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Spherical distributions

Definition: A random vector X = (X1, Xz, ..., Xy)" has a spherical
distribution if for every orthogonal matrix U € R we have UX < X.
Theorem: The following statements are equivalent:

1. X € RY has a spherical distribution.

2. There exists a function ¥ : IR — IR of a scalar variable, such that
the characteristic function of X satisfies

ox(t) =v(tTt) = (6 + 5+ ...+ 13)

3. For every vector a € IRY, atX £ [|a]| X1 holds, where
l|a]|>=a?+ a5 +...+ a2

4. X has the stochastic representation X 4 RS, where S ¢ R? is a
random vector uniformly distributed on the unit sphere S9—1,
8?1 .= {x € RY: ||x|| = 1}, and R > 0 is a r.v. independent of S.

Notation: X ~ Sy(v), cf. 2.
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Spherical distributions (contd.)
Example: The standard normal distribution is a spherical distribution.
Let X ~ Ng(0,/). Then X ~ S4(¢0) mit ¢ = exp(—x/2).

Indeed, ¢x(t) = exp{it’0 — 3tTIt} = exp{—t"t/2} = ¢(t"t), and thus
X has a spherical distribution.

Let X = RS be the stochastic representation of X ~ Ng(0,/). Then
[IXIP < R ~ X3
Simulation of a spherical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere
S971 (e.g. by simulating y from a multivariate standard normal
distribution Y ~ Ng(0, /) and then setting s = y/||y||).

(ii) Simulate r from R.

(iii) Set x = rs.
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Elliptical distributions

Definition: A random vector X € IR? has an elliptical distribution if
X < i+ AY, where Y ~ Si(¥), 1 € R? and A € RY*¥.

The characteristic function can be written as

ox(t) = E(exp{it’ X}) = E(exp{it" (u + AY)})
= exp{it’ p}E(exp{i(ATt)TY})
= exp{it’ p}y(t" 1),
where ¥ = AAT.

Notation: X ~ Eg(u, X, ).

1 is called location parameter, ¥ is called dispersion parameter, 1 is
called characteristic generator of the elliptic distribution.

If E(X) exists, then E(X) = p.
IF Ae R s nonsingular, then we have the following relation between

elliptical and spherical distributions:
X ~ Eg(p, X, ) & AY(X = p) ~ Sy(h), Ac R AAT =%
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Elliptical distributions (contd.)

Theorem: (Stochastic representation of elliptical distributions)
Let X € IRY be an d-dimensional random vector. X ~ Ey4(u, X, 1)) iff

x2 1+ RAS, where S € IR¥ is a random vector uniformly distributed
on the unit sphere S¥~1, R > 0 is a r.v. independent of S, A € R is
a constant matrix with ¥ = AAT and p € IR9 is a constant vector.

Simulation of an elliptical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere
8971 (e.g. by simulating y from a multivariate standard normal
distribution Y ~ Ng(0, /) and then setting s = y/||y||).

(i) Simulate r from R.

(iii) Set x =y + rAs.
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> Multivariate normal distribution
Let X ~ N(u, X) with X positive definite. Then for A € R?** with
AAT =¥ we have X £ 1+ AZ, where Z € N,(0, /). Moreover
Z = RS holds with S being uniformly distributed on the unit sphere
Sk=1 and R? ~ x2. Thus X < ;i + RAS holds and hence
X ~ Eq(p, X, ) with ¢(x) = exp{—x/2}.

» Multivariate normal variance mixtures
Let Z ~ Ny(0,/). Then Z has a spherical distribution with
stochastic representation Z 2 VS with V2 = I|1Z|]> ~ x3. Let
X = pu+ WAZ be a variance normal mixture distribution. Then we

get X 4 p+ VWAS with V2 ~ x2 and VW is a nonnegative r.v.
independent of S. Thus X is elliptically distributed with R = VW.
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Properties of elliptical distributions
Theorem:
Let X ~ Ex(u,X,v). X has the following properties:

» Linear transformation
For B € R**? and b € R* we have:

BX 4+ b€ Ex(Bu+ b, BLBT 4)).

> Marginal distributions

Set XT = <X(1)T,X(2)T> for XM = (X1, Xa, ..., X,)T and

x@7

L) y(1,2)
pu' = (u(l)T,u(z)T as well as & = ( ;2’1) ;2’2) ) Then

= (Xps1, Xni2,-- -, Xk)T and analogously set

Xl ~ En </JJ(1)7 2(1’1)7 1/’) and X2 ~ Ek—n (/LQ)? 2(212% 71’) .
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» Conditional distributions

Assume that ¥ is nonsingular. Then

X(z) X(l) = X(l) ~ Ed—k <ILL(2 1) Z (22,1) 1;) where

-1
PCES I NS XN (gm)) (X(l) _ u‘”) and
1

2(22,1) — 2(272) _ 2(2,1) <Z(1’1)> 2(1,2).

Typically ¢ is a different characteristic generator than the original 1
(see Fang, Katz and Ng 1987).
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Properties of elliptical distributions (contd.)

» Quadratic forms

If ¥ is nonsingular, then D? = (X — p) "X "}(X — ) ~ R?, where R
is the nonnegative r.v. in the stochastic representation Y = RS of

the spherical distribution Y with S ~ U[ S~V | and X = u+ AY.
The random variable D is called Mahalanobis distance.

» Convolutions

Let X ~ Ex(p, X,%) and Y ~ Ex(fi, X, 1/1) be two independent
random vectors. Then X + Y ~ Ex(u + fi, ¥, ) where ¢ = ).

Note that the dispersion matrix ¥ must be the same for X and Y.

Important: X ~ Eg(u, Iy, 1) does not imply that the components of X
are independent. The components of X are independent iff X is
multivariate normally distributed with the unit matrix as a covariance
matrix.
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Let (2, F, P) be a probability space with a sample space Q, a o-algebra
of events F and a probability measure P.

Let L(O(Q, F, P) be the set of almost surely finite random variables in
(Q,F). Let M C L and p: M — TR a risk measure in M.

Definition: A risk measure p in M is called coherent iff it has the
following properties

(C1) Invariance with respect to translation:
p(X+r)=p(X)+r, VreR and VX € M.

(C2) Subadditivity:
VX1, Xo € M it holds p(X1 + X2) < p(X1) + p(X2).
(C3) Positive homogeneity:
p(AX) = Ap(X), YA > 0, ¥X € M.
(C4) Monotonicity:
VX1, Xs € M the implication X; < Xo = p(X) < p(X2) holds.
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Convex risk measures
Consider the property:

(C5) Convexity:
VX1, Xo € M, YA € [0,1]
p(AX1 + (1 = XA)X2) < Ap(X1) + (1 = A)p(Xz) holds.

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply
(C5), but not vice-versa.

Definition: A risk measure p in M with the properties (C1),(C4) and
(C5) is called convex in M.

Observation: VaR is not coherent in general.

Let the probability measure P be defined by some continuous or discrete
probabilty distribution F.

VaR,(F) = F* («) has the properties (C1), (C3) and (C4), whereas the
subadditivity (C2) is not fulfilled in general.
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Coherent risk measures (contd.)

Example: Let the probability measure P be defined by the binomial
distribution B(p, n) for n € IN, p € (0,1). We show that VaR,(B(p, n))
is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently
with probability p. Observe that the VaR of the portfolio loss is larger
than 100 times the VaR of the loss of a single bond.

Theorem: Let (Q,F, P) be a probability space and M C LO(Q, F, P)

be the set of the random variables with a continuous distribution in
(Q2, F, P). CVaR, is a coherent risk measure in M, Vo € (0,1).

Sketch of the proof:
1
(€1),(C3), (C4) follow from CVaR,(F) = 12 [ Vary(F)dp.

To show (C2) observe that for a sequence of i.i.d. r.v. Ly, Lo, ..., L, with
order statistics Ly, > Ly, > ... > L, , and for any m € {1,2,...,n}

m

> Lin=sup{li+Ly,+...+Lj,: 1<i <...<in<n} holds.
i=1
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The mean-risk portfolio optimization model

Consider a portfolio of d risky assets and the random vector

X = (X1, Xa,...,Xq)7 of their returns. Let E(X) = p.

Let P be the family of all portfolios consisting of the obove d assets
Any (long-short) portfolio in P is uniquelly determined by its weight
vector w = (w;) € R? with 3°,_,4 [wi| = 1. w; > 0 (w; < 0) represents a
long (short) investment.

The return of portfolio w is the r.v. Z(w) = Z?:l w; X;. The expected
portfolio return is E(Z(w)) = w ' p.

Let P, be the family of portfolios in P with E(Z(w)) = m, for some
melR, m>0.
P i={w = (w) € R, 30, |wi| = 1,wTp = m}

For a risk measure p the mean-p portfolio optimization model is:

min p(Z(w)) (1)
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If p equals the portfolio variance we get min,cp,, var(Z(w))



The mean-risk portfolio optimization model (contd.)
If p equals the portfolio variance we get min,cp,, var(Z(w))

If Cov(x) = X and the weights are nonnegative (long-only portfolio) we
get the Markovitz portfolio optimization model (Markowitz 1952):

min wTTw
w
s.t.
WTM =m

d
Dim Wil =1



The mean-risk portfolio optimization model (contd.)
If p equals the portfolio variance we get min,cp,, var(Z(w))

If Cov(x) = X and the weights are nonnegative (long-only portfolio) we
get the Markovitz portfolio optimization model (Markowitz 1952):

min wTTw
w
s.t.
WTM =m
d
Dim Wil =1

If p= VaR,, a € (0,1) we get the mean-VaR pf. optimization model
in VaR,(Z .
min VaR.(Z(w))

Question: What is the relationship between these three portfolio
optimization models?



