**Theorem:** (Fréchet bounds)

The following inequalities hold for any d-dimensional copula C and any  $(u_1, u_2, \ldots, u_d) \in [0, 1]^d$ , where  $d \in \mathbb{N}$ :

$$\max \left\{ \sum_{k=1}^d u_k - d + 1, 0 \right\} \leq C(u_1, u_2, \dots, u_d) \leq \min\{u_1, u_2, \dots, u_d\}.$$

**Theorem:** (Fréchet bounds)

The following inequalities hold for any d-dimensional copula C and any  $(u_1, u_2, \ldots, u_d) \in [0, 1]^d$ , where  $d \in \mathbb{N}$ :

$$\max \left\{ \sum_{k=1}^d u_k - d + 1, 0 \right\} \le C(u_1, u_2, \dots, u_d) \le \min\{u_1, u_2, \dots, u_d\}.$$

Notation: Lower bound  $=: W_d$ , upper bound  $=: M_d$ , for  $d \ge 2$ . For d = 2 we write  $M := M_2$ ,  $W := W_2$ .

**Theorem:** (Fréchet bounds)

The following inequalities hold for any d-dimensional copula C and any  $(u_1, u_2, \ldots, u_d) \in [0, 1]^d$ , where  $d \in \mathbb{N}$ :

$$\max \left\{ \sum_{k=1}^{d} u_k - d + 1, 0 \right\} \le C(u_1, u_2, \dots, u_d) \le \min\{u_1, u_2, \dots, u_d\}.$$

Notation: Lower bound =:  $W_d$ , upper bound =:  $M_d$ , for  $d \ge 2$ .

For d = 2 we write  $M := M_2$ ,  $W := W_2$ .

**Remark:** Analogous inequalities hold for any general c.d.f. F with marginal d.f.  $F_i$ ,  $1 \le i \le d$ :

$$\max \left\{ \sum_{k=1}^{d} F_k(x_k) - d + 1, 0 \right\} \leq F(x_1, x_2, \dots, x_d) \leq \min \{ F_1(x_1), F_2(x_2), \dots, F_d(x_d) \}.$$

**Theorem:** (Fréchet bounds)

The following inequalities hold for any d-dimensional copula C and any  $(u_1, u_2, \dots, u_d) \in [0, 1]^d$ , where  $d \in \mathbb{N}$ :

$$\max \left\{ \sum_{k=1}^{d} u_k - d + 1, 0 \right\} \le C(u_1, u_2, \dots, u_d) \le \min\{u_1, u_2, \dots, u_d\}.$$

Notation: Lower bound =:  $W_d$ , upper bound =:  $M_d$ , for  $d \ge 2$ .

For d=2 we write  $M:=M_2$ ,  $W:=W_2$ .

**Remark:** Analogous inequalities hold for any general c.d.f. F with marginal d.f.  $F_i$ , 1 < i < d:

$$\max \left\{ \sum_{k=1}^{d} F_k(x_k) - d + 1, 0 \right\} \le F(x_1, x_2, \dots, x_d) \le \min \{ F_1(x_1), F_2(x_2), \dots, F_d(x_d) \}.$$

**Exercise:** The Fréchet lower bound  $W_d$  is not a copula for  $d \geq 3$ .

Hint: Check that the rectangle inequality

 $\sum_{k_1=1}^2 \sum_{k_2=1}^2 \dots \sum_{k_d=1}^2 (-1)^{k_1+k_2+\dots+k_d} W_d(u_{1k_1},u_{2k_2},\dots,u_{dk_d}) \geq 0 \text{ with }$  $u_{j1} = a_j$  and  $u_{j2} = b_j$  for  $j \in \{1, 2, \dots, d\}$ , is not fulfilled for  $d \ge 3$  and  $a_i = \frac{1}{2}, b_i = 1, \text{ for } i = 1, 2, \dots, d.$ 

**Theorem:** (for a proof see Nelsen 1999) For any  $d \in \mathbb{IN}$ ,  $d \geq 3$ , and any  $u \in [0,1]^d$ , there exists a copula  $C_{d,u}$  such that  $C_{d,u}(u) = W_d(u)$ .

**Theorem:** (for a proof see Nelsen 1999) For any  $d \in \mathbb{IN}$ ,  $d \geq 3$ , and any  $u \in [0,1]^d$ , there exists a copula  $C_{d,u}$  such that  $C_{d,u}(u) = W_d(u)$ .

**Remark 1:** The Fréchet upper bound  $M_d$  is a copula for any  $d \in \mathbb{N}$ ,  $d \ge 2$ .

**Theorem:** (for a proof see Nelsen 1999) For any  $d \in \mathbb{N}$ ,  $d \ge 3$ , and any  $u \in [0,1]^d$ , there exists a copula  $C_{d,u}$  such that  $C_{d,u}(u) = W_d(u)$ .

**Remark 1:** The Fréchet upper bound  $M_d$  is a copula for any  $d \in \mathbb{N}$ ,  $d \ge 2$ .

The fulfillment of the three copula axioms is simple to check.

**Theorem:** (for a proof see Nelsen 1999)

For any  $d \in \mathbb{N}$ ,  $d \geq 3$ , and any  $u \in [0,1]^d$ , there exists a copula  $C_{d,u}$  such that  $C_{d,u}(u) = W_d(u)$ .

**Remark 1:** The Fréchet upper bound  $M_d$  is a copula for any  $d \in \mathbb{N}$ ,  $d \ge 2$ .

The fulfillment of the three copula axioms is simple to check.

**Remark 2:** M and W are copulas.

**Theorem:** (for a proof see Nelsen 1999) For any  $d \in \mathbb{N}$ ,  $d \geq 3$ , and any  $u \in [0,1]^d$ , there exists a copula  $C_{d,u}$  such that  $C_{d,u}(u) = W_d(u)$ .

**Remark 1:** The Fréchet upper bound  $M_d$  is a copula for any  $d \in \mathbb{N}$ ,  $d \ge 2$ .

The fulfillment of the three copula axioms is simple to check.

**Remark 2:** M and W are copulas.

**Hint:** Let X be a r.v. eine with d.f.  $F_X$ , let T be a strictly monotone increasing function, and let S be a strictly monotone decreasing function. Consider the r.v. Y := T(X) and Z := S(X).

**Theorem:** (for a proof see Nelsen 1999)

For any  $d \in \mathbb{N}$ ,  $d \geq 3$ , and any  $u \in [0,1]^d$ , there exists a copula  $C_{d,u}$  such that  $C_{d,u}(u) = W_d(u)$ .

**Remark 1:** The Fréchet upper bound  $M_d$  is a copula for any  $d \in \mathbb{N}$ ,  $d \ge 2$ .

The fulfillment of the three copula axioms is simple to check.

**Remark 2:** M and W are copulas.

**Hint:** Let X be a r.v. eine with d.f.  $F_X$ , let T be a strictly monotone increasing function, and let S be a strictly monotone decreasing function. Consider the r.v. Y := T(X) and Z := S(X).

Then M is the copula of  $(X, T(X))^T$  and W is the copula of  $(X, S(X))^T$ .

**Definition:**  $X_1$  and  $X_2$  are called co-monotone if M is a copula of  $(X_1, X_2)^T$ .  $X_1$  snd  $X_2$  are called anti-monotone if W is a copula of  $(X_1, X_2)^T$ .

**Definition:**  $X_1$  and  $X_2$  are called co-monotone if M is a copula of  $(X_1, X_2)^T$ .  $X_1$  snd  $X_2$  are called anti-monotone if W is a copula of  $(X_1, X_2)^T$ .

**Theorem:** Assume that W or M is a copula of  $(X_1, X_2)^T$ . Then there exist two monotone functions  $\alpha, \beta \colon \mathbb{R} \to \mathbb{R}$  and a r.v. Z, such that

$$(X_1,X_2)\stackrel{d}{=}(\alpha(Z),\beta(Z)).$$

If M is the copula of  $(X_1, X_2)^T$ , then both  $\alpha$  and  $\beta$  are monotone increasing, if W is the copula of  $(X_1, X_2)^T$ , then one of the functions  $\alpha$ ,  $\beta$  is monotone increasing and the other one is monotone decreasing.

**Definition:**  $X_1$  and  $X_2$  are called co-monotone if M is a copula of  $(X_1, X_2)^T$ .  $X_1$  snd  $X_2$  are called anti-monotone if W is a copula of  $(X_1, X_2)^T$ .

**Theorem:** Assume that W or M is a copula of  $(X_1, X_2)^T$ . Then there exist two monotone functions  $\alpha, \beta \colon \mathbb{R} \to \mathbb{R}$  and a r.v. Z, such that

$$(X_1, X_2) \stackrel{d}{=} (\alpha(Z), \beta(Z)).$$

If M is the copula of  $(X_1, X_2)^T$ , then both  $\alpha$  and  $\beta$  are monotone increasing, if W is the copula of  $(X_1, X_2)^T$ , then one of the functions  $\alpha$ ,  $\beta$  is monotone increasing and the other one is monotone decreasing.

If C is the copula of  $(X_1, X_2)$  and the marginal d.f.  $F_1$  and  $F_2$  of  $(X_1, X_2)$  are continuous, then the following hold:

C=W iff  $X_2\stackrel{a.s.}{=} T(X_1)$  with  $T=F_2^{\leftarrow}\circ (1-F_1)$  monotone decreasing, C=M iff  $X_2\stackrel{a.s.}{=} T(X_1)$  with  $T=F_2^{\leftarrow}\circ F_1$  monotone increasing.

**Definition:**  $X_1$  and  $X_2$  are called co-monotone if M is a copula of  $(X_1, X_2)^T$ .  $X_1$  snd  $X_2$  are called anti-monotone if W is a copula of  $(X_1, X_2)^T$ .

**Theorem:** Assume that W or M is a copula of  $(X_1, X_2)^T$ . Then there exist two monotone functions  $\alpha, \beta \colon \mathbb{R} \to \mathbb{R}$  and a r.v. Z, such that

$$(X_1, X_2) \stackrel{d}{=} (\alpha(Z), \beta(Z)).$$

If M is the copula of  $(X_1, X_2)^T$ , then both  $\alpha$  and  $\beta$  are monotone increasing, if W is the copula of  $(X_1, X_2)^T$ , then one of the functions  $\alpha$ ,  $\beta$  is monotone increasing and the other one is monotone decreasing.

If C is the copula of  $(X_1, X_2)$  and the marginal d.f.  $F_1$  and  $F_2$  of  $(X_1, X_2)$  are continuous, then the following hold:

C=W iff  $X_2\stackrel{a.s.}{=} T(X_1)$  with  $T=F_2^{\leftarrow}\circ (1-F_1)$  monotone decreasing, C=M iff  $X_2\stackrel{a.s.}{=} T(X_1)$  with  $T=F_2^{\leftarrow}\circ F_1$  monotone increasing.

Proof: In McNeil et al., 2005.

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with marginal d.f.  $F_1$ ,  $F_2$  and some unknown copula. Let  $var(X_1), var(X_2) \in (0, \infty)$  hold. Then the following statements hold:

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with marginal d.f.  $F_1$ ,  $F_2$  and some unknown copula. Let  $var(X_1), var(X_2) \in (0, \infty)$  hold. Then the following statements hold:

1. The possible values of the linear correlation coefficient of  $X_1$  and  $X_2$  build a closed interval  $[\rho_{L,min}; \rho_{L,max}]$  with  $0 \in [\rho_{L,min}; \rho_{L,max}]$ .

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with marginal d.f.  $F_1$ ,  $F_2$  and some unknown copula. Let  $var(X_1), var(X_2) \in (0, \infty)$  hold. Then the following statements hold:

- 1. The possible values of the linear correlation coefficient of  $X_1$  and  $X_2$  build a closed interval  $[\rho_{L,min}; \rho_{L,max}]$  with  $0 \in [\rho_{L,min}; \rho_{L,max}]$ .
- 2. The minimal linear correlation  $\rho_{L,min}$  is reached iff  $X_1$  and  $X_2$  are anti-monotone. The maximal linear correlation  $\rho_{L,max}$  is reached iff  $X_1$  and  $X_2$  are co-monotone.

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with marginal d.f.  $F_1$ ,  $F_2$  and some unknown copula. Let  $var(X_1), var(X_2) \in (0, \infty)$  hold. Then the following statements hold:

- 1. The possible values of the linear correlation coefficient of  $X_1$  and  $X_2$  build a closed interval  $[\rho_{L,min}; \rho_{L,max}]$  with  $0 \in [\rho_{L,min}; \rho_{L,max}]$ .
- 2. The minimal linear correlation  $\rho_{L,min}$  is reached iff  $X_1$  and  $X_2$  are anti-monotone. The maximal linear correlation  $\rho_{L,max}$  is reached iff  $X_1$  and  $X_2$  are co-monotone.

The proof uses the equality of Höffding:

Lemma: (The Höffding equality)

Let  $(X_1, X_2)^T$  be a random vector with c.d.f. F and marginal d.f.  $F_1$ ,  $F_2$ . If  $cov(X_1, X_2) < \infty$  then the following equality holds:

$$cov(X_1, X_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (F(x_1, x_2) - F_1(x_1)F_2(x_2)) dx_1 dx_2.$$

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with marginal d.f.  $F_1$ ,  $F_2$  and some unknown copula. Let  $var(X_1), var(X_2) \in (0, \infty)$  hold. Then the following statements hold:

- 1. The possible values of the linear correlation coefficient of  $X_1$  and  $X_2$  build a closed interval  $[\rho_{L,min}; \rho_{L,max}]$  with  $0 \in [\rho_{L,min}; \rho_{L,max}]$ .
- 2. The minimal linear correlation  $\rho_{L,min}$  is reached iff  $X_1$  and  $X_2$  are anti-monotone. The maximal linear correlation  $\rho_{L,max}$  is reached iff  $X_1$  and  $X_2$  are co-monotone.

The proof uses the equality of Höffding:

Lemma: (The Höffding equality)

Let  $(X_1, X_2)^T$  be a random vector with c.d.f. F and marginal d.f.  $F_1$ ,  $F_2$ . If  $cov(X_1, X_2) < \infty$  then the following equality holds:

$$cov(X_1, X_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (F(x_1, x_2) - F_1(x_1)F_2(x_2)) dx_1 dx_2.$$

Proof in McNeil et al., 2005.



**Example:** Let  $X_1$ ,  $X_2$  be two random variables with  $X_1 \sim Lognormal(0,1)$ ,  $X_2 \sim Lognormal(0,\sigma^2)$ ,  $\sigma > 0$ . Determine Sie  $\rho_{L,min}(X_1,X_2)$  und  $\rho_{L,max}(X_1,X_2)$ .

**Example:** Let  $X_1$ ,  $X_2$  be two random variables with  $X_1 \sim Lognormal(0,1)$ ,  $X_2 \sim Lognormal(0,\sigma^2)$ ,  $\sigma > 0$ . Determine Sie  $\rho_{L.min}(X_1,X_2)$  und  $\rho_{L.max}(X_1,X_2)$ .

Hint: Observe that  $X_1 \stackrel{d}{=} \exp(Z)$  and  $X_2 \stackrel{d}{=} \exp(\sigma Z) \stackrel{d}{=} \exp(-\sigma Z)$ . Moreover  $e^Z$ ,  $e^{\sigma Z}$  are co-monotone and  $e^Z$ ,  $e^{-\sigma Z}$  are anti-monotone.

**Example:** Let  $X_1$ ,  $X_2$  be two random variables with  $X_1 \sim Lognormal(0,1)$ ,  $X_2 \sim Lognormal(0,\sigma^2)$ ,  $\sigma > 0$ . Determine Sie  $\rho_{L,min}(X_1,X_2)$  und  $\rho_{L,max}(X_1,X_2)$ .

Hint: Observe that  $X_1 \stackrel{d}{=} \exp(Z)$  and  $X_2 \stackrel{d}{=} \exp(\sigma Z) \stackrel{d}{=} \exp(-\sigma Z)$ . Moreover  $e^Z$ ,  $e^{\sigma Z}$  are co-monotone and  $e^Z$ ,  $e^{-\sigma Z}$  are anti-monotone.

**Example:** Determine two random vectors  $(X_1,X_2)^T$  and  $(Y_1,Y_2)^T$  with different c.d.f.s such that  $F_{X_1+X_2}^{\leftarrow}(\alpha) \neq F_{Y_1+Y_2}^{\leftarrow}(\alpha)$  holds while  $X_1,X_2,Y_1,Y_2 \sim \mathcal{N}(0,1)$  and  $\rho_L(X_1,X_2)=0$ ,  $\rho_L(Y_1,Y_2)=0$  also hold.

**Example:** Let  $X_1$ ,  $X_2$  be two random variables with  $X_1 \sim Lognormal(0,1)$ ,  $X_2 \sim Lognormal(0,\sigma^2)$ ,  $\sigma > 0$ . Determine Sie  $\rho_{L,min}(X_1,X_2)$  und  $\rho_{L,max}(X_1,X_2)$ .

Hint: Observe that  $X_1 \stackrel{d}{=} \exp(Z)$  and  $X_2 \stackrel{d}{=} \exp(\sigma Z) \stackrel{d}{=} \exp(-\sigma Z)$ . Moreover  $e^Z$ ,  $e^{\sigma Z}$  are co-monotone and  $e^Z$ ,  $e^{-\sigma Z}$  are anti-monotone.

**Example:** Determine two random vectors  $(X_1, X_2)^T$  and  $(Y_1, Y_2)^T$  with different c.d.f.s such that  $F_{X_1+X_2}^{\leftarrow}(\alpha) \neq F_{Y_1+Y_2}^{\leftarrow}(\alpha)$  holds while  $X_1, X_2, Y_1, Y_2 \sim \mathcal{N}(0, 1)$  and  $\rho_L(X_1, X_2) = 0$ ,  $\rho_L(Y_1, Y_2) = 0$  also hold.

If  $(X_1, X_2)^T$ ,  $(Y_1, Y_2)^T$  represent the asset returns of two different portfolios consisting of two assets each, then we have two portfolios with the same marginal distributions of their assets and the same linear correlation coefficient, respectively, but having different value at risk.

**Example:** Let  $X_1$ ,  $X_2$  be two random variables with  $X_1 \sim Lognormal(0,1)$ ,  $X_2 \sim Lognormal(0,\sigma^2)$ ,  $\sigma > 0$ . Determine Sie  $\rho_{L,min}(X_1,X_2)$  und  $\rho_{L,max}(X_1,X_2)$ .

Hint: Observe that  $X_1 \stackrel{d}{=} \exp(Z)$  and  $X_2 \stackrel{d}{=} \exp(\sigma Z) \stackrel{d}{=} \exp(-\sigma Z)$ . Moreover  $e^Z$ ,  $e^{\sigma Z}$  are co-monotone and  $e^Z$ ,  $e^{-\sigma Z}$  are anti-monotone.

**Example:** Determine two random vectors  $(X_1,X_2)^T$  and  $(Y_1,Y_2)^T$  with different c.d.f.s such that  $F_{X_1+X_2}^{\leftarrow}(\alpha) \neq F_{Y_1+Y_2}^{\leftarrow}(\alpha)$  holds while  $X_1,X_2,Y_1,Y_2 \sim \mathcal{N}(0,1)$  and  $\rho_L(X_1,X_2)=0$ ,  $\rho_L(Y_1,Y_2)=0$  also hold.

If  $(X_1, X_2)^T$ ,  $(Y_1, Y_2)^T$  represent the asset returns of two different portfolios consisting of two assets each, then we have two portfolios with the same marginal distributions of their assets and the same linear correlation coefficient, respectively, but having different value at risk.

**Conclusion:** The marginal distributions of the assets in a portfolio and the linear correlation between the assets do not determine the loss distribution, in particular, they do not determine the risk measure of the portfolio.

Let  $(x, y)^T$  and  $(\tilde{x}, \tilde{y})^T$  be two samples of a random vector  $(X, Y)^T$ .  $(x, y)^T$  und  $(\tilde{x}, \tilde{y})^T$  are called *concordant* if  $(x - \tilde{x})(y - \tilde{y}) > 0$  and discordant if  $(x - \tilde{x})(y - \tilde{y}) < 0$ .

Let  $(x, y)^T$  and  $(\tilde{x}, \tilde{y})^T$  be two samples of a random vector  $(X, Y)^T$ .  $(x, y)^T$  und  $(\tilde{x}, \tilde{y})^T$  are called *concordant* if  $(x - \tilde{x})(y - \tilde{y}) > 0$  and discordant if  $(x - \tilde{x})(y - \tilde{y}) < 0$ .

**Definition:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions. The Kendall's Tau of  $(X_1, X_2)^T$  is defined as  $\rho_{\tau}(X_1, X_2) = P((X_1 - X_1')(X_2 - X_2') > 0) - P((X_1 - X_1')(X_2 - X_2') < 0)$ , where  $(X_1', X_2')^T$  is an independent copy of  $(X_1, X_2)^T$ .

Let  $(x, y)^T$  and  $(\tilde{x}, \tilde{y})^T$  be two samples of a random vector  $(X, Y)^T$ .  $(x, y)^T$  und  $(\tilde{x}, \tilde{y})^T$  are called *concordant* if  $(x - \tilde{x})(y - \tilde{y}) > 0$  and discordant if  $(x - \tilde{x})(y - \tilde{y}) < 0$ .

**Definition:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions. The Kendall's Tau of  $(X_1, X_2)^T$  is defined as  $\rho_{\tau}(X_1, X_2) = P((X_1 - X_1')(X_2 - X_2') > 0) - P((X_1 - X_1')(X_2 - X_2') < 0)$ , where  $(X_1', X_2')^T$  is an independent copy of  $(X_1, X_2)^T$ .

Equivalently:  $\rho_{\tau}(X_1, X_2) = E(sign[(X_1 - X_1')(X_2 - X_2')]).$ 

Let  $(x, y)^T$  and  $(\tilde{x}, \tilde{y})^T$  be two samples of a random vector  $(X, Y)^T$ .  $(x, y)^T$  und  $(\tilde{x}, \tilde{y})^T$  are called *concordant* if  $(x - \tilde{x})(y - \tilde{y}) > 0$  and discordant if  $(x - \tilde{x})(y - \tilde{y}) < 0$ .

**Definition:** Let  $(X_1,X_2)^T$  be a random vector with continuous marginal distributions. The Kendall's Tau of  $(X_1,X_2)^T$  is defined as  $\rho_{\tau}(X_1,X_2)=P((X_1-X_1')(X_2-X_2')>0)-P((X_1-X_1')(X_2-X_2')<0)$ , where  $(X_1',X_2')^T$  is an independent copy of  $(X_1,X_2)^T$ . Equivalently:  $\rho_{\tau}(X_1,X_2)=E(sign[(X_1-X_1')(X_2-X_2')])$ . In the

d-dimensional case  $X \in \mathbb{R}^d$ :  $\rho_{\tau}(X) = cov(sign(X - X'))$ , where  $X' \in \mathbb{R}^D$  is an independent copy of  $X \in \mathbb{R}^d$ .

Let  $(x, y)^T$  and  $(\tilde{x}, \tilde{y})^T$  be two samples of a random vector  $(X, Y)^T$ .  $(x, y)^T$  und  $(\tilde{x}, \tilde{y})^T$  are called *concordant* if  $(x - \tilde{x})(y - \tilde{y}) > 0$  and discordant if  $(x - \tilde{x})(y - \tilde{y}) < 0$ .

**Definition:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions. The Kendall's Tau of  $(X_1, X_2)^T$  is defined as  $\rho_{\tau}(X_1, X_2) = P((X_1 - X_1')(X_2 - X_2') > 0) - P((X_1 - X_1')(X_2 - X_2') < 0)$ , where  $(X_1', X_2')^T$  is an independent copy of  $(X_1, X_2)^T$ .

Equivalently:  $\rho_{\tau}(X_1, X_2) = E(sign[(X_1 - X_1')(X_2 - X_2')])$ . In the d-dimensional case  $X \in \mathbb{R}^d$ :  $\rho_{\tau}(X) = cov(sign(X - X'))$ , where  $X' \in \mathbb{R}^D$  is an independent copy of  $X \in \mathbb{R}^d$ .

#### The sample Kendall's Tau:

Let  $\{(x_1, y_1)^T, (x_2, y_2)^T, \dots, (x_n, y_n)^T\}$  be a sample of size n of the random vector  $(X, Y)^T$  with continuous marginal distributions. Let c be the number concordant pairs in the sample and let d be the number of discordant pairs. Then the sample Kendall's Tau is given as

$$\widetilde{
ho}_{ au}(X,Y) = rac{c-d}{c+d} \stackrel{ ext{a.s.}}{=} rac{c-d}{n(n-1)/2}$$

# The rang correlation Spearman's Rho

#### The rang correlation Spearman's Rho

**Definition:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions. The Spearman's Rho of  $(X_1, X_2)^T$  is defined as:

$$\rho_{\mathcal{S}}(X_1,X_2) = 3(P((X_1-X_1')(X_2-X_2'')>0) - P((X_1-X_1')(X_2-X_2'')<0)),$$
 where  $(X_1',X_2')^T$ ,  $(X_1'',X_2'')^T$  are i.i.d. copies of  $(X_1,X_2)^T$ .

### The rang correlation Spearman's Rho

**Definition:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions. The Spearman's Rho of  $(X_1, X_2)^T$  is defined as:

$$\rho_{S}(X_{1},X_{2}) = 3(P((X_{1}-X_{1}^{\prime})(X_{2}-X_{2}^{\prime\prime})>0) - P((X_{1}-X_{1}^{\prime})(X_{2}-X_{2}^{\prime\prime})<0)),$$

where  $(X_1', X_2')^T$ ,  $(X_1'', X_2'')^T$  are i.i.d. copies of  $(X_1, X_2)^T$ .

Equivalent definition (without a proof):

Let  $F_1$  und  $F_2$  be the continuous marginal distributions of  $(X_1, X_2)^T$ .

Then  $\rho_S(X_1, X_2) = \rho_L(F_1(X_1), F_2(X_2))$  holds, i.e. the Spearman's Rho is the linear correlation of the unique copula of  $(X_1, X_2)^T$ .

# The rang correlation Spearman's Rho

**Definition:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions. The Spearman's Rho of  $(X_1, X_2)^T$  is defined as:

$$\rho_{S}(X_{1}, X_{2}) = 3(P((X_{1} - X_{1}')(X_{2} - X_{2}'') > 0) - P((X_{1} - X_{1}')(X_{2} - X_{2}'') < 0)),$$

where  $(X'_1, X'_2)^T$ ,  $(X''_1, X''_2)^T$  are i.i.d. copies of  $(X_1, X_2)^T$ .

Equivalent definition (without a proof):

Let  $F_1$  und  $F_2$  be the continuous marginal distributions of  $(X_1, X_2)^T$ . Then  $\rho_S(X_1, X_2) = \rho_L(F_1(X_1), F_2(X_2))$  holds, i.e. the Spearman's Rho is the linear correlation of the unique copula of  $(X_1, X_2)^T$ .

In the *d*-dimensional case  $X \in \mathbb{R}^d$ :

 $\rho_S(X) = \rho(F_1(X_1), F_2(X_2), \dots, F_d(X_d))$  is the correlation matrix of the unique copula of X, where  $F_1, F_2, \dots, F_d$  are the continuous marginal distributions of X.

$$\rho_{\tau}(X_1, X_2) = 4 \int_0^1 \int_0^1 C(u_1, u_2) dC(u_1, u_2) - 1$$

$$\rho_{\tau}(X_{1}, X_{2}) = 4 \int_{0}^{1} \int_{0}^{1} C(u_{1}, u_{2}) dC(u_{1}, u_{2}) - 1$$

$$\rho_{S}(X_{1}, X_{2}) = 12 \int_{0}^{1} \int_{0}^{1} (C(u_{1}, u_{2}) - u_{1}u_{2}) du_{1} du_{2} = 12 \int_{0}^{1} \int_{0}^{1} C(u_{1}, u_{2}) du_{1} du_{2} - 3$$

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and unique copula C. The following equalities hold:

$$\rho_{\tau}(X_{1}, X_{2}) = 4 \int_{0}^{1} \int_{0}^{1} C(u_{1}, u_{2}) dC(u_{1}, u_{2}) - 1$$

$$\rho_{S}(X_{1}, X_{2}) = 12 \int_{0}^{1} \int_{0}^{1} (C(u_{1}, u_{2}) - u_{1}u_{2}) du_{1} du_{2} = 12 \int_{0}^{1} \int_{0}^{1} C(u_{1}, u_{2}) du_{1} du_{2} - 3$$

 $\triangleright$   $\rho_{\tau}$  and  $\rho_{S}$  are symmetric and take their values on [-1,1].

$$\rho_{\tau}(X_{1}, X_{2}) = 4 \int_{0}^{1} \int_{0}^{1} C(u_{1}, u_{2}) dC(u_{1}, u_{2}) - 1$$

$$\rho_{S}(X_{1}, X_{2}) = 12 \int_{0}^{1} \int_{0}^{1} (C(u_{1}, u_{2}) - u_{1}u_{2}) du_{1} du_{2} = 12 \int_{0}^{1} \int_{0}^{1} C(u_{1}, u_{2}) du_{1} du_{2} - 3$$

- $ho_{\tau}$  and  $ho_{S}$  are symmetric and take their values on [-1,1].
- If  $X_1$ ,  $X_2$  are independent, then  $\rho_{\tau}(X_1, X_2) = \rho_{S}(X_1, X_2) = 0$ . In general the converse does not hold.

$$\rho_{\tau}(X_{1}, X_{2}) = 4 \int_{0}^{1} \int_{0}^{1} C(u_{1}, u_{2}) dC(u_{1}, u_{2}) - 1$$

$$\rho_{S}(X_{1}, X_{2}) = 12 \int_{0}^{1} \int_{0}^{1} (C(u_{1}, u_{2}) - u_{1}u_{2}) du_{1} du_{2} = 12 \int_{0}^{1} \int_{0}^{1} C(u_{1}, u_{2}) du_{1} du_{2} - 3$$

- $ho_{\tau}$  and  $ho_{S}$  are symmetric and take their values on [-1,1].
- If  $X_1$ ,  $X_2$  are independent, then  $\rho_{\tau}(X_1, X_2) = \rho_{S}(X_1, X_2) = 0$ . In general the converse does not hold.
- ▶  $X_1, X_2$  are co-monotone iff  $\rho_{\tau}(X_1, X_2) = \rho_{\mathcal{S}}(X_1, X_2) = 1$ .  $X_1, X_2$ .  $X_1, X_2$  are anti-monotone iff  $\rho_{\tau}(X_1, X_2) = \rho_{\mathcal{S}}(X_1, X_2) = -1$ .

**Theorem:** Let  $(X_1, X_2)^T$  be a random vector with continuous marginal distributions and unique copula C. The following equalities hold:

$$\rho_{\tau}(X_{1}, X_{2}) = 4 \int_{0}^{1} \int_{0}^{1} C(u_{1}, u_{2}) dC(u_{1}, u_{2}) - 1$$

$$\rho_{S}(X_{1}, X_{2}) = 12 \int_{0}^{1} \int_{0}^{1} (C(u_{1}, u_{2}) - u_{1}u_{2}) du_{1} du_{2} = 12 \int_{0}^{1} \int_{0}^{1} C(u_{1}, u_{2}) du_{1} du_{2} - 3$$

- $\rho_{\tau}$  and  $\rho_{S}$  are symmetric and take their values on [-1,1].
- If  $X_1$ ,  $X_2$  are independent, then  $\rho_{\tau}(X_1, X_2) = \rho_{S}(X_1, X_2) = 0$ . In general the converse does not hold.
- ▶  $X_1, X_2$  are co-monotone iff  $\rho_{\tau}(X_1, X_2) = \rho_{S}(X_1, X_2) = 1$ .  $X_1, X_2$ .  $X_1, X_2$  are anti-monotone iff  $\rho_{\tau}(X_1, X_2) = \rho_{S}(X_1, X_2) = -1$ .
- Let  $F_1$ ,  $F_2$  be the continuous marginal distributions of  $(X_1, X_2)^T$  and let  $T_1$ ,  $T_2$  be strictly monotone functions on  $[-\infty, \infty]$ . Then the following equalities hold  $\rho_{\tau}(X_1, X_2) = \rho_{\tau}(T_1(X_1), T_2(X_2))$  and  $\rho_{S}(X_1, X_2) = \rho_{S}(T_1(X_1), T_2(X_2))$ .

(See Embrechts et al., 2002).



**Definition:** Let  $(X_1, X_2)^T$  be a random vector with marginal distributions  $F_1$  und  $F_2$ .

The coefficent  $\lambda_U(X_1, X_2)$  of the upper tail dependency of  $(X_1, X_2)^T$  is defined as  $\lambda_U(X_1, X_2) = \lim_{u \to 1^-} P(X_2 > F_2^{\leftarrow}(u)|X_1 > F_1^{\leftarrow}(u))$ , provided that the limit exists.

**Definition:** Let  $(X_1, X_2)^T$  be a random vector with marginal distributions  $F_1$  und  $F_2$ .

The coefficent  $\lambda_U(X_1,X_2)$  of the upper tail dependency of  $(X_1,X_2)^T$  is defined as  $\lambda_U(X_1,X_2)=\lim_{u\to 1^-}P(X_2>F_2^\leftarrow(u)|X_1>F_1^\leftarrow(u))$ , provided that the limit exists.

The coefficent  $\lambda_L(X_1, X_2)$  of the lower tail dependency of  $(X_1, X_2)^T$  is defined as  $\lambda_L(X_1, X_2) = \lim_{u \to 0^+} P(X_2 \le F_2^{\leftarrow}(u) | X_1 \le F_1^{\leftarrow}(u))$  provided that the limit exists.

**Definition:** Let  $(X_1, X_2)^T$  be a random vector with marginal distributions  $F_1$  und  $F_2$ .

The coefficent  $\lambda_U(X_1,X_2)$  of the upper tail dependency of  $(X_1,X_2)^T$  is defined as  $\lambda_U(X_1,X_2)=\lim_{u\to 1^-}P(X_2>F_2^\leftarrow(u)|X_1>F_1^\leftarrow(u))$ , provided that the limit exists.

The coefficient  $\lambda_L(X_1, X_2)$  of the lower tail dependency of  $(X_1, X_2)^T$  is defined as  $\lambda_L(X_1, X_2) = \lim_{u \to 0^+} P(X_2 \le F_2^{\leftarrow}(u) | X_1 \le F_1^{\leftarrow}(u))$  provided that the limit exists.

If the limit exists and  $\lambda_U > 0$  ( $\lambda_L > 0$ ) we say that  $(X_1, X_2)^T$  have an upper (a lower) tail dependence.