Mean-risk portfolio optimization in the case of elliptically distributed asset returns

Mean-risk portfolio optimization in the case of elliptically distributed asset returns

Theorem: (Embrechts et al., 2002)
Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)=\mu+A Y$ be elliptically distributed with $\mu \in \mathbb{R}^{d}, A \in \mathbb{R}^{d \times k}$ and a spherically distributed vector $Y \sim S_{k}(\psi)$. Assume that $0<E\left(X_{k}^{2}\right)<\infty$ holds $\forall k$. If the risk measure ρ has the properties (C1) and (C3) and $\rho\left(Y_{1}\right)>0$ for the first component Y_{1} of Y, then

$$
\arg \min \left\{\rho(Z(w)): w \in \mathcal{P}_{m}\right\}=\arg \min \left\{\operatorname{var}(Z(w)): w \in \mathcal{P}_{m}\right\}
$$

Mean-risk portfolio optimization in the case of elliptically distributed asset returns

Theorem: (Embrechts et al., 2002)
Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)=\mu+A Y$ be elliptically distributed with $\mu \in \mathbb{R}^{d}, A \in \mathbb{R}^{d \times k}$ and a spherically distributed vector $Y \sim S_{k}(\psi)$. Assume that $0<E\left(X_{k}^{2}\right)<\infty$ holds $\forall k$. If the risk measure ρ has the properties (C1) and (C3) and $\rho\left(Y_{1}\right)>0$ for the first component Y_{1} of Y, then

$$
\arg \min \left\{\rho(Z(w)): w \in \mathcal{P}_{m}\right\}=\arg \min \left\{\operatorname{var}(Z(w)): w \in \mathcal{P}_{m}\right\}
$$

Theorem: (Embrechts et al., 2002)
Let M be the set of returns of the portfolii in $\mathcal{P}:=\left\{w=\left(w_{i}\right) \in \mathbb{R}^{d}, \sum_{i=1}^{d}\left|w_{i}\right|=1\right\}$. Let the asset returns $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ be elliptically distributed, $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right) \sim E_{d}(\mu, \Sigma, \psi)$ for some $\mu \in \mathbb{R}^{d}, \Sigma \in \mathbb{R}^{d \times d}$ and $\psi: \mathbb{R} \rightarrow \mathbb{R}$. Then $V_{a} R_{\alpha}$ ist coherent in M, for any $\alpha \in(0.5,1)$.

Copulas: Definition and basic properties

Copulas: Definition and basic properties

Definition: A d-dimensional copula is a distribution function on $[0,1]^{d}$ with uniform marginal distributions on $[0,1]$.

Copulas: Definition and basic properties

Definition: A d-dimensional copula is a distribution function on $[0,1]^{d}$ with uniform marginal distributions on $[0,1]$.
Equivalently, a copula C is a function $C:[0,1]^{d} \rightarrow[0,1]$, with the following properties:

1. $C\left(u_{1}, u_{2}, \ldots, u_{d}\right)$ is mon. increasing in each variable $u_{i}, 1 \leq i \leq d$.
2. $C\left(1,1, \ldots, 1, u_{k}, 1, \ldots, 1\right)=u_{k}$ for any $k \in\{1, \ldots, d\}$ and $\forall u_{k} \in[0,1]$.
3. The rectangle inequality holds $\forall\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in[0,1]^{d}$, $\forall\left(b_{1}, b_{2}, \ldots, b_{d}\right) \in[0,1]^{d}$ with $a_{k} \leq b_{k}, \forall k \in\{1,2, \ldots, d\}$:

$$
\sum_{k_{1}=1}^{2} \ldots \sum_{k_{d}=1}^{2}(-1)^{k_{1}+k_{2}+\ldots+k_{d}} C\left(u_{1 k_{1}}, u_{2 k_{2}}, \ldots, u_{d k_{d}}\right) \geq 0
$$

where $u_{j 1}=a_{j}$ and $u_{j 2}=b_{j}$.

Copulas: Definition and basic properties

Definition: A d-dimensional copula is a distribution function on $[0,1]^{d}$ with uniform marginal distributions on $[0,1]$.
Equivalently, a copula C is a function $C:[0,1]^{d} \rightarrow[0,1]$, with the following properties:

1. $C\left(u_{1}, u_{2}, \ldots, u_{d}\right)$ is mon. increasing in each variable $u_{i}, 1 \leq i \leq d$.
2. $C\left(1,1, \ldots, 1, u_{k}, 1, \ldots, 1\right)=u_{k}$ for any $k \in\{1, \ldots, d\}$ and $\forall u_{k} \in[0,1]$.
3. The rectangle inequality holds $\forall\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in[0,1]^{d}$, $\forall\left(b_{1}, b_{2}, \ldots, b_{d}\right) \in[0,1]^{d}$ with $a_{k} \leq b_{k}, \forall k \in\{1,2, \ldots, d\}$:

$$
\sum_{k_{1}=1}^{2} \ldots \sum_{k_{d}=1}^{2}(-1)^{k_{1}+k_{2}+\ldots+k_{d}} C\left(u_{1 k_{1}}, u_{2 k_{2}}, \ldots, u_{d k_{d}}\right) \geq 0
$$

where $u_{j 1}=a_{j}$ and $u_{j 2}=b_{j}$.
Remark: The k-dimensional marginal distributions of a d-dimensional copula are k-dimensional copulas, for all $2 \leq k \leq d$.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of h. Then the following statements hold:

1. $h \leftarrow$ is eine monotone increasing left continuous function.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of h. Then the following statements hold:

1. $h \leftarrow$ is eine monotone increasing left continuous function.
2. h is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of h. Then the following statements hold:

1. $h \leftarrow$ is eine monotone increasing left continuous function.
2. h is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. h is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of h. Then the following statements hold:

1. $h \leftarrow$ is eine monotone increasing left continuous function.
2. h is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. h is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.
4. $h \leftarrow(h(x)) \leq x$

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of h. Then the following statements hold:

1. $h \leftarrow$ is eine monotone increasing left continuous function.
2. h is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. h is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.
4. $h \leftarrow(h(x)) \leq x$
5. $h\left(h^{\leftarrow}(y)\right) \geq y$

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of h. Then the following statements hold:

1. $h \leftarrow$ is eine monotone increasing left continuous function.
2. h is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. h is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.
4. $h \leftarrow(h(x)) \leq x$
5. $h(h \leftarrow(y)) \geq y$
6. h is strictly monotone increasing $\Longrightarrow h^{\leftarrow}(h(x))=x$.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of h. Then the following statements hold:

1. $h \leftarrow$ is eine monotone increasing left continuous function.
2. h is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. h is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.
4. $h \leftarrow(h(x)) \leq x$
5. $h(h \leftarrow(y)) \geq y$
6. h is strictly monotone increasing $\Longrightarrow h^{\leftarrow}(h(x))=x$.
7. h is continuous $\Longrightarrow h\left(h^{\leftarrow}(y)\right)=y$.

Lemma: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and $h^{\leftarrow}: \mathbb{R} \rightarrow \mathbb{R}$ be the generalized inverse function of h. Then the following statements hold:

1. $h \leftarrow$ is eine monotone increasing left continuous function.
2. h is continuous $\Longleftrightarrow h^{\leftarrow}$ is strictly monotone increasing.
3. h is strictly monotone increasing $\Longleftrightarrow h^{\leftarrow}$ is continuous.
4. $h^{\leftarrow}(h(x)) \leq x$
5. $h\left(h^{\leftarrow}(y)\right) \geq y$
6. h is strictly monotone increasing $\Longrightarrow h^{\leftarrow}(h(x))=x$.
7. h is continuous $\Longrightarrow h\left(h^{\leftarrow}(y)\right)=y$.

Lemma: Let X be a r.v. with continuous distribution function F. Then $P\left(F^{\leftarrow}(F(x))=x\right)=1$, i.e. $F^{\leftarrow}(F(X)) \stackrel{\text { a.s. }}{=} X$

Copulas: existence and uniqueness

Copulas: existence and uniqueness
Theorem: Let G be a d.f. in \mathbb{R}. The following statements holds

1. Quantile transformation:

If $U \sim U(0,1)$, then $P(G \leftarrow(U) \leq x)=G(x)$.

Copulas: existence and uniqueness

Theorem: Let G be a d.f. in \mathbb{R}. The following statements holds

1. Quantile transformation:

If $U \sim U(0,1)$, then $P(G \leftarrow(U) \leq x)=G(x)$.
2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0,1)$.

Copulas: existence and uniqueness

Theorem: Let G be a d.f. in \mathbb{R}. The following statements holds

1. Quantile transformation:

If $U \sim U(0,1)$, then $P\left(G^{\leftarrow}(U) \leq x\right)=G(x)$.
2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0,1)$.

Theorem: (Sklar, 1959)
Let $F: \mathbb{R}^{d} \rightarrow[0,1]$ a c.d.f. with marginal d.f. F_{1}, \ldots, F_{d}. There exists a copula C, such that for all $x_{1}, x_{2}, \ldots, x_{d} \in \overline{\mathbb{R}}=[-\infty, \infty]$ the equality

$$
F\left(x_{1}, x_{2}, \ldots, x_{d}\right)=C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \ldots, F_{d}\left(x_{d}\right)\right) \text { holds. }
$$

If F_{1}, \ldots, F_{d} are continuous, then C is unique.

Copulas: existence and uniqueness

Theorem: Let G be a d.f. in \mathbb{R}. The following statements holds

1. Quantile transformation:

If $U \sim U(0,1)$, then $P\left(G^{\leftarrow}(U) \leq x\right)=G(x)$.
2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0,1)$.

Theorem: (Sklar, 1959)
Let $F: \mathbb{R}^{d} \rightarrow[0,1]$ a c.d.f. with marginal d.f. F_{1}, \ldots, F_{d}. There exists a copula C, such that for all $x_{1}, x_{2}, \ldots, x_{d} \in \overline{\mathbb{R}}=[-\infty, \infty]$ the equality

$$
F\left(x_{1}, x_{2}, \ldots, x_{d}\right)=C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \ldots, F_{d}\left(x_{d}\right)\right) \text { holds. }
$$

If F_{1}, \ldots, F_{d} are continuous, then C is unique.
Vice-versa, if C is a copula and F_{1}, \ldots, F_{d} are d.f., then the function F defined by the equality above is a c.d.f. with marginal d.f. F_{1}, \ldots, F_{d}.

Copulas: existence and uniqueness

Theorem: Let G be a d.f. in \mathbb{R}. The following statements holds

1. Quantile transformation:

If $U \sim U(0,1)$, then $P\left(G^{\leftarrow}(U) \leq x\right)=G(x)$.
2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0,1)$.

Theorem: (Sklar, 1959)
Let $F: \mathbb{R}^{d} \rightarrow[0,1]$ a c.d.f. with marginal d.f. F_{1}, \ldots, F_{d}. There exists a copula C, such that for all $x_{1}, x_{2}, \ldots, x_{d} \in \overline{\mathbb{R}}=[-\infty, \infty]$ the equality

$$
F\left(x_{1}, x_{2}, \ldots, x_{d}\right)=C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \ldots, F_{d}\left(x_{d}\right)\right) \text { holds. }
$$

If F_{1}, \ldots, F_{d} are continuous, then C is unique.
Vice-versa, if C is a copula and F_{1}, \ldots, F_{d} are d.f., then the function F defined by the equality above is a c.d.f. with marginal d.f. F_{1}, \ldots, F_{d}.
C as above is called the copula of F. For a random vector $X \in \mathbb{R}^{d}$ with c.d.f. F we say that C is the copula of X.

Copulas: invariance property

Copulas: invariance property

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_{1}, \ldots, F_{d}. The unique copula C of F is given as :

$$
C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), F_{2}^{\leftarrow}\left(u_{2}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)
$$

Copulas: invariance property

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_{1}, \ldots, F_{d}. The unique copula C of F is given as :

$$
C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), F_{2}^{\leftarrow}\left(u_{2}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)
$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ be a random vector with continuous marginal d.f. $F_{1}, F_{2}, \ldots, F_{d}$ and copula C. Let $T_{1}, T_{2}, \ldots, T_{d}$ be strictly monotone increasing functions in \mathbb{R}. Then C is also the copula of $\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right), \ldots, T_{d}\left(X_{d}\right)\right)^{T}$.

Copulas: invariance property

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_{1}, \ldots, F_{d}. The unique copula C of F is given as :

$$
C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), F_{2}^{\leftarrow}\left(u_{2}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)
$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ be a random vector with continuous marginal d.f. $F_{1}, F_{2}, \ldots, F_{d}$ and copula C. Let $T_{1}, T_{2}, \ldots, T_{d}$ be strictly monotone increasing functions in \mathbb{R}. Then C is also the copula of $\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right), \ldots, T_{d}\left(X_{d}\right)\right)^{T}$.
Example: Let $X=\left(X_{1}, \ldots, X_{d}\right) \sim N_{d}(0, \Sigma)$ with $\Sigma=R$ being the correlation matrix of X. Let ϕ_{R} and ϕ be the c.d.f of X and X_{1}, resp..
The copula of X is called a Gaussian copula and is denoted by $C_{R}^{G a}$:

$$
C_{R}^{G a}\left(u_{1}, u_{2}, \ldots, u_{d}\right)=\phi_{R}\left(\phi^{-1}\left(u_{1}\right), \phi^{-1}\left(u_{2}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right) .
$$

Copulas: invariance property

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_{1}, \ldots, F_{d}. The unique copula C of F is given as :

$$
C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), F_{2}^{\leftarrow}\left(u_{2}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)
$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ be a random vector with continuous marginal d.f. $F_{1}, F_{2}, \ldots, F_{d}$ and copula C. Let $T_{1}, T_{2}, \ldots, T_{d}$ be strictly monotone increasing functions in \mathbb{R}. Then C is also the copula of $\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right), \ldots, T_{d}\left(X_{d}\right)\right)^{T}$.
Example: Let $X=\left(X_{1}, \ldots, X_{d}\right) \sim N_{d}(0, \Sigma)$ with $\Sigma=R$ being the correlation matrix of X. Let ϕ_{R} and ϕ be the c.d.f of X and X_{1}, resp.. The copula of X is called a Gaussian copula and is denoted by $C_{R}^{G a}$:

$$
C_{R}^{G a}\left(u_{1}, u_{2}, \ldots, u_{d}\right)=\phi_{R}\left(\phi^{-1}\left(u_{1}\right), \phi^{-1}\left(u_{2}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right) .
$$

$C_{R}^{G a}$ is the copula of any non-degenerate normal distribution $N_{d}(\mu, \Sigma)$ with correlation matrix R.

Copulas: invariance property

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_{1}, \ldots, F_{d}. The unique copula C of F is given as :

$$
C\left(u_{1}, u_{2}, \ldots, u_{d}\right)=F\left(F_{1}^{\leftarrow}\left(u_{1}\right), F_{2}^{\leftarrow}\left(u_{2}\right), \ldots, F_{d}^{\leftarrow}\left(u_{d}\right)\right)
$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations)
Let $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{T}$ be a random vector with continuous marginal d.f. $F_{1}, F_{2}, \ldots, F_{d}$ and copula C. Let $T_{1}, T_{2}, \ldots, T_{d}$ be strictly monotone increasing functions in \mathbb{R}. Then C is also the copula of $\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{2}\right), \ldots, T_{d}\left(X_{d}\right)\right)^{T}$.
Example: Let $X=\left(X_{1}, \ldots, X_{d}\right) \sim N_{d}(0, \Sigma)$ with $\Sigma=R$ being the correlation matrix of X. Let ϕ_{R} and ϕ be the c.d.f of X and X_{1}, resp..
The copula of X is called a Gaussian copula and is denoted by $C_{R}^{G a}$:

$$
C_{R}^{G a}\left(u_{1}, u_{2}, \ldots, u_{d}\right)=\phi_{R}\left(\phi^{-1}\left(u_{1}\right), \phi^{-1}\left(u_{2}\right), \ldots, \phi^{-1}\left(u_{d}\right)\right) .
$$

$C_{R}^{G a}$ is the copula of any non-degenerate normal distribution $N_{d}(\mu, \Sigma)$ with correlation matrix R.
For $d=2$ and $\rho=R_{12} \in(-1,1)$ we have :

$$
C_{R}^{G a}\left(u_{1}, u_{2}\right)=\int_{-\infty}^{\phi^{-1}\left(u_{1}\right)} \int_{-\infty}^{\phi^{-1}\left(u_{2}\right)} \frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{\frac{-\left(x_{1}^{2}-2 \rho x_{1} x_{2}+x_{2}^{2}\right)}{2\left(1-\rho^{2}\right)}\right\} d x_{1} d x_{2}
$$

