
Spherical distributions

Definition: A random vector X = (X1,X2, . . . ,Xd)T has a spherical

distribution if for every orthogonal matrix U ∈ IRd×d we have UX
d
= X .

Theorem: The following statements are equivalent:

1. X ∈ IRd has a spherical distribution.

2. There exists a function ψ : IR→ IR of a scalar variable, such that
the characteristic function of X satisfies

φX (t) = ψ(tT t) = ψ(t21 + t22 + . . .+ t2d)

3. For every vector a ∈ IRd , atX
d
= ||a||X1 holds, where

||a||2 = a21 + a22 + . . .+ a2d .

4. X has the stochastic representation X
d
= RS , where S ∈ IRd is a

random vector uniformly distributed on the unit sphere Sd−1,
Sd−1 := {x ∈ IRd : ||x || = 1}, and R ≥ 0 is a r.v. independent of S .

Notation: X ∼ Sd(ψ), cf. 2.
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Spherical distributions (contd.)

Example: The standard normal distribution is a spherical distribution.

Let X ∼ Nd(0, I ). Then X ∼ Sd(ψ) mit ψ = exp(−x/2).
Indeed, φX (t) = exp{itT0− 1

2 t
T It} = exp{−tT t/2} = ψ(tT t), and thus

X has a spherical distribution.

Let X = RS be the stochastic representation of X ∼ Nd(0, I ). Then

||X ||2 d
= R2 ∼ χ2

d ;

Simulation of a spherical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere
Sd−1 (e.g. by simulating y from a multivariate standard normal
distribution Y ∼ Nd(0, I ) and then setting s = y/||y ||).

(ii) Simulate r from R.

(iii) Set x = rs.
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Elliptical distributions

Definition: A random vector X ∈ IRd has an elliptical distribution if

X
d
= µ+ AY , where Y ∼ Sk(ψ), µ ∈ IRd and A ∈ IRd×k .

The characteristic function can be written as

φX (t) = E (exp{itTX}) = E (exp{itT (µ+ AY )})

= exp{itTµ}E (exp{i(AT t)TY })

= exp{itTµ}ψ(tTΣt),

where Σ = AAT .
Notation: X ∼ Ed(µ,Σ, ψ).

µ is called location parameter, Σ is called dispersion parameter, ψ is
called characteristic generator of the elliptic distribution.

If E (X ) exists, then E (X ) = µ.

IF A ∈ IRd×d is nonsingular, then we have the following relation between
elliptical and spherical distributions:
X ∼ Ed(µ,Σ, ψ)⇔ A−1(X − µ) ∼ Sd(ψ), A ∈ IRd×d , AAT = Σ.
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Elliptical distributions (contd.)

Theorem: (Stochastic representation of elliptical distributions)
Let X ∈ IRd be an d-dimensional random vector. X ∼ Ed(µ,Σ, ψ) iff

X
d
= µ+ RAS , where S ∈ IRk is a random vector uniformly distributed

on the unit sphere Sk−1, R ≥ 0 is a r.v. independent of S , A ∈ IRd×k is
a constant matrix with Σ = AAT and µ ∈ IRd is a constant vector.

Simulation of an elliptical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere
Sd−1 (e.g. by simulating y from a multivariate standard normal
distribution Y ∼ Nd(0, I ) and then setting s = y/||y ||).

(ii) Simulate r from R.

(iii) Set x = µ+ rAs.



Elliptical distributions (contd.)
Theorem: (Stochastic representation of elliptical distributions)
Let X ∈ IRd be an d-dimensional random vector. X ∼ Ed(µ,Σ, ψ) iff

X
d
= µ+ RAS , where S ∈ IRk is a random vector uniformly distributed

on the unit sphere Sk−1, R ≥ 0 is a r.v. independent of S , A ∈ IRd×k is
a constant matrix with Σ = AAT and µ ∈ IRd is a constant vector.

Simulation of an elliptical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere
Sd−1 (e.g. by simulating y from a multivariate standard normal
distribution Y ∼ Nd(0, I ) and then setting s = y/||y ||).

(ii) Simulate r from R.

(iii) Set x = µ+ rAs.



Elliptical distributions (contd.)
Theorem: (Stochastic representation of elliptical distributions)
Let X ∈ IRd be an d-dimensional random vector. X ∼ Ed(µ,Σ, ψ) iff

X
d
= µ+ RAS , where S ∈ IRk is a random vector uniformly distributed

on the unit sphere Sk−1, R ≥ 0 is a r.v. independent of S , A ∈ IRd×k is
a constant matrix with Σ = AAT and µ ∈ IRd is a constant vector.

Simulation of an elliptical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere
Sd−1 (e.g. by simulating y from a multivariate standard normal
distribution Y ∼ Nd(0, I ) and then setting s = y/||y ||).

(ii) Simulate r from R.

(iii) Set x = µ+ rAs.



Elliptical distributions (contd.)
Theorem: (Stochastic representation of elliptical distributions)
Let X ∈ IRd be an d-dimensional random vector. X ∼ Ed(µ,Σ, ψ) iff

X
d
= µ+ RAS , where S ∈ IRk is a random vector uniformly distributed

on the unit sphere Sk−1, R ≥ 0 is a r.v. independent of S , A ∈ IRd×k is
a constant matrix with Σ = AAT and µ ∈ IRd is a constant vector.

Simulation of an elliptical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere
Sd−1 (e.g. by simulating y from a multivariate standard normal
distribution Y ∼ Nd(0, I ) and then setting s = y/||y ||).

(ii) Simulate r from R.

(iii) Set x = µ+ rAs.



Elliptical distributions (contd.)
Theorem: (Stochastic representation of elliptical distributions)
Let X ∈ IRd be an d-dimensional random vector. X ∼ Ed(µ,Σ, ψ) iff

X
d
= µ+ RAS , where S ∈ IRk is a random vector uniformly distributed

on the unit sphere Sk−1, R ≥ 0 is a r.v. independent of S , A ∈ IRd×k is
a constant matrix with Σ = AAT and µ ∈ IRd is a constant vector.

Simulation of an elliptical distribution:

(i) Simulate s from S which is uniformly distributed on the unit sphere
Sd−1 (e.g. by simulating y from a multivariate standard normal
distribution Y ∼ Nd(0, I ) and then setting s = y/||y ||).

(ii) Simulate r from R.

(iii) Set x = µ+ rAs.



Examples of elliptical distributions

I Multivariate normal distribution

Let X ∼ N(µ,Σ) with Σ positive definite. Then for A ∈ IRd×k with

AAT = Σ we have X
d
= µ+ AZ , where Z ∈ Nk(0, I ). Moreover

Z = RS holds with S being uniformly distributed on the unit sphere

Sk−1 and R2 ∼ χ2
k . Thus X

d
= µ+ RAS holds and hence

X ∼ Ed(µ,Σ, ψ) with ψ(x) = exp{−x/2}.
I Multivariate normal variance mixtures

Let Z ∼ Nd(0, I ). Then Z has a spherical distribution with

stochastic representation Z
d
= VS with V 2 = ||Z ||2 ∼ χ2

d . Let
X = µ+ WAZ be a variance normal mixture distribution. Then we

get X
d
= µ+ VWAS with V 2 ∼ χ2

d and VW is a nonnegative r.v.
independent of S . Thus X is elliptically distributed with R = VW .
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Properties of elliptical distributions
Theorem:
Let X ∼ Ek(µ,Σ, ψ). X has the following properties:

I Linear transformation

For B ∈ IRk×d and b ∈ IRk we have:

BX + b ∈ Ek(Bµ+ b,BΣBT , ψ).

I Marginal distributions

Set XT =

(
X (1)T ,X (2)T

)
for X (1)T = (X1,X2, . . . ,Xn)T and

X (2)T = (Xn+1,Xn+2, . . . ,Xk)T and analogously set

µT =

(
µ(1)T , µ(2)T

)
as well as Σ =

(
Σ(1,1) Σ(1,2)

Σ(2,1) Σ(2,2)

)
. Then

X1 ∼ En

(
µ(1),Σ(1,1), ψ

)
and X2 ∼ Ek−n

(
µ(2),Σ(2,2), ψ

)
.
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Properties of elliptical distributions (contd.)

I Conditional distributions

Assume that Σ is nonsingular. Then

X (2)

∣∣∣∣∣X (1) = x (1) ∼ Ed−k

(
µ(2,1),Σ(22,1), ψ̃

)
where

µ(2,1) = µ(2) + Σ(2,1)

(
Σ(1,1)

)−1(
x (1) − µ(1)

)
and

Σ(22,1) = Σ(2,2) − Σ(2,1)

(
Σ(1,1)

)−1
Σ(1,2).

Typically ψ̃ is a different characteristic generator than the original ψ

(see Fang, Katz and Ng 1987).



Properties of elliptical distributions (contd.)

I Conditional distributions

Assume that Σ is nonsingular. Then

X (2)

∣∣∣∣∣X (1) = x (1) ∼ Ed−k

(
µ(2,1),Σ(22,1), ψ̃

)
where

µ(2,1) = µ(2) + Σ(2,1)

(
Σ(1,1)

)−1(
x (1) − µ(1)

)
and

Σ(22,1) = Σ(2,2) − Σ(2,1)

(
Σ(1,1)

)−1
Σ(1,2).

Typically ψ̃ is a different characteristic generator than the original ψ

(see Fang, Katz and Ng 1987).



Properties of elliptical distributions (contd.)

I Quadratic forms

If Σ is nonsingular, then D2 = (X − µ)TΣ−1(X − µ) ∼ R2, where R
is the nonnegative r.v. in the stochastic representation Y = RS of

the spherical distribution Y with S ∼ U

(
S(d−1)

)
and X = µ+AY .

The random variable D is called Mahalanobis distance.

I Convolutions

Let X ∼ Ek(µ,Σ, ψ) and Y ∼ Ek(µ̃,Σ, ψ̃) be two independent
random vectors. Then X + Y ∼ Ek(µ+ µ̃,Σ, ψ̄) where ψ̄ = ψψ̃.

Note that the dispersion matrix Σ must be the same for X and Y .

Important: X ∼ Ek(µ, Ik , ψ) does not imply that the components of X
are independent. The components of X are independent iff X is
multivariate normally distributed with the unit matrix as a covariance
matrix.
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Coherent risk measures
Let (Ω,F ,P) be a probability space with a sample space Ω, a σ-algebra
of events F and a probability measure P.

Let L(0)(Ω,F ,P) be the set of almost surely finite random variables in
(Ω,F). Let M ⊆ L(0) and ρ : M → IR a risk measure in M.

Definition: A risk measure ρ in M is called coherent iff it has the
following properties

(C1) Invariance with respect to translation:

ρ(X + r) = ρ(X ) + r , ∀r ∈ IR and ∀X ∈ M.

(C2) Subadditivity:

∀X1,X2 ∈ M it holds ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).

(C3) Positive homogeneity:

ρ(λX ) = λρ(X ), ∀λ ≥ 0, ∀X ∈ M.

(C4) Monotonicity:

∀X1,X2 ∈ M the implication X1

a.s.
≤ X2 =⇒ ρ(X1) ≤ ρ(X2) holds.
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Convex risk measures
Consider the property:

(C5) Convexity:

∀X1,X2 ∈ M, ∀λ ∈ [0, 1]

ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2) holds.

(C5) is weaker than (C2) and (C3), i.e. (C2) and (C3) together imply
(C5), but not vice-versa.

Definition: A risk measure ρ in M with the properties (C1),(C4) and
(C5) is called convex in M.

Observation: VaR is not coherent in general.
Let the probability measure P be defined by some continuous or discrete
probabilty distribution F .
VaRα(F ) = F←(α) has the properties (C1), (C3) and (C4), whereas the
subadditivity (C2) is not fulfilled in general.
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Coherent risk measures (contd.)

Example: Let the probability measure P be defined by the binomial
distribution B(p, n) for n ∈ IN, p ∈ (0, 1). We show that VaRα(B(p, n))
is not subadditive.

Consider a portfolio consisting of 100 bonds, which default independently
with probability p. Observe that the VaR of the portfolio loss is larger
than 100 times the VaR of the loss of a single bond.

Theorem: Let (Ω,F ,P) be a probability space and M ⊆ L(0)(Ω,F ,P)
be the set of the random variables with a continuous distribution in
(Ω,F ,P). CVaRα is a coherent risk measure in M, ∀α ∈ (0, 1).

Sketch of the proof:

(C1),(C3), (C4) follow from CVaRα(F ) = 1
1−α

∫ 1

α
Varp(F )dp.

To show (C2) observe that for a sequence of i.i.d. r.v. L1, L2, . . ., Ln with
order statistics L1,n ≥ L2,n ≥ . . . ≥ Ln,n and for any m ∈ {1, 2, . . . , n}

m∑
i=1

Li,n = sup{Li1 + Li2 + . . .+ Lim : 1 ≤ i1 < . . . < im ≤ n} holds.
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The mean-risk portfolio optimization model

Consider a portfolio of d risky assets and the random vector
X = (X1,X2, . . . ,Xd)T of their returns. Let E (X ) = µ.

Let P be the family of all portfolios consisting of the obove d assets
Any (long-short) portfolio in P is uniquelly determined by its weight
vector w = (wi ) ∈ IRd with

∑
i=1d |wi | = 1. wi > 0 (wi < 0) represents a

long (short) investment.

The return of portfolio w is the r.v. Z (w) =
∑d

i=1 wiXi . The expected
portfolio return is E (Z (w)) = wTµ.

Let Pm be the family of portfolios in P with E (Z (w)) = m, for some
m ∈ IR, m > 0.
Pm := {w = (wi ) ∈ IRd ,

∑d
i=1 |wi | = 1,wTµ = m}

For a risk measure ρ the mean-ρ portfolio optimization model is:

min
w∈Pm

ρ(Z (w)) (1)
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The mean-risk portfolio optimization model (contd.)

If ρ equals the portfolio variance we get minw∈Pm var(Z (w))

If Cov(x) = Σ and the weights are nonnegative (long-only portfolio) we
get the Markovitz portfolio optimization model (Markowitz 1952):

min
w

wTΣw

s.t.

wTµ = m∑d
i=1 |wi | = 1

If ρ = VaRα, α ∈ (0, 1) we get the mean-VaR pf. optimization model

min
w∈Pm

VaRα(Z (w)).

Question: What is the relationship between these three portfolio
optimization models?
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