Mean-risk portfolio optimization in the case of elliptically distributed asset returns

Mean-risk portfolio optimization in the case of elliptically distributed asset returns

Theorem: (Embrechts et al., 2002) Let $X = (X_1, X_2, ..., X_d) = \mu + AY$ be elliptically distributed with $\mu \in \mathbb{R}^d$, $A \in \mathbb{R}^{d \times k}$ and a spherically distributed vector $Y \sim S_k(\psi)$. Assume that $0 < E(X_k^2) < \infty$ holds $\forall k$. If the risk measure ρ has the properties (C1) and (C3) and $\rho(Y_1) > 0$ for the first component Y_1 of Y, then

 $\arg\min\{\rho(Z(w)): w \in \mathcal{P}_m\} = \arg\min\{var(Z(w)): w \in \mathcal{P}_m\}$

(日) (同) (三) (三) (三) (○) (○)

Mean-risk portfolio optimization in the case of elliptically distributed asset returns

Theorem: (Embrechts et al., 2002) Let $X = (X_1, X_2, ..., X_d) = \mu + AY$ be elliptically distributed with $\mu \in \mathbb{R}^d$, $A \in \mathbb{R}^{d \times k}$ and a spherically distributed vector $Y \sim S_k(\psi)$. Assume that $0 < E(X_k^2) < \infty$ holds $\forall k$. If the risk measure ρ has the properties (C1) and (C3) and $\rho(Y_1) > 0$ for the first component Y_1 of Y, then

$$\arg\min\{
ho(Z(w)): w \in \mathcal{P}_m\} = \arg\min\{var(Z(w)): w \in \mathcal{P}_m\}$$

Theorem: (Embrechts et al., 2002) Let *M* be the set of returns of the portfolii in $\mathcal{P} := \{w = (w_i) \in \mathbb{R}^d, \sum_{i=1}^d |w_i| = 1\}$. Let the asset returns $X = (X_1, X_2, \ldots, X_d)$ be elliptically distributed, $X = (X_1, X_2, \ldots, X_d) \sim E_d(\mu, \Sigma, \psi)$ for some $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ and $\psi : \mathbb{R} \to \mathbb{R}$. Then VaR_α ist coherent in *M*, for any $\alpha \in (0.5, 1)$.

Definition: A *d*-dimensional copula is a distribution function on $[0, 1]^d$ with uniform marginal distributions on [0, 1].

(ロ)、(型)、(E)、(E)、 E) の(の)

Definition: A *d*-dimensional copula is a distribution function on $[0, 1]^d$ with uniform marginal distributions on [0, 1].

Equivalently, a copula C is a function $C : [0, 1]^d \rightarrow [0, 1]$, with the following properties:

- 1. $C(u_1, u_2, \ldots, u_d)$ is mon. increasing in each variable u_i , $1 \le i \le d$.
- 2. $C(1, 1, ..., 1, u_k, 1, ..., 1) = u_k$ for any $k \in \{1, ..., d\}$ and $\forall u_k \in [0, 1]$.
- 3. The rectangle inequality holds $\forall (a_1, a_2, \dots, a_d) \in [0, 1]^d$, $\forall (b_1, b_2, \dots, b_d) \in [0, 1]^d$ with $a_k \leq b_k$, $\forall k \in \{1, 2, \dots, d\}$:

$$\sum_{k_1=1}^2 \dots \sum_{k_d=1}^2 (-1)^{k_1+k_2+\dots+k_d} C(u_{1k_1}, u_{2k_2}, \dots, u_{dk_d}) \geq 0,$$

(日) (同) (三) (三) (三) (○) (○)

where $u_{j1} = a_j$ and $u_{j2} = b_j$.

Definition: A *d*-dimensional copula is a distribution function on $[0, 1]^d$ with uniform marginal distributions on [0, 1].

Equivalently, a copula C is a function $C \colon [0,1]^d \to [0,1]$, with the following properties:

- 1. $C(u_1, u_2, \ldots, u_d)$ is mon. increasing in each variable u_i , $1 \le i \le d$.
- 2. $C(1, 1, ..., 1, u_k, 1, ..., 1) = u_k$ for any $k \in \{1, ..., d\}$ and $\forall u_k \in [0, 1]$.
- 3. The rectangle inequality holds $\forall (a_1, a_2, \dots, a_d) \in [0, 1]^d$, $\forall (b_1, b_2, \dots, b_d) \in [0, 1]^d$ with $a_k \leq b_k$, $\forall k \in \{1, 2, \dots, d\}$:

$$\sum_{k_1=1}^2 \dots \sum_{k_d=1}^2 (-1)^{k_1+k_2+\dots+k_d} C(u_{1k_1}, u_{2k_2}, \dots, u_{dk_d}) \geq 0,$$

where $u_{j1} = a_j$ and $u_{j2} = b_j$.

Remark: The *k*-dimensional marginal distributions of a *d*-dimensional copula are *k*-dimensional copulas, for all $2 \le k \le d$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. h^{\leftarrow} is eine monotone increasing left continuous function.

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.
- 4. $h^{\leftarrow}(h(x)) \leq x$

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.
- 4. $h^{\leftarrow}(h(x)) \leq x$
- 5. $h(h^{\leftarrow}(y)) \geq y$

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.
- 4. $h^{\leftarrow}(h(x)) \leq x$
- 5. $h(h^{\leftarrow}(y)) \geq y$
- 6. *h* is strictly monotone increasing $\implies h^{\leftarrow}(h(x)) = x$.

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.
- 4. $h^{\leftarrow}(h(x)) \leq x$
- 5. $h(h^{\leftarrow}(y)) \geq y$
- 6. *h* is strictly monotone increasing $\implies h^{\leftarrow}(h(x)) = x$.

7. *h* is continuous $\implies h(h^{\leftarrow}(y)) = y$.

- 1. h^{\leftarrow} is eine monotone increasing left continuous function.
- 2. *h* is continuous $\iff h^{\leftarrow}$ is strictly monotone increasing.
- 3. *h* is strictly monotone increasing $\iff h^{\leftarrow}$ is continuous.
- 4. $h^{\leftarrow}(h(x)) \leq x$
- 5. $h(h^{\leftarrow}(y)) \geq y$
- 6. *h* is strictly monotone increasing $\implies h^{\leftarrow}(h(x)) = x$.
- 7. *h* is continuous $\implies h(h^{\leftarrow}(y)) = y$.

Lemma: Let X be a r.v. with continuous distribution function F. Then $P(F^{\leftarrow}(F(x)) = x) = 1$, i.e. $F^{\leftarrow}(F(X)) \stackrel{a.s.}{=} X$

(日) (同) (三) (三) (三) (○) (○)

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Theorem: Let G be a d.f. in \mathbb{R} . The following statements holds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. Quantile transformation:

If $U \sim U(0,1)$, then $P(G^{\leftarrow}(U) \leq x) = G(x)$.

Theorem: Let G be a d.f. in \mathbb{R} . The following statements holds

- 1. Quantile transformation: If $U \sim U(0, 1)$, then $P(G^{\leftarrow}(U) \leq x) = G(x)$.
- 2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0,1)$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem: Let G be a d.f. in \mathbb{R} . The following statements holds

- 1. Quantile transformation: If $U \sim U(0,1)$, then $P(G^{\leftarrow}(U) \leq x) = G(x)$.
- 2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0, 1)$.

Theorem: (Sklar, 1959) Let $F : \mathbb{R}^d \to [0,1]$ a c.d.f. with marginal d.f. F_1, \ldots, F_d . There exists a copula *C*, such that for all $x_1, x_2, \ldots, x_d \in \overline{\mathbb{R}} = [-\infty, \infty]$ the equality

$$F(x_1, x_2, \ldots, x_d) = C(F_1(x_1), F_2(x_2), \ldots, F_d(x_d))$$
 holds.

If F_1, \ldots, F_d are continuous, then C is unique.

Theorem: Let G be a d.f. in \mathbb{R} . The following statements holds

- 1. Quantile transformation: If $U \sim U(0,1)$, then $P(G^{\leftarrow}(U) \leq x) = G(x)$.
- 2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0, 1)$.

Theorem: (Sklar, 1959) Let $F : \mathbb{R}^d \to [0,1]$ a c.d.f. with marginal d.f. F_1, \ldots, F_d . There exists a copula *C*, such that for all $x_1, x_2, \ldots, x_d \in \mathbb{R} = [-\infty, \infty]$ the equality

$$F(x_1, x_2, \ldots, x_d) = C(F_1(x_1), F_2(x_2), \ldots, F_d(x_d))$$
 holds.

If F_1, \ldots, F_d are continuous, then *C* is unique. Vice-versa, if *C* is a copula and F_1, \ldots, F_d are d.f., then the function *F* defined by the equality above is a c.d.f. with marginal d.f. F_1, \ldots, F_d .

(日) (同) (三) (三) (三) (○) (○)

Theorem: Let G be a d.f. in \mathbb{R} . The following statements holds

- 1. Quantile transformation: If $U \sim U(0,1)$, then $P(G^{\leftarrow}(U) \leq x) = G(x)$.
- 2. Probability transformation: Let Y be a r.v. with continuous d.f. G. Then $G(Y) \sim U(0, 1)$.

Theorem: (Sklar, 1959) Let $F : \mathbb{R}^d \to [0,1]$ a c.d.f. with marginal d.f. F_1, \ldots, F_d . There exists a copula *C*, such that for all $x_1, x_2, \ldots, x_d \in \mathbb{R} = [-\infty, \infty]$ the equality

$$F(x_1, x_2, \ldots, x_d) = C(F_1(x_1), F_2(x_2), \ldots, F_d(x_d))$$
 holds.

If F_1, \ldots, F_d are continuous, then *C* is unique. Vice-versa, if *C* is a copula and F_1, \ldots, F_d are d.f., then the function *F* defined by the equality above is a c.d.f. with marginal d.f. F_1, \ldots, F_d . *C* as above is called *the copula of F*. For a random vector $X \in \mathbb{R}^d$ with c.d.f. *F* we say that *C* is *the copula of X*.

<ロ> <回> <回> <回> <三> <三> <三> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_1, \ldots, F_d . The unique copula C of F is given as :

$$C(u_1, u_2, \ldots, u_d) = F(F_1^{\leftarrow}(u_1), F_2^{\leftarrow}(u_2), \ldots, F_d^{\leftarrow}(u_d)).$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへで

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_1, \ldots, F_d . The unique copula C of F is given as :

$$C(u_1, u_2, \ldots, u_d) = F(F_1^{\leftarrow}(u_1), F_2^{\leftarrow}(u_2), \ldots, F_d^{\leftarrow}(u_d)).$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X = (X_1, X_2, ..., X_d)^T$ be a random vector with continuous marginal d.f. $F_1, F_2, ..., F_d$ and copula C. Let $T_1, T_2, ..., T_d$ be strictly monotone increasing functions in IR. Then C is also the copula of $(T_1(X_1), T_2(X_2), ..., T_d(X_d))^T$.

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_1, \ldots, F_d . The unique copula C of F is given as :

$$C(u_1, u_2, \ldots, u_d) = F(F_1^{\leftarrow}(u_1), F_2^{\leftarrow}(u_2), \ldots, F_d^{\leftarrow}(u_d)).$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X = (X_1, X_2, ..., X_d)^T$ be a random vector with continuous marginal d.f. $F_1, F_2, ..., F_d$ and copula C. Let $T_1, T_2, ..., T_d$ be strictly monotone increasing functions in \mathbb{R} . Then C is also the copula of $(T_1(X_1), T_2(X_2), ..., T_d(X_d))^T$.

Example: Let $X = (X_1, ..., X_d) \sim N_d(0, \Sigma)$ with $\Sigma = R$ being the correlation matrix of X. Let ϕ_R and ϕ be the c.d.f of X and X_1 , resp.. The copula of X is called a *Gaussian copula* and is denoted by C_R^{Ga} :

$$C_R^{Ga}(u_1, u_2, \ldots, u_d) = \phi_R(\phi^{-1}(u_1), \phi^{-1}(u_2), \ldots, \phi^{-1}(u_d)).$$

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_1, \ldots, F_d . The unique copula C of F is given as :

$$C(u_1, u_2, \ldots, u_d) = F(F_1^{\leftarrow}(u_1), F_2^{\leftarrow}(u_2), \ldots, F_d^{\leftarrow}(u_d)).$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X = (X_1, X_2, ..., X_d)^T$ be a random vector with continuous marginal d.f. $F_1, F_2, ..., F_d$ and copula C. Let $T_1, T_2, ..., T_d$ be strictly monotone increasing functions in \mathbb{R} . Then C is also the copula of $(T_1(X_1), T_2(X_2), ..., T_d(X_d))^T$.

Example: Let $X = (X_1, ..., X_d) \sim N_d(0, \Sigma)$ with $\Sigma = R$ being the correlation matrix of X. Let ϕ_R and ϕ be the c.d.f of X and X_1 , resp.. The copula of X is called a *Gaussian copula* and is denoted by C_R^{Ga} :

$$C_R^{Ga}(u_1, u_2, \ldots, u_d) = \phi_R(\phi^{-1}(u_1), \phi^{-1}(u_2), \ldots, \phi^{-1}(u_d)).$$

 C_R^{Ga} is the copula of any non-degenerate normal distribution $N_d(\mu, \Sigma)$ with correlation matrix R.

Corollary: Let F be a c.d.f. with continuous marginal d.f. F_1, \ldots, F_d . The unique copula C of F is given as :

$$C(u_1, u_2, \ldots, u_d) = F(F_1^{\leftarrow}(u_1), F_2^{\leftarrow}(u_2), \ldots, F_d^{\leftarrow}(u_d)).$$

Theorem: (Copula invariance w.r.t. strictly monotone transformations) Let $X = (X_1, X_2, ..., X_d)^T$ be a random vector with continuous marginal d.f. $F_1, F_2, ..., F_d$ and copula C. Let $T_1, T_2, ..., T_d$ be strictly monotone increasing functions in \mathbb{R} . Then C is also the copula of $(T_1(X_1), T_2(X_2), ..., T_d(X_d))^T$.

Example: Let $X = (X_1, ..., X_d) \sim N_d(0, \Sigma)$ with $\Sigma = R$ being the correlation matrix of X. Let ϕ_R and ϕ be the c.d.f of X and X_1 , resp.. The copula of X is called a *Gaussian copula* and is denoted by C_R^{Ga} :

$$C_R^{Ga}(u_1, u_2, \ldots, u_d) = \phi_R(\phi^{-1}(u_1), \phi^{-1}(u_2), \ldots, \phi^{-1}(u_d)).$$

 C_R^{Ga} is the copula of any non-degenerate normal distribution $N_d(\mu, \Sigma)$ with correlation matrix R.

For d=2 and $ho=\textit{R}_{12}\in(-1,1)$ we have :

$$C_{R}^{Ga}(u_{1}, u_{2}) = \int_{-\infty}^{\phi^{-1}(u_{1})} \int_{-\infty}^{\phi^{-1}(u_{2})} \frac{1}{2\pi\sqrt{1-\rho^{2}}} \exp\left\{\frac{-(x_{1}^{2}-2\rho x_{1}x_{2}+x_{2}^{2})}{2(1-\rho^{2})}\right\} dx_{1} dx_{2}$$