▲ロト ▲圖 → ▲ 国 ト ▲ 国 - - - の Q ()

Let X_1, \ldots, X_n i.i.d. r.v. with distribution function $F \in MDA(H_{\gamma})$ for $\gamma \in \mathbb{R}$.

Let X_1, \ldots, X_n i.i.d. r.v. with distribution function $F \in MDA(H_{\gamma})$ for $\gamma \in \mathbb{R}$.

 Choose a threshold u (high enough, by means of suitable statistical approaches) and compute

$$N_u := |\{i \in \{1, 2, \dots, n\} \colon X_i > u\}|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let X_1, \ldots, X_n i.i.d. r.v. with distribution function $F \in MDA(H_{\gamma})$ for $\gamma \in \mathbb{R}$.

 Choose a threshold u (high enough, by means of suitable statistical approaches) and compute

$$N_u := |\{i \in \{1, 2, \dots, n\} \colon X_i > u\}|$$

Let Y₁, Y₂,..., Y_{N_u} be the exceedances. Determine β̂ and γ̂, such that the following holds:

$$\bar{F}_u(y) \approx \bar{G}_{\hat{\gamma},0,\widehat{\beta(u)}}(y),$$

where $\overline{F}_u(y) = P(X - u > y | X > u)$.

Let X_1, \ldots, X_n i.i.d. r.v. with distribution function $F \in MDA(H_{\gamma})$ for $\gamma \in \mathbb{R}$.

Choose a threshold u (high enough, by means of suitable statistical approaches) and compute

$$N_u := |\{i \in \{1, 2, \dots, n\} : X_i > u\}|$$

Let Y₁, Y₂,..., Y_{N_u} be the exceedances. Determine β̂ and γ̂, such that the following holds:

$$\bar{F}_u(y) \approx \bar{G}_{\hat{\gamma},0,\widehat{\beta(u)}}(y),$$

where $\overline{F}_u(y) = P(X - u > y | X > u)$.

▶ Use N_u and $\bar{F}_u \approx \bar{G}_{\hat{\gamma},0,\widehat{\beta(u)}}$ to obtain estimators for the tail and the quantile of F

$$\widehat{F(u+y)} = \frac{N_u}{n} \left(1 + \widehat{\gamma}\frac{y}{\widehat{\beta}}\right)^{-1/\widehat{\gamma}} \text{ and } \widehat{q}_p = u + \frac{\widehat{\beta}}{\widehat{\gamma}} \left(\left(\frac{n}{N_u}(1-p)\right)^{-\widehat{\gamma}} - 1 \right)$$

<□ > < @ > < E > < E > E のQ @

Is u too large, then there are only a few observed exceedances and not enough data to estimate β̂ und γ̂.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Is u too large, then there are only a few observed exceedances and not enough data to estimate β̂ und γ̂.
- Is u too small, then the approximation F
 _u(y) ≈ G
 <sub>
 γ
 ,0,β(u)</sub>(y) is not good.

- Is u too large, then there are only a few observed exceedances and not enough data to estimate β̂ und γ̂.
- Is u too small, then the approximation F
 _u(y) ≈ G
 <sub>
 γ
 ,0,β(u)</sub>(y) is not good.

Basic idea: inspect the plot of the *empirical mean excess function* and choose a threshold u_0 , such that the empirical mean excess function is approximately linear for $u > u_0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Is u too large, then there are only a few observed exceedances and not enough data to estimate β̂ und γ̂.
- Is u too small, then the approximation F
 _u(y) ≈ G
 <sub>
 γ
 ,0,β(u)</sub>(y) is not good.

Basic idea: inspect the plot of the *empirical mean excess function* and choose a threshold u_0 , such that the empirical mean excess function is approximately linear for $u > u_0$.

The justification :

•
$$e_F(u) = \int_0^{x_F-u} t dF_u(t) \approx \int_0^{x_F-u} t dG_{\gamma,0,\beta(u)}(t) = E(G_{\gamma,0,\beta(u)}) = \frac{\beta(u)}{1-\gamma}$$
, if $F_u(t) \approx G_{\gamma,0,\beta(u)}(t)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Is u too large, then there are only a few observed exceedances and not enough data to estimate β̂ und γ̂.
- Is u too small, then the approximation F
 _u(y) ≈ G
 <sub>
 γ
 ,0,β(u)</sub>(y) is not good.

Basic idea: inspect the plot of the *empirical mean excess function* and choose a threshold u_0 , such that the empirical mean excess function is approximately linear for $u > u_0$.

The justification :

- $e_F(u) = \int_0^{x_F-u} t dF_u(t) \approx \int_0^{x_F-u} t dG_{\gamma,0,\beta(u)}(t) = E(G_{\gamma,0,\beta(u)}) = \frac{\beta(u)}{1-\gamma}$, if $F_u(t) \approx G_{\gamma,0,\beta(u)}(t)$.
- If $\bar{F}_u(x) \approx \bar{G}_{\gamma,0,\beta(u)}(x)$ then $\forall v \ge u$ the approximation $\bar{F}_v(x) \approx \bar{G}_{\gamma,0,\beta(u)+\gamma(v-u)}(x)$ holds.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Definition: The empirical mean excess function: Let $x_1, x_2, ..., x_n$ be a sample of i.i.d r.v. Let $N_u = |\{i: 1 \le i \le n, x_i > u\}|$ be the number of the sample points which exceed u. The empirical mean excess function $e_n(u)$ is defined as:

$$e_n(u) = \frac{1}{N_u} \sum_{i=1}^n (x_i - u) I_{\{x_i > u\}}.$$

Definition: The empirical mean excess function: Let $x_1, x_2, ..., x_n$ be a sample of i.i.d r.v. Let $N_u = |\{i: 1 \le i \le n, x_i > u\}|$ be the number of the sample points which exceed u. The empirical mean excess function $e_n(u)$ is defined as:

$$e_n(u) = \frac{1}{N_u} \sum_{i=1}^n (x_i - u) I_{\{x_i > u\}}.$$

Consider the plot of the (interpolation of the) empirical mean excess function: $(x_{k,n}, e_n(x_{k,n}))$, k = 1, 2, ..., n - 1. If this plot is approximately linear around some $x_{k,n}$, then $u := x_{k,n}$ might be a good choice for the threshold value.

(日) (同) (三) (三) (三) (○) (○)

Let u be a given threshold and let $Y_1, Y_2, \ldots, Y_{N_u}$ be the observed data from the sample which exceed u.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let *u* be a given threshold and let $Y_1, Y_2, ..., Y_{N_u}$ be the observed data from the sample which exceed *u*.

The likelihood function $L(\gamma, \beta, Y_1, \ldots, Y_{N_u})$ is the conditional probability that $\overline{F}_u(y) \approx \overline{G}_{\gamma,0,\beta}(y)$ under the condition that the observed exceedances are $Y_1, Y_2, \ldots, Y_{N_u}$.

Let *u* be a given threshold and let $Y_1, Y_2, ..., Y_{N_u}$ be the observed data from the sample which exceed *u*.

The likelihood function $L(\gamma, \beta, Y_1, \ldots, Y_{N_u})$ is the conditional probability that $\overline{F}_u(y) \approx \overline{G}_{\gamma,0,\beta}(y)$ under the condition that the observed exceedances are $Y_1, Y_2, \ldots, Y_{N_u}$.

The following holds:

$$\ln L(\gamma, \beta, Y_1, \dots, Y_{N_u}) = -N_u \ln \beta - \left(\frac{1}{\gamma} + 1\right) \sum_{i=1}^{N_u} \ln \left(1 + \frac{\gamma}{\beta} Y_i\right)$$

. .

where $Y_i \ge 0$ for $\gamma > 0$ and $0 \le Y_i \le -\beta/\gamma$ for $\gamma < 0$.

Let *u* be a given threshold and let $Y_1, Y_2, ..., Y_{N_u}$ be the observed data from the sample which exceed *u*.

The likelihood function $L(\gamma, \beta, Y_1, \ldots, Y_{N_u})$ is the conditional probability that $\overline{F}_u(y) \approx \overline{G}_{\gamma,0,\beta}(y)$ under the condition that the observed exceedances are $Y_1, Y_2, \ldots, Y_{N_u}$.

The following holds:

$$\ln L(\gamma, \beta, Y_1, \dots, Y_{N_u}) = -N_u \ln \beta - \left(\frac{1}{\gamma} + 1\right) \sum_{i=1}^{N_u} \ln \left(1 + \frac{\gamma}{\beta} Y_i\right)$$

. .

where $Y_i \ge 0$ for $\gamma > 0$ and $0 \le Y_i \le -\beta/\gamma$ for $\gamma < 0$. (see Daley, Veve-Jones (2003) and Coles (2001))

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

(ロ)、(型)、(E)、(E)、 E) の(の)

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

The method works well for $\gamma > -1/2$.

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

The method works well for $\gamma > -1/2$.

The ML-estimators are in this case normally distributed:

$$(\hat{\gamma}-\gamma, rac{\hat{eta}}{eta}-1) \sim \textit{N}(0, \Sigma^{-1}/\textit{N}_u) ext{ where } \Sigma^{-1} = \left(egin{array}{cc} 1+\gamma & -1 \ -1 & 2 \end{array}
ight).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

The method works well for $\gamma > -1/2$.

The ML-estimators are in this case normally distributed:

$$(\hat{\gamma}-\gamma, rac{\hat{eta}}{eta}-1) \sim \textit{N}(0, \Sigma^{-1}/\textit{N}_u) ext{ where } \Sigma^{-1} = \left(egin{array}{cc} 1+\gamma & -1 \ -1 & 2 \end{array}
ight).$$

There is an uncertainty related to the more or less arbitrary choice of the threshold u. It can be reduced by

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

The method works well for $\gamma > -1/2$.

The ML-estimators are in this case normally distributed:

$$(\hat{\gamma}-\gamma, rac{\hat{eta}}{eta}-1) \sim \textit{N}(0, \Sigma^{-1}/\textit{N}_u) ext{ where } \Sigma^{-1} = \left(egin{array}{cc} 1+\gamma & -1 \ -1 & 2 \end{array}
ight).$$

There is an uncertainty related to the more or less arbitrary choice of the threshold u. It can be reduced by

(日) (日) (日) (日) (日) (日) (日) (日)

• investigating the dependency of the ML-estimator $\hat{\gamma}$ on u.

The maximizers $\hat{\gamma}$ and $\hat{\beta}$ of the log-likelihood function are used as estimators for γ and β (ML-estimators)

The method works well for $\gamma > -1/2$.

The ML-estimators are in this case normally distributed:

$$(\hat{\gamma}-\gamma, rac{\hat{eta}}{eta}-1) \sim \textit{N}(0, \Sigma^{-1}/\textit{N}_u) ext{ where } \Sigma^{-1} = \left(egin{array}{cc} 1+\gamma & -1\ -1 & 2 \end{array}
ight).$$

There is an uncertainty related to the more or less arbitrary choice of the threshold u. It can be reduced by

- investigating the dependency of the ML-estimator $\hat{\gamma}$ on u.
- visualizing and inspecting the estimated tail distribution

$$\hat{\bar{F}}(u+y) = \frac{N_u}{n} \left(1 + \hat{\gamma} \frac{y}{\hat{\beta}}\right)^{-1/\hat{\gamma}}$$

(日) (日) (日) (日) (日) (日) (日) (日)

・ロト・4日ト・4日ト・4日ト ヨージへで

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. r.v. with an unknown distribution function F. From the POT method we get the following estimators for the tail distribution and the quantile $q_p = VaR_p(F)$ of F

$$\hat{\bar{F}}(u+y) = \frac{N_u}{n} \left(1 + \hat{\gamma} \frac{y}{\hat{\beta}}\right)^{-1/\hat{\gamma}} \text{ and } \hat{q}_p = u + \frac{\hat{\beta}}{\hat{\gamma}} \left(\left(\frac{n}{N_u}(1-p)\right)^{-\hat{\gamma}} - 1 \right)$$

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. r.v. with an unknown distribution function F. From the POT method we get the following estimators for the tail distribution and the quantile $q_p = VaR_p(F)$ of F

$$\hat{\bar{F}}(u+y) = \frac{N_u}{n} \left(1 + \hat{\gamma} \frac{y}{\hat{\beta}}\right)^{-1/\hat{\gamma}} \text{ and } \hat{q}_{\rho} = u + \frac{\hat{\beta}}{\hat{\gamma}} \left(\left(\frac{n}{N_u}(1-p)\right)^{-\hat{\gamma}} - 1 \right)$$

For $\hat{\gamma} \in (0, 1)$ we get the following estimator for CVaR:

$$\widehat{CVaR_{p}}(F) = \hat{q_{p}} + rac{\hat{eta} + \hat{\gamma}(\hat{q_{p}} - u)}{1 - \hat{\gamma}}$$

Let $x_1, x_2, ..., x_n$ be a sample of i.i.d. r.v. with an unknown distribution function F. From the POT method we get the following estimators for the tail distribution and the quantile $q_p = VaR_p(F)$ of F

$$\hat{\bar{F}}(u+y) = \frac{N_u}{n} \left(1 + \hat{\gamma} \frac{y}{\hat{\beta}}\right)^{-1/\hat{\gamma}} \text{ and } \hat{q}_p = u + \frac{\hat{\beta}}{\hat{\gamma}} \left(\left(\frac{n}{N_u}(1-p)\right)^{-\hat{\gamma}} - 1 \right)$$

For $\hat{\gamma} \in (0, 1)$ we get the following estimator for CVaR:

$$\widehat{CVaR_p}(F) = \hat{q_p} + rac{\hat{eta} + \hat{\gamma}(\hat{q_p} - u)}{1 - \hat{\gamma}}$$

The proof is done in three steps:

(1) For any distribution F and any $p \in (0, 1)$ the equality $CVaR_p(F) = q_p + e_F(q_p)$ holds, where $q_p := VaR_p(F)$.

- (1) For any distribution F and any $p \in (0, 1)$ the equality $CVaR_p(F) = q_p + e_F(q_p)$ holds, where $q_p := VaR_p(F)$.
- (2) Let X be a r.v. with $X \sim GPD_{\gamma,0,\beta}$ and $\gamma \notin \{0,1\}$. Then $e_X(q_p) = \frac{\beta + \gamma q_p}{1 \gamma}$, where $q_p := VaR_p(X)$. Thus

$$\mathit{CVaR}_p(X) = q_p + rac{eta + \gamma q_p}{1 - \gamma}$$
 .

- (1) For any distribution F and any $p \in (0, 1)$ the equality $CVaR_p(F) = q_p + e_F(q_p)$ holds, where $q_p := VaR_p(F)$.
- (2) Let X be a r.v. with $X \sim GPD_{\gamma,0,\beta}$ and $\gamma \notin \{0,1\}$. Then $e_X(q_p) = \frac{\beta + \gamma q_p}{1 \gamma}$, where $q_p := VaR_p(X)$. Thus

$$CVaR_p(X) = q_p + rac{eta + \gamma q_p}{1 - \gamma}$$

(3) Let X be a r.v. with $X \sim F$. The tail distribution $\overline{F}(x)$ is approximated by $\overline{F}(u)\overline{G}_{\gamma,0,\beta}(x-u)$.

- (1) For any distribution F and any $p \in (0, 1)$ the equality $CVaR_p(F) = q_p + e_F(q_p)$ holds, where $q_p := VaR_p(F)$.
- (2) Let X be a r.v. with $X \sim GPD_{\gamma,0,\beta}$ and $\gamma \notin \{0,1\}$. Then $e_X(q_p) = \frac{\beta + \gamma q_p}{1 \gamma}$, where $q_p := VaR_p(X)$. Thus

$$CVaR_p(X) = q_p + rac{eta + \gamma q_p}{1 - \gamma}$$

- (1) For any distribution F and any $p \in (0, 1)$ the equality $CVaR_p(F) = q_p + e_F(q_p)$ holds, where $q_p := VaR_p(F)$.
- (2) Let X be a r.v. with $X \sim GPD_{\gamma,0,\beta}$ and $\gamma \notin \{0,1\}$. Then $e_X(q_p) = \frac{\beta + \gamma q_p}{1 \gamma}$, where $q_p := VaR_p(X)$. Thus

$$CVaR_p(X) = q_p + rac{eta + \gamma q_p}{1 - \gamma}$$

(3) Let X be a r.v. with $X \sim F$. The tail distribution $\overline{F}(x)$ is approximated by $\overline{F}(u)\overline{G}_{\gamma,0,\beta}(x-u)$. This implies $F \approx \widetilde{F}$ with $\widetilde{F} := 1 - \overline{F}(u)\overline{G}_{\gamma,0,\beta}(x-u)$.

The CVaR of the approximation \tilde{F} is given as follows for $q_p > u$:

$$\mathsf{CVaR}_{\mathsf{P}}(ilde{\mathsf{F}}) = \hat{q}_{\mathsf{P}} + rac{eta + \gamma(\hat{q}_{\mathsf{P}} - u)}{1 - \gamma}$$