(i) Let ϕ be the standard normal distribution function. The equivalence

$$F \in DA(\phi) \iff \lim_{x \to \infty} \frac{x^2 \int_{[-x,x]^c} dF(y)}{\int_{[-x,x]} y^2 dF(y)} = 0$$

holds, where $[-x, x]^C$ is the complement of [-x, x] in ${\rm I\!R}$.

(i) Let ϕ be the standard normal distribution function. The equivalence

$$F \in DA(\phi) \iff \lim_{x \to \infty} \frac{x^2 \int_{[-x,x]^c} dF(y)}{\int_{[-x,x]} y^2 dF(y)} = 0$$

holds, where $[-x,x]^C$ is the complement of [-x,x] in ${\rm I\!R}$. (ii) For $\alpha\in(0,2)$ the equivalence

$$F \in DA(G_{\alpha}) \iff F(-x) = \frac{c_1 + o(1)}{x^{\alpha}}L(x), \overline{F}(x) = \frac{c_2 + o(1)}{x^{\alpha}}L(x)$$

holds, where *L* is a slowly varying function around infinity and $c_1, c_2 \ge 0$ with $c_1 + c_2 > 0$.

(i) Let ϕ be the standard normal distribution function. The equivalence

$$F \in DA(\phi) \iff \lim_{x \to \infty} \frac{x^2 \int_{[-x,x]^c} dF(y)}{\int_{[-x,x]} y^2 dF(y)} = 0$$

holds, where $[-x, x]^C$ is the complement of [-x, x] in ${\rm I\!R}$. (ii) For $\alpha \in (0, 2)$ the equivalence

$$F \in DA(G_{\alpha}) \iff F(-x) = \frac{c_1 + o(1)}{x^{\alpha}}L(x), \overline{F}(x) = \frac{c_2 + o(1)}{x^{\alpha}}L(x)$$

holds, where *L* is a slowly varying function around infinity and $c_1, c_2 \ge 0$ with $c_1 + c_2 > 0$.

This theorem is also known as Theorem of Lévy, Feller and Chintschin. Proof in Rényi, 1962.

(i) Let ϕ be the standard normal distribution function. The equivalence

$$F \in DA(\phi) \iff \lim_{x \to \infty} \frac{x^2 \int_{[-x,x]^c} dF(y)}{\int_{[-x,x]} y^2 dF(y)} = 0$$

holds, where $[-x, x]^C$ is the complement of [-x, x] in ${\rm I\!R}$. (ii) For $\alpha \in (0, 2)$ the equivalence

$$F \in DA(G_{\alpha}) \iff F(-x) = rac{c_1 + o(1)}{x^{lpha}}L(x), ar{F}(x) = rac{c_2 + o(1)}{x^{lpha}}L(x)$$

holds, where *L* is a slowly varying function around infinity and $c_1, c_2 \ge 0$ with $c_1 + c_2 > 0$.

This theorem is also known as Theorem of Lévy, Feller and Chintschin. Proof in Rényi, 1962. Proof: See Resnick 1987 (or a demanding homework!)

(i) Let ϕ be the standard normal distribution function. The equivalence

$$F \in DA(\phi) \iff \lim_{x \to \infty} \frac{x^2 \int_{[-x,x]^c} dF(y)}{\int_{[-x,x]} y^2 dF(y)} = 0$$

holds, where $[-x, x]^C$ is the complement of [-x, x] in ${\rm I\!R}$. (ii) For $\alpha \in (0, 2)$ the equivalence

$$F \in DA(G_{\alpha}) \iff F(-x) = \frac{c_1 + o(1)}{x^{\alpha}}L(x), \overline{F}(x) = \frac{c_2 + o(1)}{x^{\alpha}}L(x)$$

holds, where *L* is a slowly varying function around infinity and $c_1, c_2 \ge 0$ with $c_1 + c_2 > 0$.

This theorem is also known as Theorem of Lévy, Feller and Chintschin. Proof in Rényi, 1962. Proof: See Resnick 1987 (or a demanding homework!)

Remark: Let $F \in DA(G_{\alpha})$ for $\alpha \in (0, 2)$. Then $E(|X|^{\delta}) < \infty$ for $\delta < \alpha$ and $E(|X|^{\delta}) = \infty$ for $\delta > \alpha$ hold.

Let (X_k) , $k \in \mathbb{N}$, be non-gegenerate i.i.d. r.v. with distribution function F.

For $n \ge 1$, set $M_n := \max\{X_i : 1 \le i \le n\}$

Let (X_k) , $k \in \mathbb{N}$, be non-gegenerate i.i.d. r.v. with distribution function F.

For $n \ge 1$, set $M_n := \max\{X_i : 1 \le i \le n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered M_n ?

Let (X_k) , $k \in \mathbb{N}$, be non-gegenerate i.i.d. r.v. with distribution function F.

For $n \ge 1$, set $M_n := \max\{X_i : 1 \le i \le n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered M_n ?

Consider $\lim_{n\to\infty} P(a_n^{-1}(M_n - b_n) \le x) = \lim_{n\to\infty} P(M_n \le u_n)$, where $u_n = a_n x + b_n$, $\forall n \in \mathbb{N}$.

Let (X_k) , $k \in \mathbb{N}$, be non-gegenerate i.i.d. r.v. with distribution function F.

For $n \ge 1$, set $M_n := \max\{X_i : 1 \le i \le n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered M_n ?

Consider $\lim_{n\to\infty} P(a_n^{-1}(M_n - b_n) \le x) = \lim_{n\to\infty} P(M_n \le u_n)$, where $u_n = a_n x + b_n$, $\forall n \in \mathbb{N}$.

Theorem: (Poisson Approximation) Let $\tau \in [0, \infty]$ and a sequence of reals $u_n \in \mathbb{R}$. Then the following holds

$$\lim_{n\to\infty} n\bar{F}(u_n) = \tau \iff \lim_{n\to\infty} P(M_n \le u_n) = \exp\{-\tau\}.$$

Let (X_k) , $k \in \mathbb{N}$, be non-gegenerate i.i.d. r.v. with distribution function F.

For $n \ge 1$, set $M_n := \max\{X_i : 1 \le i \le n\}$

Question: What are the possible (non-degenerate) distributions of normalized and centered M_n ?

Consider $\lim_{n\to\infty} P(a_n^{-1}(M_n - b_n) \le x) = \lim_{n\to\infty} P(M_n \le u_n)$, where $u_n = a_n x + b_n$, $\forall n \in \mathbb{N}$.

Theorem: (Poisson Approximation) Let $\tau \in [0, \infty]$ and a sequence of reals $u_n \in \mathbb{R}$. Then the following holds

$$\lim_{n\to\infty} n\bar{F}(u_n) = \tau \iff \lim_{n\to\infty} P(M_n \le u_n) = \exp\{-\tau\}.$$

Remark: The convergence to types theorem implies that H and \tilde{H} are of the same type, if $\lim_{n\to\infty} a_n^{-1}(M_n - b_n) = H$ and $\lim_{n\to\infty} \tilde{a}_n^{-1}(M_n - \tilde{b}_n) = \tilde{H}$.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

Definition: A non-degenarate r.v. X is called *max-stable* iff for any $n \ge 2 \max\{X_1, X_2, \ldots, X_n\} \stackrel{d}{=} a_n X + b_n$ for indepedent copies X_1, X_2, \ldots, X_n of X and appropriate constants $a_n > 0$ and $b_n \in \mathbb{R}$.

Definition: A non-degenarate r.v. X is called *max-stable* iff for any $n \ge 2 \max\{X_1, X_2, \ldots, X_n\} \stackrel{d}{=} a_n X + b_n$ for indepedent copies X_1, X_2, \ldots, X_n of X and appropriate constants $a_n > 0$ and $b_n \in \mathbb{R}$.

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.) The class of max-stable distributions coincides with the class of non-degenerate limit distributions of normalized and centered maxima of i.i.d. r.v.

Definition: A non-degenarate r.v. X is called *max-stable* iff for any $n \ge 2 \max\{X_1, X_2, \ldots, X_n\} \stackrel{d}{=} a_n X + b_n$ for indepedent copies X_1, X_2, \ldots, X_n of X and appropriate constants $a_n > 0$ and $b_n \in \mathbb{R}$.

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.) The class of max-stable distributions coincides with the class of non-degenerate limit distributions of normalized and centered maxima of i.i.d. r.v.

Definition: A non-degenarate r.v. X is called *max-stable* iff for any $n \ge 2 \max\{X_1, X_2, \ldots, X_n\} \stackrel{d}{=} a_n X + b_n$ for indepedent copies X_1, X_2, \ldots, X_n of X and appropriate constants $a_n > 0$ and $b_n \in \mathbb{R}$.

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.) The class of max-stable distributions coincides with the class of non-degenerate limit distributions of normalized and centered maxima of i.i.d. r.v.

Theorem: (Fischer-Tippet Theorem, Proof in Resnick 1987, page 9-11) Let (X_k) be a sequence of i.i.d. r.v.. If the constants $a_n, b_n \in \mathbb{R}$, $a_n > 0$, and a non-degenerate disribution H exist, such that $\lim_{n\to\infty} a_n^{-1}(M_n - b_n) = H$, then H is of the same type as one of the following three distributions:

$$\begin{array}{ll} \mathsf{Fr\acute{e}chet} & \Phi_{\alpha}(x) = \left\{ \begin{array}{cc} 0 & x \leq 0 \\ \exp\{-x^{-\alpha}\} & x > 0 \end{array} \right. & \alpha > 0 \\ \mathsf{Weibull} & \Psi_{\alpha}(x) = \left\{ \begin{array}{cc} \exp\{-(-x)^{\alpha}\} & x \leq 0 \\ 1 & x > 0 \end{array} \right. & \alpha > 0 \\ \mathsf{Gumbel} & \Lambda(x) = \exp\{-e^{-x}\} & x \in \mathrm{I\!R} \end{array} \right. \end{array}$$

(日)、(型)、(E)、(E)、(E)、(D)、(C)

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions (standard evd)*. The distributions which are of the same type as the standard evd are called *extreme value distributions* (evd).

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions (standard evd)*. The distributions which are of the same type as the standard evd are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribution) belongs to the maximum domain of attraction of the evd H iff there exist constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that $\lim_{n\to\infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

(日) (同) (三) (三) (三) (○) (○)

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions (standard evd)*. The distributions which are of the same type as the standard evd are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribution) belongs to the *maximum domain of attraction* of the evd H iff there exist constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that $\lim_{n\to\infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

Theorem: (Characterisation of MDA, proof is left as an exercise) $F \in MDA(H)$ with normalizing and centering constants $a_n > 0$ snd $b_n \in \mathbb{R}$ holds, iff

$$\lim_{n\to\infty} n\bar{F}(a_nx+b_n)=-\ln H(x), \forall x\in {\rm I\!R},$$

where $-\ln H(x)$ is replaced by ∞ if H(x) = 0.

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions (standard evd)*. The distributions which are of the same type as the standard evd are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribution) belongs to the maximum domain of attraction of the evd H iff there exist constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that $\lim_{n\to\infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

Theorem: (Characterisation of MDA, proof is left as an exercise) $F \in MDA(H)$ with normalizing and centering constants $a_n > 0$ snd $b_n \in \mathbb{R}$ holds, iff

$$\lim_{n\to\infty} n\bar{F}(a_nx+b_n)=-\ln H(x), \forall x\in {\rm I\!R},$$

where $-\ln H(x)$ is replaced by ∞ if H(x) = 0.

Hint for the proof: apply the theorem about the Poisson approximation.

The distributions Φ_{α} , Ψ_{α} and Λ are called *standard extreme value distributions (standard evd)*. The distributions which are of the same type as the standard evd are called *extreme value distributions* (evd).

Definition: We say that the r.v. X (or the corresponding distribution) belongs to the *maximum domain of attraction* of the evd H iff there exist constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that $\lim_{n\to\infty} a_n^{-1}(M_n - b_n) = H$ holds. Notation: $X \in MDA(H)$ ($F \in MDA(H)$).

Theorem: (Characterisation of MDA, proof is left as an exercise) $F \in MDA(H)$ with normalizing and centering constants $a_n > 0$ snd $b_n \in \mathbb{R}$ holds, iff

$$\lim_{n\to\infty} n\bar{F}(a_nx+b_n)=-\ln H(x), \forall x\in {\rm I\!R},$$

where $-\ln H(x)$ is replaced by ∞ if H(x) = 0.

Hint for the proof: apply the theorem about the Poisson approximation. There exist distributions which do not belong to the MDA of any evd! **Example:** (The Poisson distribution) Let $X \sim P(\lambda)$, i.e. $P(X = k) = e^{-\lambda} \lambda^k / k!$, $k \in \mathbb{N}_0$, $\lambda > 0$. Show that there exist no evd Z such that $X \in MDA(Z)$.

The generalized evd

The generalized evd

Definition: (The generalized extreme value distribution (gevd)) Let the distribution function H_{γ} be given as follows:

$$H_{\gamma}(x) = \begin{cases} \exp\{-(1+\gamma x)^{-1/\gamma}\} & \text{wenn } \gamma \neq 0\\ \exp\{-\exp\{-x\}\} & \text{wenn } \gamma = 0 \end{cases}$$

where $1 + \gamma x > 0$, i.e. the definition area of H_{γ} is given as

$x > -\gamma^{-1}$	wenn $\gamma > 0$
$x < -\gamma^{-1}$	wenn $\gamma < 0$
$x \in {\rm I\!R}$	wenn $\gamma = 0$

 H_{γ} is called generalized extreme value distribution (gevd).

The generalized evd

Definition: (The generalized extreme value distribution (gevd)) Let the distribution function H_{γ} be given as follows:

$$H_{\gamma}(x) = \begin{cases} \exp\{-(1+\gamma x)^{-1/\gamma}\} & \text{wenn } \gamma \neq 0\\ \exp\{-\exp\{-x\}\} & \text{wenn } \gamma = 0 \end{cases}$$

where $1 + \gamma x > 0$, i.e. the definition area of H_{γ} is given as

$x > -\gamma^{-1}$	wenn $\gamma > 0$
$x < -\gamma^{-1}$	wenn $\gamma < 0$
$x \in {\rm I\!R}$	wenn $\gamma = 0$

 H_{γ} is called *generalized extreme value distribution (gevd)*. **Theorem:** (Characterisation of $MDA(H_{\gamma})$)

• $F \in MDA(H_{\gamma})$ with $\gamma > 0 \iff F \in MDA(\Phi_{\alpha})$ with $\alpha = 1/\gamma > 0$.

•
$$F \in MDA(H_0) \iff F \in MDA(\Lambda).$$

► $F \in MDA(H_{\gamma})$ with $\gamma < 0 \iff F \in MDA(\Psi_{\alpha})$ with $\alpha = -1/\gamma > 0$.

Clearly every standard evd belongs to its own MDA!

(ロ)、(型)、(E)、(E)、 E) の(の)

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha > 0$)?

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha > 0$)?

Observation: $\lim_{x\to+\infty} \frac{\bar{\Phi}_{\alpha}(x)}{x^{-\alpha}} = 1$, $\forall \alpha > 0$. Thus for $\Phi_{\alpha} \in MDA(\Phi_{\alpha})$ we have $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$. Does this generally hold for members of $MDA(\Phi_{\alpha})$?

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha > 0$)?

Observation: $\lim_{x\to+\infty} \frac{\bar{\Phi}_{\alpha}(x)}{x^{-\alpha}} = 1$, $\forall \alpha > 0$. Thus for $\Phi_{\alpha} \in MDA(\Phi_{\alpha})$ we have $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$. Does this generally hold for members of $MDA(\Phi_{\alpha})$?

Theorem: $(MDA(\Phi_{\alpha}), \text{ Gnedenko 1943})$ $F \in MDA(\Phi_{\alpha}) \ (\alpha > 0) \iff \overline{F} \in RV_{-\alpha} \ (\alpha > 0).$ If $F \in MDA(\Phi_{\alpha})$, then $\lim_{n\to\infty} a_n^{-1}M_n = \Phi_{\alpha}$ with $a_n = F^{\leftarrow}(1 - n^{-1}).$

Clearly every standard evd belongs to its own MDA! Which distributions belong to $MDA(\Phi_{\alpha})$, $MDA(\Psi_{\alpha})$ and $MDA(\Lambda)$ other than ϕ_{α} , ψ_{α} and Λ , respectively (for $\alpha > 0$)?

Observation: $\lim_{x\to+\infty} \frac{\bar{\Phi}_{\alpha}(x)}{x^{-\alpha}} = 1$, $\forall \alpha > 0$. Thus for $\Phi_{\alpha} \in MDA(\Phi_{\alpha})$ we have $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$. Does this generally hold for members of $MDA(\Phi_{\alpha})$?

Theorem: $(MDA(\Phi_{\alpha}), \text{ Gnedenko 1943})$ $F \in MDA(\Phi_{\alpha}) \ (\alpha > 0) \iff \overline{F} \in RV_{-\alpha} \ (\alpha > 0).$ If $F \in MDA(\Phi_{\alpha})$, then $\lim_{n\to\infty} a_n^{-1}M_n = \Phi_{\alpha}$ with $a_n = F^{\leftarrow}(1 - n^{-1}).$

Examples: The following distributions belong to $MDA(\Phi_{\alpha})$:

• Pareto:
$$F(x) = 1 - x^{-\alpha}$$
, $x > 1$, $\alpha > 0$.

- Cauchy: $f(x) = (\pi(1+x^2))^{-1}$, $x \in \mathbb{R}$.
- ► Student: $f(x) = \frac{\Gamma((\alpha+1)/2)}{\sqrt{\alpha\pi}\Gamma(\alpha/2)(1+x^2/\alpha)^{(\alpha+1)/2}}$, $\alpha \in \mathbb{N}$, $x \in \mathbb{R}$.

► Loggamma:
$$f(x) = \frac{\alpha^{\beta}}{\Gamma(\beta)} (\ln x)^{\beta-1} x^{-\alpha-1}$$
, $x > 1$, $\alpha, \beta > 0$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Observation: $\Psi_{\alpha}(-x^{-1}) = \Phi_{\alpha}(x)$ holds for x > 0 and for every $\alpha > 0$. Are $MDA(\Phi_{\alpha})$ and $MDA(\Psi_{\alpha})$ "similar" somehow?

Observation: $\Psi_{\alpha}(-x^{-1}) = \Phi_{\alpha}(x)$ holds for x > 0 and for every $\alpha > 0$. Are $MDA(\Phi_{\alpha})$ and $MDA(\Psi_{\alpha})$ "similar" somehow?

Theorem: $(MDA(\Psi_{\alpha}), \text{ Gnedenko 1943})$ $F \in MDA(\Psi_{\alpha}) \ (\alpha > 0) \iff x_F := \sup\{x \in \mathbb{R} : F(x) < 1\} < \infty \text{ and }$ $\overline{F}(x_F - x^{-1}) \in RV_{-\alpha} \ (\alpha > 0).$ If $F \in MDA(\Psi_{\alpha})$, then $\lim_{n \to \infty} a_n^{-1}(M_n - x_F) = \Psi_{\alpha}$ with $a_n = x_F - F^{\leftarrow}(1 - n^{-1}).$

Observation: $\Psi_{\alpha}(-x^{-1}) = \Phi_{\alpha}(x)$ holds for x > 0 and for every $\alpha > 0$. Are $MDA(\Phi_{\alpha})$ and $MDA(\Psi_{\alpha})$ "similar" somehow?

Theorem: (*MDA*(Ψ_{α}), Gnedenko 1943) $F \in MDA(\Psi_{\alpha}) \ (\alpha > 0) \iff x_F := \sup\{x \in \mathbb{R} : F(x) < 1\} < \infty$ and $\overline{F}(x_F - x^{-1}) \in RV_{-\alpha} \ (\alpha > 0).$ If $F \in MDA(\Psi_{\alpha})$, then $\lim_{n \to \infty} a_n^{-1}(M_n - x_F) = \Psi_{\alpha}$ with $a_n = x_F - F^{\leftarrow}(1 - n^{-1}).$

Example: Let $X \sim U(0, 1)$. it holds $X \in MDA(\Psi_1)$ with $a_n = 1/n$, $n \in \mathbb{N}$.