\rho}}{\sqrt{1+\rho}}\right)
$$

Hint: Use the fact (no need to prove it!) that conditional on $X_{1}=x$ the following holds

$$
\left(\frac{\nu+1}{\nu+x^{2}}\right)^{1 / 2} \frac{X_{2}-\rho x}{\sqrt{1-\rho^{2}}} \sim t_{\nu+1} .
$$

Recall the stochatic representation of the bivariate t-distribution as $\mu+\sqrt{W} A Z$, where Z is bivariate standard normally distributed and W is such that $\frac{\nu}{W} \sim \chi_{\nu}^{2}$ while being independent on Z (cf. lecture).
(b) Apply (a) to conclude that for a random vector with continuous marginal distributions $\left(X_{1}, X_{2}\right)^{T}$ and a t-copula $C_{\nu, R}^{t}$ with ν degrees of freedom and a correlation matrix R as in (a) the following equalities holds:

$$
\lambda_{U}\left(X_{1}, X_{2}\right)=\lambda_{L}\left(X_{1}, X_{2}\right)=2 \bar{t}_{\nu+1}\left(\sqrt{\nu+1} \frac{\sqrt{1-\rho}}{\sqrt{1+\rho}}\right) .
$$

33. Archimedian Copulas

(a) Show that for every $\theta \in \mathbb{R} \backslash\{0\}$ the function $\phi_{\theta}^{F r}(t)=-\ln \left(\frac{e^{-\theta t}-1}{e^{-\theta}-1}\right)$ generates an Archmedian copula, the so-called Frank copula $C_{\theta}^{F r}:[0,1]^{2} \rightarrow[0,1]$. Check that the following equality holds $\forall u_{1}, u_{2} \in[0,1]:$

$$
C_{\theta}^{F r}\left(u_{1}, u_{2}\right)=-\frac{1}{\theta} \ln \left(1+\frac{\left(\exp \left(-\theta u_{1}\right)-1\right)\left(\exp \left(-\theta u_{2}\right)-1\right)}{\exp (-\theta)-1}\right), \theta \in \mathbb{R} \backslash\{0\} .
$$

(b) Show that for every $\theta>0$ and for every $\delta \geq 1$ the function $\phi_{\theta, \delta}^{G C}(t)=\theta^{-\delta}\left(t^{-\theta}-1\right)^{\delta}$ generates an Archmedian copula, the so-called generalized Clayton copula $C_{\theta, \delta}^{G C}:[0,1]^{2} \rightarrow[0,1]$. Check that the following equality holds $\forall u_{1}, u_{2} \in[0,1]$:

$$
C_{\theta, \delta}^{G C}\left(u_{1}, u_{2}\right)=\left\{\left[\left(u_{1}^{-\theta}-1\right)^{\delta}+\left(u_{2}^{-\theta}-1\right)^{\delta}\right]^{1 / \delta}+1\right\}^{-1 / \theta}, \theta \geq 0, \delta \geq 1
$$

(c) Compute Kendall's tau ρ_{τ} as well as the coefficients λ_{U}, λ_{L} of the upper and lower tail dependency for the copulas $C_{\theta}^{F r}$ and $C_{\theta, \delta}^{G C}$, respectively.

34. Asymmetric bivariate copulas

Let C_{θ} be any exchangeable bivariate copula. Then a parametric family of asymmetric copulas $C_{\theta, \alpha, \beta}$ is obtained by setting

$$
\begin{equation*}
C_{\theta, \alpha, \beta}\left(u_{1}, u_{2}\right)=u_{1}^{1-\alpha} u_{2}^{1-\beta} C_{\theta}\left(u_{1}^{\alpha}, u_{2}^{\beta}\right), 0 \leq u_{1}, u_{2} \leq 1, \tag{1}
\end{equation*}
$$

where $0 \leq \alpha, \beta \leq 1$. When C_{θ} is an Archimedian copula we refer to the copulas constructed by (1) as asymmetric bivariate Archimedian copulas.
Check that $C_{\theta, \alpha, \beta}$ defined as above is a copula by constructing a random vector with distribution function $C_{\theta, \alpha, \beta}$ and observing that its margins are standard uniform on $[0,1]$. Show that such a random vector $\left(U_{1}, U_{2}\right)$ can be generated as follows:
(a) Generate a random pair $\left(V_{1}, V_{2}\right)$ with distribution function C_{θ}.
(b) Generate, independently of V_{1}, V_{2}, two independent standard uniform variables \bar{U}_{1} and \bar{U}_{2}.
(c) Set $U_{1}=\max \left\{V_{1}^{1 / \alpha}, \bar{U}_{1}^{1 /(1-\alpha)}\right\}$ and $U_{2}=\max \left\{V_{2}^{1 / \beta}, \bar{U}_{2}^{1 /(1-\beta)}\right\}$

Show that $C_{\theta, \alpha, \beta}$ is not exchangeable in general. What conditions should fulfill its parameters so as to obtain an exchangeable $C_{\theta, \alpha, \beta}$? Which copula results from $C_{\theta, \alpha, \beta}$ if $\alpha=\beta=0$? Which copula results from $C_{\theta, \alpha, \beta}$ if $\alpha=\beta=1$?

35. Three-dimensional non-exchangeable Archimedian copulas

Suppose that ϕ_{1} and ϕ_{2} are two strict generators of Archimedian copulas, i.e. ϕ_{1} and ϕ_{2} are completely monotonic decreasing functions for which the pseudo-inverse function coincides with the ordinary inverse function. Consider

$$
\begin{equation*}
C\left(u_{1}, u_{2}, u_{3}\right)=\phi_{2}^{-1}\left(\phi_{2} \circ \phi_{1}^{-1}\left(\phi_{1}\left(u_{1}\right)+\phi_{1}\left(u_{2}\right)\right)+\phi_{2}\left(u_{3}\right)\right) . \tag{2}
\end{equation*}
$$

If $\phi_{1}^{-1}, \phi_{2}^{-1}$ and $\phi_{2} \circ \phi_{1}^{-1}$ are completely monotonic decreasing functions mapping $[0, \infty]$ to $[0, \infty]$, then C defined by (2) is a copula.
Let $\left(U_{1}, U_{2}, U_{3}\right)$ be a random vector with distribution function C as defined by (2).
(a) Show that if $\phi_{1} \neq \phi_{2}$, then only U_{1} and U_{2} are exchangeable, i.e. $\left(U_{1}, U_{2}, U_{3}\right) \stackrel{d}{=}\left(U_{2}, U_{1}, U_{3}\right)$, but no other swapping of subscritps is possible. Show moreoever that if $\phi_{1}=\phi_{2}$, than C is an exchangeable copula.
(b) Show that all bivariate margins of C defined by (2) are themselves Archimedian copulas; the margins C_{13} (obtained by components 1 and 3) and C_{23} (obtained by components 2 and 3) have generator ϕ_{2}, whereas the margin C_{12} (obtained by components 1 and 2) has generator ϕ_{1}.
36. Equivalent threshold models

Let $X=\left(X_{1}, X_{2}, \ldots, X_{m}\right)^{\prime}$ be an m-dimensional random vector and let $D \in \mathbb{R}^{\mathrm{m} \times \mathrm{n}}$ be a deterministic matrix with elements $d_{i j}$ such that for every $i, 1 \leq i \leq m$, the elements of the i-th row form a set of increasing thresholds satisfying $d_{i, 1}<d_{i 2} \ldots<d_{i n}$. Introduce additionally $d_{i 0}=-\infty, d_{i, n+1}=+\infty$ and set

$$
S_{i}=j \Longleftrightarrow d_{i j}<X_{i} \leq d_{i, j+1}, \text { for } j \in\{0, \ldots, n\}, i \in\{1, \ldots, m\} .
$$

Then (X, D) is said to define a threshold model for the state vector $S=\left(S_{1}, \ldots, S_{m}\right)^{\prime}$. We refere to X as the vector of critical variables and denote its marginal distribution functions by $F_{i}(x)=$
$P\left(X_{i} \leq x\right)$, for $i \in\{1,2, \ldots, m\}$. The i-th row of D contains the critical thresholds for firm i. By definition, default (corresponding to event $S_{i}=0$) occurs iff $X_{i} \leq d_{i 1}$, thus the default probability of company i is given by $\bar{p}_{i}:=F_{i}\left(d_{i 1}\right)$. Let Y_{i} be the default indicator of company i, i.e. $Y_{i} \in\{0,1\}$ with $Y_{i}=1$ iff company 1 defaults, hence $\operatorname{Prob}\left(Y_{i}=1\right)=\bar{p}_{i}$ and $\operatorname{Prob}\left(Y_{i}=0\right)=1-\bar{p}_{i}$, for $1 \leq i \leq m$. We denote by $\rho\left(Y_{i}, Y_{j}\right)$ the default correlation of two firms $i \neq j$; this quantity depends on $E\left(Y_{i}, Y_{j}\right)$ (how?) which in turn depends on the joint distribution of (X_{i}, X_{j}), and hence on the copula of $\left(X_{1}, X_{2}, \ldots, X_{m}\right)^{\prime}$. (Notice that in general the latter is not fully determined by the asset correlation $\left.\rho\left(X_{i}, X_{j}\right).\right)$
Two threshold models (X, D) and (\tilde{X}, \tilde{D}) for the state vectors S and \tilde{S}, respectively, are called equivalent, iff S and \tilde{S} have the same probability distribution.
Show that two threshod models (X, D) and (\tilde{X}, \tilde{D}) with state vectors S and \tilde{S}, respectively, are equivalent if the following conditions hold:
(a) The marginal distributions of the random vectors S and \tilde{S} coincide, i.e. $P\left(S_{i}=j\right)=P\left(\tilde{S}_{i}=j\right)$, for all $j \in\{1, \ldots, n\}, i \in\{1, \ldots, m\}$.
(b) X and \tilde{X} admit the same copula C.
37. A bank has a loan portfolio of 100 loans. Let X_{k} be the default indicator for loan k such that $X_{k}=1$ in case of default and 0 otherwise, for $k \in\{1, \ldots, 100\}$.
(a) Supoose that X_{k} are independent and identically distributed with $P\left(X_{k}=1\right)=0.01$. Compute the expected value $E(N)$ of the number N of defaults and $P(N=k)$ for $k \in\{0,1, \ldots, 100\}$.
(b) Consider the risk factor Z which reflects the state of the economy. Suppose that conditional on Z the default indicators are independent and identically distributed with $P\left(X_{k}=1 \mid Z\right)=Z$, where $P(Z=0.01)=0.9$ and $P(Z=0.11)=0.1$. Compute the expected value $E(N)$ where N is defined as in (a).
(c) Consider the risk factor Z which reflects the state of the economy. Suppose that conditional on Z the default indicators are independent and identically distributed with $P\left(X_{k}=1 \mid Z\right)=Z^{9}$, where Z is uniformly distributed on $(0,1)$. Compute the expected value $E(N)$ where N is defined as in (a).

