# Risk theory and management in actuarial science winter term 2019/20 <br> 2nd work sheet 

8. Investigate whether the following functions are slowly varying:
(a) $L(x):=\ln (1+\ln (1+x))$
(b) $f(x):=3+\sin x$
(c) $f(x):=\ln (e+x)+\sin x$
9. Show that the following distributions are regularly varying:
(a) The Pareto distribution $G_{\alpha}$ with parameter $\alpha$ given as $G_{\alpha}(x)=1-x^{-\alpha}$, for $x>1$, where $\alpha>0$. Show that $\bar{G}_{\alpha}(t x) / \bar{G}_{\alpha}(t)=x^{-\alpha}$ holds for $t>0, x>0$, thus $\bar{G}_{\alpha} \in R V_{-\alpha}$.
(b) The Fréchet distribution $\Phi_{\alpha}$ with parameter $\alpha$ given as $\Phi_{\alpha}(x)=\exp \left\{-x^{-\alpha}\right\}$ for $x>0$ and $\Phi_{\alpha}(0)=0$, where $\alpha>0$. Show that $\lim _{x \rightarrow \infty} \bar{\Phi}_{\alpha}(x) / x^{-\alpha}=1$, i.e. $\bar{\Phi}_{\alpha} \in R V_{-\alpha}$.
10. Let $X$ and $Y$ be positive random variables representing losses in two lines of business (e.g. losses due to fire and car accidents) of an insurance company. Suppose that $X$ has distribution function $F$ which satisfies $\bar{F} \in R V_{-\alpha}$ for $\alpha>0$. Moreover suppose that $Y$ has finite moments of all orders, i.e. $E\left(Y^{k}\right)<\infty$, for every $k>0$. Compute $\lim _{x \rightarrow \infty} P(X>x \mid X+Y>x)$, i.e. the asymptotic probability of a large loss in the fire insurance line given a large total loss.
11. Prove the following characterization of the maximum domain of attraction of an extreme value distribution $H$ (also fomulated in the lecture):
$F \in M D A(H)$ with normalizing and centralizing constants $a_{n}>0, b_{n}, n \in \mathbb{N}$, respectively, iff $\lim _{n \rightarrow \infty} n \bar{F}_{n}\left(a_{n} x+b\right)=-\ln (H(x))$, for all $x \in \mathbb{R}$.
12. (The Maxima of the Poisson distribution)

Let $X \sim P(\lambda)$, i.e. $P(X=k)=e^{-\lambda} \lambda^{k} / k!, k \in \mathbb{N}_{0}$, for some parameter $\lambda>0$. Show that there exists no extreme value distribution $Z$ such that $X \in M D A(Z)$.
Hint: Use the following lemma of Leadbetter et al. ${ }^{1}$.
For any discrete non-negative distribution $F$ with right end $x_{F}=+\infty$ (i.e. a random variable with distribution $F$ can take arbitrarily large values), the following two statements are equivalent for every $\tau \in(0, \infty)$ : a) there exists a sequence $u_{n} \in \mathbb{R}, n \in \mathbb{N}$ such that $\lim _{n \rightarrow \infty} n \bar{F}\left(u_{n}\right)=\tau$, and b) $\lim _{n \rightarrow \infty} \frac{\bar{F}(n)}{F(n-1)}=1$.
You don't need to prove the lemma.
13. (Maximum domain of attraction of the Fréchet distribution)

Show that the following distributions belong to the maximum domain of attraction $M D A\left(\Phi_{\alpha}\right)$ of the Fréchet distribution $\Phi_{\alpha}$, for some $\alpha>0$, and determine the normalizing and centralizing constants $a_{n}>0, b_{n}$, for $n \in \mathbb{N}$, respectively.
(a) The Pareto distribution with parameter $\alpha>0: G_{\alpha}(x)=1-x^{-\alpha}$, for $x>1$.
(b) The Cauchy distribution with density function $f(x)=\left(\pi\left(1+x^{2}\right)\right)^{-1}, x \in \mathbb{R}$.
(c) The Students distribution with parameter $\alpha \in \mathbb{N}$ and density function $f(x)=\frac{\Gamma((\alpha+1) / 2)}{\sqrt{\alpha \pi \Gamma(\alpha / 2)\left(1+x^{2} / \alpha\right)^{(\alpha+1) / 2}}}$, $\alpha \in \mathbb{N}, x \in \mathbb{R}$.

[^0]14. (Maximum domain of attraction of the Weibull ditribution)

Let $X \sim U(0,1)$ be uniformly distributed on $[0,1]$. Show that $X$ belongs to the maximum domain of attraction of the Weibull distribution with parameter 1, i.e. $X \in M D A\left(\Psi_{1}\right)$, with normalizing constant $a_{n}=1 / n$, for $n \in \mathbb{N}$.
15. (Maximum domain of attraction of the Gumbel ditribution)

Check whether the following distributions belong to the maximum domain of attraction $M D A(\Lambda)$ of the Gumbel distribution.
(a) The normal distribution $F(x)=(2 \pi)^{-1 / 2} \exp \left\{-x^{2} / 2\right\}, x \in \mathbb{R}$.
(b) The exponential distribution with density function $f(x)=\lambda^{-1} \exp \{-\lambda x\}, x>0$, for some parameter $\lambda>0$.
(c) The lognormal distribution with density function $f(x)=\left(2 \pi x^{2}\right)^{-1 / 2} \exp \left\{-(\ln x)^{2} / 2\right\}, x>0$.
16. (a) Let $X$ be a random variable with distribution function $F$. Derive an equation relating $V a R_{\alpha}(X)$, $C V a R_{\alpha}(X)$ and $e_{X}\left(q_{\alpha}\right)$, where $q_{\alpha}:=\operatorname{VaR}_{\alpha}(X)$ and $\alpha \in(0,1)$.
(b) Compute the mean excess function of the exponential distribution, i.e. compute $e_{X}(u)$ for $X \sim \operatorname{Exp}(\lambda)$ and $u \geq 0$.
(c) Use the result form (a) to compute $C V a R_{\alpha}(X)$ in the case of the exponential distribution, i.e. for $X \sim \operatorname{Exp}(\lambda), \alpha \in(0,1)$.
17. (a) Compute the expectation of $E\left(G_{\gamma, 0, \beta}\right)$ of the generalized Pareto distribution $G_{\gamma, 0, \beta}$.
(b) Consider a random variable $X$ with distribution function $X$ for which the approximation $\bar{F}_{u}(x) \approx \bar{G}_{\gamma, 0, \beta(u)}(x)$ holds with $\gamma \notin\{0,1\}$. Show that this implies the approximation $\bar{F}_{v}(x) \approx$ $\bar{G}_{\gamma, 0, \beta(u)+\gamma(v-u)}(x), \forall v \geq u$.
(c) Use the results of (a) and (b) to show that $e_{X}(v)$ is linear in $v$ for $v \geq u$ for any fixed threshold $u>0$.


[^0]:    ${ }^{1}$ M.R. Leadbetter, G. Lindgren and H. Rootzen, Extremes and related properties of random sequences and processes, Springer, Berlin, 1983.

