Risk theory and risk management in actuarial science
 Winter term 2019/2020

4th work sheet

28. Construct two random vectors $\left(X_{1}, X_{2}\right)^{T}$ and $\left(Y_{1}, Y_{2}\right)^{T}$ with different joint distributions $F_{\left(X_{1}, X_{2}\right)}$, $F_{\left(Y_{1}, Y_{2}\right)}$, respectively, such that
(a) the variables $X_{1}, X_{2}, Y_{1}, Y_{2}$ are standard normally distributed, i.e. $X_{1}, X_{2}, Y_{1}, Y_{2} \sim N(0,1)$,
(b) the two X-variables and the two Y-variables are uncorrelated, respectively, i.e. $\rho_{L}\left(X_{1}, X_{2}\right)=0$, $\rho_{L}\left(Y_{1}, Y_{2}\right)=0$, and
(c) the α-quantiles of the corresponding sums are different, i.e. $F_{X_{1}+X_{2}}^{\overleftarrow{(})}(\alpha) \neq F_{Y_{1}+Y_{2}}^{\leftarrow}(\alpha)$ holds for some $\alpha \in(0,1)$, where $F_{X_{1}+X_{2}}, F_{Y_{1}+Y_{2}}$ are the distributions of $X_{1}+X_{2}$ and $Y_{1}+Y_{2}$, respectively.

Conclude that in general it is not possible to draw conclusions about the loss of a portfolio if only the loss distributions of the single assets in portfolio and their mutual linear correlation coefficients are known.

Hint: Choose $\left(X_{1}, X_{2}\right)$ to be bivariate standard normally distributed, i.e. $\left(X_{1}, X_{2}\right) \sim N_{2}\left(0, I_{2}\right)$, where 0 denotes the zero vector in \mathbb{R}^{2} and I_{2} denotes the identity matrix in $\mathbb{R}^{2 \times 2}$. Choose Y_{1} to be standard normally distributed, $Y_{1} \sim N(0,1)$, and set $Y_{2}:=V Y_{1}$, where V is a discrete random variable independent on Y_{1} with values 1 and -1 taken with probability $1 / 2$ each.
29. (Co-monotonicity and anti-monotonicity)
(a) Let Z be a random variable with continuous cumulative distribution function $F, Z \sim F$. Let f_{1}, f_{2} be to strictly monotone increasing functions on \mathbb{R} and let f_{3} be a strictly monotone decreasing function on \mathbb{R}. Let $X_{i}=f_{i}(Z)$, for $i=1,2,3$. Show that the Fréchet upper bound M is a copula of $\left(X_{1}, X_{2}\right)$ and the Fréchet lower bound W is a copula of $\left(X_{1}, X_{3}\right)$.
(b) Let W be the (unique) copula of the random vector $\left(X_{1}, X_{2}\right)$ with continuous marginal distributions F_{1} and F_{2}, respectively. Show that $X_{2} \stackrel{\text { a.s. }}{=} T\left(X_{1}\right)$ with $T=F_{2}^{\leftarrow} \circ\left(1-F_{1}\right)$.
(c) Let M be the (unique) copula of the random vector $\left(X_{1}, X_{2}\right)$ with continuous marginal distributions F_{1} and F_{2}, respectively. Show that $X_{2} \stackrel{\text { a.s. }}{=} T\left(X_{1}\right)$ with $T=F_{2}^{\leftarrow} \circ F_{1}$.
30. (a) Prove the formula of Höffding

$$
\operatorname{cov}\left(X_{1}, X_{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(F\left(x_{1}, x_{2}\right)-F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right)\right) d x_{1} d x_{2}
$$

for any random vector $\left(X_{1}, X_{2}\right)^{T}$ with c.d.f. F and marginal d.f. F_{1}, F_{2} for which $\operatorname{cov}\left(X_{1}, X_{2}\right)<$ ∞ holds.
Hint: Show first the identity $2 \operatorname{cov}\left(X_{1}, X_{2}\right)=E\left(\left(X_{1}-\bar{X}_{1}\right)\left(X_{2}-\bar{X}_{2}\right)\right)$, where $\left(\bar{X}_{1}, \bar{X}_{2}\right)$ is an i.i.d. copy of $\left(X_{1}, X_{2}\right)$. Then use the identity $a-b=\int_{-\infty}^{+\infty}\left(\mathbb{I}_{\{\mathrm{b} \leq \mathrm{x}\}}-\mathbb{I}_{\{\mathrm{a} \leq \mathrm{x}\}}\right) \mathrm{dx}$ and apply the latter to the pairs $X_{1}-\bar{X}_{1}$ and $X_{2}-\bar{X}_{2}$.
(b) Prove the following equality for the rank correlation Spearman's rho of a random vector $\left(X_{1}, X_{2}\right)^{T}$ with continuous marginal distributions and unique copula C :
$\rho_{S}\left(X_{1}, X_{2}\right)=12 \int_{0}^{1} \int_{0}^{1}\left(C\left(u_{1}, u_{2}\right)-u_{1} u_{2}\right) d u_{1} d u_{2}=12 \int_{0}^{1} \int_{0}^{1} C\left(u_{1}, u_{2}\right) d u_{1} d u_{2}-3$.
Hint: Use the equivalent definition $\rho_{S}\left(X_{1}, X_{2}\right)=\rho_{L}\left(F_{1}\left(X_{1}\right), F_{2}\left(X_{2}\right)\right)$ and apply the formula of Höffding.

