Risk theory and management in actuarial science winter term 2019/20

2nd work sheet

- 8. Investigate whether the following functions are slowly varying:
 - (a) $L(x) := \ln(1 + \ln(1 + x))$
 - (b) $f(x) := 3 + \sin x$
 - (c) $f(x) := \ln(e+x) + \sin x$
- 9. Show that the following distributions are regularly varying:
 - (a) The Pareto distribution G_{α} with parameter α given as $G_{\alpha}(x) = 1 x^{-\alpha}$, for x > 1, where $\alpha > 0$. Show that $\bar{G}_{\alpha}(tx)/\bar{G}_{\alpha}(t) = x^{-\alpha}$ holds for t > 0, x > 0, thus $\bar{G}_{\alpha} \in RV_{-\alpha}$.
 - (b) The Fréchet distribution Φ_{α} with parameter α given as $\Phi_{\alpha}(x) = \exp\{-x^{-\alpha}\}$ for x > 0 and $\Phi_{\alpha}(0) = 0$, where $\alpha > 0$. Show that $\lim_{x\to\infty} \bar{\Phi}_{\alpha}(x)/x^{-\alpha} = 1$, i.e. $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$.
- 10. Let X and Y be positive random variables representing losses in two lines of business (e.g. losses due to fire and car accidents) of an insurance company. Suppose that X has distribution function F which satisfies $\overline{F} \in RV_{-\alpha}$ for $\alpha > 0$. Moreover suppose that Y has finite moments of all orders, i.e. $E(Y^k) < \infty$, for every k > 0. Compute $\lim_{x\to\infty} P(X > x | X + Y > x)$, i.e. the asymptotic probability of a large loss in the fire insurance line given a large total loss.
- 11. Prove the following characterization of the maximum domain of attraction of an extreme value distribution H (also fomulated in the lecture): $F \in MDA(H)$ with normalizing and centralizing constants $a_n > 0$, b_n , $n \in \mathbb{N}$, respectively, iff $\lim_{n\to\infty} n\bar{F}_n(a_nx+b) = -\ln(H(x))$, for all $x \in \mathbb{R}$.
- 12. (The Maxima of the Poisson distribution) Let $X \sim P(\lambda)$, i.e. $P(X = k) = e^{-\lambda} \lambda^k / k!$, $k \in \mathbb{N}_0$, for some parameter $\lambda > 0$. Show that there exists no extreme value distribution Z such that $X \in MDA(Z)$.

Hint: Use the following lemma of Leadbetter et al.¹.

For any discrete non-negative distribution F with right end $x_F = +\infty$ (i.e. a random variable with distribution F can take arbitrarily large values), the following two statements are equivalent for every $\tau \in (0, \infty)$: a) there exists a sequence $u_n \in \mathbb{R}$, $n \in \mathbb{N}$ such that $\lim_{n\to\infty} n\bar{F}(u_n) = \tau$, and b) $\lim_{n\to\infty} \frac{\bar{F}(n)}{\bar{F}(n-1)} = 1$.

You don't need to prove the lemma.

13. (Maximum domain of attraction of the Fréchet distribution)

Show that the following distributions belong to the maximum domain of attraction $MDA(\Phi_{\alpha})$ of the Fréchet distribution Φ_{α} , for some $\alpha > 0$, and determine the normalizing and centralizing constants $a_n > 0, b_n$, for $n \in \mathbb{N}$, respectively.

- (a) The Pareto distribution with parameter $\alpha > 0$: $G_{\alpha}(x) = 1 x^{-\alpha}$, for x > 1.
- (b) The Cauchy distribution with density function $f(x) = (\pi(1+x^2))^{-1}, x \in \mathbb{R}$.
- (c) The Students distribution with parameter $\alpha \in \mathbb{N}$ and density function $f(x) = \frac{\Gamma((\alpha+1)/2)}{\sqrt{\alpha\pi}\Gamma(\alpha/2)(1+x^2/\alpha)^{(\alpha+1)/2}}, \alpha \in \mathbb{N}, x \in \mathbb{R}.$

¹M.R. Leadbetter, G. Lindgren and H. Rootzen, *Extremes and related properties of random sequences and processes*, Springer, Berlin, 1983.

- 14. (Maximum domain of attraction of the Weibull ditribution) Let $X \sim U(0, 1)$ be uniformly distributed on [0, 1]. Show that X belongs to the maximum domain of attraction of the Weibull distribution with parameter 1, i.e. $X \in MDA(\Psi_1)$, with normalizing constant $a_n = 1/n$, for $n \in \mathbb{N}$.
- 15. (Maximum domain of attraction of the Gumbel ditribution) Check whether the following distributions belong to the maximum domain of attraction $MDA(\Lambda)$ of the Gumbel distribution.
 - (a) The normal distribution $F(x) = (2\pi)^{-1/2} \exp\{-x^2/2\}, x \in \mathbb{R}.$
 - (b) The exponential distribution with density function $f(x) = \lambda^{-1} \exp\{-\lambda x\}$, x > 0, for some parameter $\lambda > 0$.
 - (c) The lognormal distribution with density function $f(x) = (2\pi x^2)^{-1/2} \exp\{-(\ln x)^2/2\}, x > 0.$
- 16. (a) Let X be a random variable with distribution function F. Derive an equation relating $VaR_{\alpha}(X)$, $CVaR_{\alpha}(X)$ and $e_X(q_{\alpha})$, where $q_{\alpha} := VaR_{\alpha}(X)$ and $\alpha \in (0, 1)$.
 - (b) Compute the mean excess function of the exponential distribution, i.e. compute $e_X(u)$ for $X \sim Exp(\lambda)$ and $u \ge 0$.
 - (c) Use the result form (a) to compute $CVaR_{\alpha}(X)$ in the case of the exponential distribution, i.e. for $X \sim Exp(\lambda), \alpha \in (0, 1)$.
- 17. (a) Compute the expectation of $E(G_{\gamma,0,\beta})$ of the generalized Pareto distribution $G_{\gamma,0,\beta}$.
 - (b) Consider a random variable X with distribution function X for which the approximation $\bar{F}_u(x) \approx \bar{G}_{\gamma,0,\beta(u)}(x)$ holds with $\gamma \notin \{0,1\}$. Show that this implies the approximation $\bar{F}_v(x) \approx \bar{G}_{\gamma,0,\beta(u)+\gamma(v-u)}(x), \forall v \geq u$.
 - (c) Use the results of (a) and (b) to show that $e_X(v)$ is linear in v for $v \ge u$ for any fixed threshold u > 0.