
Characterisations of MDAs (contd.)

Observation: limx→+∞
Λ̄(x)
e−x = 1, ∀α > 0.

Thus for Λ ∈ MDA(Λ) we have Λ̄ ∼ e−x . Does this (or smth. similar)
generally hold for members of MDA(Λ)?

Theorem: (MDA(Λ))
Let F be a distribution function with right endpoint xF ≤ ∞.
F ∈ MDA(Λ) holds iff there exists a z < xF such that F can be
represented as

F̄ (x) = c(x)exp

{
−
∫ x

z

g(t)

a(t)
dt

}
,∀x , z < x ≤ xF ,

where the functions c(x) and g(x) fulfill limx↑xF c(x) = c > 0 and
limt↑xF g(t) = 1, and a(t) is a positive absolutely continuous function
with limt↑xF a

′(t) = 0.

See the book by Embrechts et al. for the proofs of the above theorem
and of the following theorem concerning the characterisation of MDA(Λ).
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Characterisations of MDAs (contd.)
Theorem: (MDA(Λ), alternative characterisation)
A distribution function F belongs to MDA(Λ) iff there exists a positive
measurable function ã such that

lim
x↑xF

F̄ (x + uã(x))

F̄ (x)
= e−u,∀u ∈ IR

A possible choice for ã is ã(x) = a(x) with a(x) :=
∫ xF
x

F̄ (t)

F̄ (x)
dt.

Definition: The function a(x) above is called mean excess function and
it can be alternatively represented as

a(x) := E (X − x |X > x),∀x ≤ xF .

Examples: The following distributions belong to MDA(Λ):

I Normal: F (x) = (2π)−1/2 exp{−x2/2}, x ∈ IR.

I Exponential: f (x) = λ−1 exp{−λx}, x > 0, λ > 0.

I Lognormal: f (x) = (2πx2)−1/2 exp{−(ln x)2/2}, x > 0.

I Gamma: f (x) = βα

Γ(α)x
α−1 exp{−βx}, x > 0, α, β > 0.
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Graphical methods for the investigation of the right tail
of the distribution

I Histogram

I Quantile-quantile plots

Let X1,X2, . . . ,Xn be i.i.d. r.v. with unknown distribution F̃ . We
assume that the right range of F̃ can be approximated by a known
distribution F .

Question: How to check whether this assumption holds?

Let xn,n ≤ xn−1,n ≤ . . . ≤ x1,n be a sorted sample of X1, X2,. . ., Xn.

qq-plot: {(xk,n,F←( n−k+1
n+1 )) : k = 1, 2, . . . , n}.

If the assumption is plausible then the qq-plot is similar to the
graph of a linear function. This property holds also if the reference
distribution and the real distribution do not coincide but are of the
same type.

Rule of thumb: the larger the quantile the heavier the tails of the
distribution!
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The Hill estimator

Let X1,X2, . . . ,Xn be i.i.d. r.v. with distribution function F , such that
F̄ ∈ RV−α, α > 0, i.e. F̄ (x) = x−αL(x) with L ∈ RV0.

Goal: Estimate α!

Theorem: (Theorem of Karamata)
Let L be a slowly varying locally bounded function on [x0,+∞) for some
x0 ∈ IR. Then the following holds:

(a) For κ > −1:
∫ x

xo
tκL(t)dt ∼ K (x0) + 1

κ+1x
κ+1L(x) for x →∞,

where K (x0) is a constant depending on x0.

(b) For κ < −1:
∫ +∞
x

tκL(t)dt ∼ − 1
κ+1x

κ+1L(x) for x →∞.

Proof in Bingham et al. 1987.
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Application of Karamata’s theorem

Assumption: F is locally bounded on [u,+∞).

The theorem of Karamata implies: E (ln(X )− ln(u)| ln(X ) > ln(u)) =

lim
u→∞

1

F̄ (u)

∫ ∞
u

(ln x − ln u)dF (x) = α−1. (1)

For the empirical distribution Fn(x) = 1
n

∑n
k=1 I[xk ,∞)(x) and a large

threshold xk,n depending on the sample xn,n ≤ xn−1,n ≤ . . . ≤ x1,n we get:

E (ln(X )− ln(xk,n)| ln(X ) > ln(xk,n)) ≈

1

F̄n(xk,n)

∫ ∞
Xk,n

(ln x − ln xk,n)dFn(x) =
1

k − 1

k−1∑
j=1

(ln xj,n − ln xk,n).

If k = k(n)→∞ and k/n→ 0, then xk,n →∞ for n→∞, and (1)
implies:

lim
n→∞

1

k − 1

k−1∑
j=1

(ln xj,n − ln xk,n)
d
= α−1
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Hill estimators for the tail distribution and the quantile

Thus the following Hill estimator is consistent:

α̂
(H)
k,n =

 1

k

k∑
j=1

(ln xj,n − ln xk,n)

−1

How to choose a suitable k for a given sample size n?
If k too small, then the estimator has a high variance.
If k too large, than the estimator is based on central values of the sample
distribution, and is therefore biased.

Grafical inspection of the Hill plots:
{(

k , α̂
(H)
k,n

)
: k = 2, . . . , n

}
Given an estimator α̂

(H)
k,n of α we get tail and quantile estimators as

follows:

ˆ̄F (x) =
k

n

(
x

xk,n

)−α̂(H)
k,n

and q̂p = F̂←(p) =
(n
k

(1− p)
)−1/α̂

(H)
k,n

xk,n.
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Thus the following Hill estimator is consistent:

α̂
(H)
k,n =

 1

k

k∑
j=1

(ln xj,n − ln xk,n)

−1

How to choose a suitable k for a given sample size n?
If k too small, then the estimator has a high variance.
If k too large, than the estimator is based on central values of the sample
distribution, and is therefore biased.

Grafical inspection of the Hill plots:
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The POT method (Peaks over Threshold)

Definition: (The generalized Pareto distribution (GPD))
The standard GPD denoted by Gγ :

Gγ(x) =

{
1− (1 + γx)−1/γ für γ 6= 0
1− exp{−x} für γ = 0

where x ∈ D(γ)

D(γ) =

{
0 ≤ x <∞ für γ ≥ 0
0 ≤ x ≤ −1/γ für γ < 0

Notice that G0 = limγ→0 Gγ .

Let ν ∈ IR and β > 0. The GPD with parameters γ, ν, β is given by the
following distribution function

Gγ,ν,β = 1− (1 + γ
x − ν
β

)−1/γ

where x ∈ D(γ, ν, β) and

D(γ, ν, β) =

{
ν ≤ x <∞ für γ ≥ 0
ν ≤ x ≤ ν − β/γ für γ < 0
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Characteristions of MDA(Hγ)

Theorem: Let γ ∈ IR. The following statements are equiavlent:

(i) F ∈ MDA(Hγ)

(ii) There exists a positive measurable function a(·), such that for
x ∈ D(γ)

lim
u↑xF

F̄ (u + xa(u))

F̄ (u)
= Ḡγ(x) holds.

Definition:(Excess distribution)
Let X be a r.v. with distribution function F and let xF be the right tail of
this distribution. For u < xF the function Fu given as

Fu(x) := P(X − u ≤ x |X > u), x ≥ 0

ic called excess distribution function over the threshold u.

Theorem: Let γ ∈ IR. The following statements are equivalent:

(i) F ∈ MDA(Hγ)

(ii) There exists a positive measurable function β(·), such that

lim
u↑xF

sup
x∈(0,xF−u)

|Fu(x)− Gγ,0,β(u)(x)| = 0 holds.
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