
Characterization of the domain of attraction

(i) Let φ be the standard normal distribution function. The equivalence

F ∈ DA(φ)⇐⇒ lim
x→∞

x2
∫

[−x,x]C
dF (y)∫

[−x,x]
y2dF (y)

= 0

holds, where [−x , x ]C is the complement of [−x , x ] in IR.

(ii) For α ∈ (0, 2) the equivalence

F ∈ DA(Gα)⇐⇒ F (−x) =
c1 + o(1)

xα
L(x), F̄ (x) =

c2 + o(1)

xα
L(x)

holds, where L is a slowly varying function around infinity and
c1, c2 ≥ 0 with c1 + c2 > 0.

This theorem is also known as Theorem of Lévy, Feller and Chintschin.
Proof in Rényi, 1962. Proof: See Resnick 1987 (or a demanding

homework!)

Remark: Let F ∈ DA(Gα) for α ∈ (0, 2). Then E (|X |δ) <∞ for δ < α
and E (|X |δ) =∞ for δ > α hold.
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Limit distributions of normalized and centered maxima
Let (Xk), k ∈ IN, be non-gegenerate i.i.d. r.v. with distribution function
F .

For n ≥ 1, set Mn := max{Xi : 1 ≤ i ≤ n}

Question: What are the possible (non-degenerate) distributions of
normalized and centered Mn?

Consider limn→∞ P(a−1
n (Mn − bn) ≤ x) = limn→∞ P(Mn ≤ un), where

un = anx + bn, ∀n ∈ IN.

Theorem: (Poisson Approximation)
Let τ ∈ [0,∞] and a sequence of reals un ∈ IR. Then the following holds

lim
n→∞

nF̄ (un) = τ ⇐⇒ lim
n→∞

P(Mn ≤ un) = exp{−τ}.

Remark: The convergence to types theorem implies that H and H̃ are of
the same type, if
limn→∞ a−1

n (Mn − bn) = H and limn→∞ ã−1
n (Mn − b̃n) = H̃.
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Max-stable distributions and the Fischer-Tippet
theorem

Definition: A non-degenarate r.v. X is called max-stable iff for any

n ≥ 2 max{X1,X2, . . . ,Xn}
d
= anX + bn for indepedent copies X1,X2,

. . .,Xn of X and appropriate constants an > 0 and bn ∈ IR.

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.)
The class of max-stable distributions coincides with the class of
non-degenerate limit distributions of normalized and centered maxima of
i.i.d. r.v.

Theorem: (Fischer-Tippet Theorem, Proof in Resnick 1987, page 9-11)
Let (Xk) be a sequence of i.i.d. r.v.. If the constants an, bn ∈ IR, an > 0,
and a non-degenerate disribution H exist, such that
limn→∞ a−1

n (Mn − bn) = H, then H is of the same type as one of the
following three distributions:

Fréchet Φα(x) =

{
0 x ≤ 0

exp{−x−α} x > 0
α > 0

Weibull Ψα(x) =

{
exp{−(−x)α} x ≤ 0

1 x > 0
α > 0

Gumbel Λ(x) = exp{−e−x} x ∈ IR
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Extreme value distributions
The distributions Φα, Ψα and Λ are called standard extreme value
distributions (standard evd). The distributions which are of the same
type as the standard evd are called extreme value distributions (evd).

Definition: We say that the r.v. X (or the corresponding distribution)
belongs to the maximum domain of attraction of the evd H iff there exist
constants an > 0 and bn ∈ IR such that limn→∞ a−1

n (Mn − bn) = H
holds. Notation: X ∈ MDA(H) (F ∈ MDA(H)).

Theorem: (Characterisation of MDA, proof is left as an exercise)
F ∈ MDA(H) with normalizing and centering constants an > 0 snd
bn ∈ IR holds, iff

lim
n→∞

nF̄ (anx + bn) = − lnH(x),∀x ∈ IR,

where − lnH(x) is replaced by ∞ if H(x) = 0.

Hint for the proof: apply the theorem about the Poisson approximation.

There exist distributions which do not belong to the MDA of any evd!
Example: (The Poisson distribution)
Let X ∼ P(λ), i.e. P(X = k) = e−λλk/k!, k ∈ IN0, λ > 0. Show that
there exist no evd Z such that X ∈ MDA(Z ).
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The generalized evd

Definition: (The generalized extreme value distribution (gevd))
Let the distribution function Hγ be given as follows:

Hγ(x) =

{
exp{−(1 + γx)−1/γ} wenn γ 6= 0
exp{− exp{−x}} wenn γ = 0

where 1 + γx > 0, i.e. the definition area of Hγ is given as

x > −γ−1 wenn γ > 0
x < −γ−1 wenn γ < 0
x ∈ IR wenn γ = 0

Hγ is called generalized extreme value distribution (gevd).

Theorem: (Characterisation of MDA(Hγ))

I F ∈ MDA(Hγ) with γ > 0 ⇐⇒ F ∈ MDA(Φα) with α = 1/γ > 0.

I F ∈ MDA(H0) ⇐⇒ F ∈ MDA(Λ).

I F ∈ MDA(Hγ) with γ < 0 ⇐⇒ F ∈ MDA(Ψα) with α = −1/γ > 0.
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MDAs: Examples and Characterisations

Clearly every standard evd belongs to its own MDA!
Which distributions belong to MDA(Φα), MDA(Ψα) and MDA(Λ) other
than φα, ψα and Λ, respectively (for α > 0)?

Observation: limx→+∞
Φ̄α(x)
x−α = 1, ∀α > 0. Thus for Φα ∈ MDA(Φα) we

have Φ̄α ∈ RV−α. Does this generally hold for members of MDA(Φα)?

Theorem: (MDA(Φα), Gnedenko 1943)
F ∈ MDA(Φα) (α > 0) ⇐⇒ F̄ ∈ RV−α (α > 0).
If F ∈ MDA(Φα), then limn→∞ a−1

n Mn = Φα with an = F←(1− n−1).

Examples: The following distributions belong to MDA(Φα):

I Pareto: F (x) = 1− x−α, x > 1, α > 0.

I Cauchy: f (x) = (π(1 + x2))−1, x ∈ IR.

I Student: f (x) = Γ((α+1)/2)√
απΓ(α/2)(1+x2/α)(α+1)/2 , α ∈ IN, x ∈ IR.

I Loggamma: f (x) = αβ

Γ(β) (ln x)β−1x−α−1, x > 1, α, β > 0.



MDAs: Examples and Characterisations

Clearly every standard evd belongs to its own MDA!

Which distributions belong to MDA(Φα), MDA(Ψα) and MDA(Λ) other
than φα, ψα and Λ, respectively (for α > 0)?

Observation: limx→+∞
Φ̄α(x)
x−α = 1, ∀α > 0. Thus for Φα ∈ MDA(Φα) we

have Φ̄α ∈ RV−α. Does this generally hold for members of MDA(Φα)?

Theorem: (MDA(Φα), Gnedenko 1943)
F ∈ MDA(Φα) (α > 0) ⇐⇒ F̄ ∈ RV−α (α > 0).
If F ∈ MDA(Φα), then limn→∞ a−1

n Mn = Φα with an = F←(1− n−1).

Examples: The following distributions belong to MDA(Φα):

I Pareto: F (x) = 1− x−α, x > 1, α > 0.

I Cauchy: f (x) = (π(1 + x2))−1, x ∈ IR.

I Student: f (x) = Γ((α+1)/2)√
απΓ(α/2)(1+x2/α)(α+1)/2 , α ∈ IN, x ∈ IR.

I Loggamma: f (x) = αβ

Γ(β) (ln x)β−1x−α−1, x > 1, α, β > 0.



MDAs: Examples and Characterisations

Clearly every standard evd belongs to its own MDA!
Which distributions belong to MDA(Φα), MDA(Ψα) and MDA(Λ) other
than φα, ψα and Λ, respectively (for α > 0)?
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Characterisations of MDAs (contd.)

Observation: Ψα(−x−1) = Φα(x) holds for x > 0 and for every α > 0.
Are MDA(Φα) and MDA(Ψα) “similar” somehow?

Theorem: (MDA(Ψα), Gnedenko 1943)
F ∈ MDA(Ψα) (α > 0) ⇐⇒ xF := sup{x ∈ IR : F (x) < 1} <∞ and
F̄ (xF − x−1) ∈ RV−α (α > 0).

If F ∈ MDA(Ψα), then limn→∞ a−1
n (Mn − xF ) = Ψα with

an = xF − F←(1− n−1).

Example: Let X ∼ U(0, 1). it holds X ∈ MDA(Ψ1) with an = 1/n,
n ∈ IN.
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