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Characterization of the domain of attraction

(i) Let ¢ be the standard normal distribution function. The equivalence

x? dF(y
F € DA(¢) < lim M:o

X—00 f[_X7X] y2dF(Y)

holds, where [—x, x]¢ is the complement of [—x, x] in IR.

(ii) For a € (0, 2) the equivalence

&+ o(1)
XO(

a +o(1) L

F € DA(Gy) = F(—x) = =

(x), F(x) = L(x)

holds, where L is a slowly varying function around infinity and
c1, ¢ > 0 with ¢; + ¢ > 0.

This theorem is also known as Theorem of Lévy, Feller and Chintschin.
Proof in Rényi, 1962. Proof: See Resnick 1987 (or a demanding

homework!)

Remark: Let F € DA(G,) for a € (0,2). Then E(|X|%) < oo for § < a
and E(|X|?) = oo for § > « hold.
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Limit distributions of normalized and centered maxima
Let (Xk), k € IN, be non-gegenerate i.i.d. r.v. with distribution function
F.

For n>1, set M, :=max{X;: 1 <j<n}

Question: What are the possible (non-degenerate) distributions of
normalized and centered M,?

Consider lim,_,o P(a;*(M, — b,) < x) = lim, 00 P(M,, < u,), where

n

U, = a,x + b,, Vn € IN.
Theorem: (Poisson Approximation)
Let 7 € [0, 0] and a sequence of reals u, € IR. Then the following holds

lim nF(u,) =7 <= lim P(M, < u,) = exp{—7}.

n— oo n—o0

Remark: The convergence to types theorem implies that H and H are of
the same type, if B _
limy_so0 @y }(M, — b,) = H and lim,_, o, 3, Y(M, — b,) = H.
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Max-stable distributions and the Fischer-Tippet
theorem

Definition: A non-degenarate r.v. X is called max-stable iff for any

n > 2 max{Xy, Xa,..., Xp} 4 a,X + b, for indepedent copies X1,Xo,
....X, of X and appropriate constants a, > 0 and b, € IR.

Theorem: (Proof in McNeil, Frey und Embrechts, 2005.)

The class of max-stable distributions coincides with the class of
non-degenerate limit distributions of normalized and centered maxima of
iid. rv.

Theorem: (Fischer-Tippet Theorem, Proof in Resnick 1987, page 9-11)
Let (Xx) be a sequence of i.i.d. r.v.. If the constants a,, b, € R, a, > 0,
and a non-degenerate disribution H exist, such that

lim,_so0 a5 (M, — b,) = H, then H is of the same type as one of the
following three distributions:

0 x<0
exp{—x""} x>0
Weibull - W, (x) = GXP{—g—x) } §§8

Gumbel A(x) = exp{—e~} xeR

Fréchet  ®,(x) = { a>0

a>0
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Extreme value distributions

The distributions ¢, V, and A are called standard extreme value
distributions (standard evd). The distributions which are of the same
type as the standard evd are called extreme value distributions (evd).

Definition: We say that the r.v. X (or the corresponding distribution)
belongs to the maximum domain of attraction of the evd H iff there exist
constants a, > 0 and b, € IR such that lim, . a, (M, — b,) = H
holds. Notation: X € MDA(H) (F € MDA(H)).

Theorem: (Characterisation of MDA, proof is left as an exercise)

F € MDA(H) with normalizing and centering constants a, > 0 snd
b, € IR holds, iff

lim nF(a,x + b,) = —In H(x),¥x € IR,

n—o0
where — In H(x) is replaced by oo if H(x) = 0.
Hint for the proof: apply the theorem about the Poisson approximation.
There exist distributions which do not belong to the MDA of any evd!
Example: (The Poisson distribution)
Let X ~ P(\), i.e. P(X = k) = e *\¥/k!, k € Ny, A > 0. Show that
there exist no evd Z such that X € MDA(Z).



The generalized evd



The generalized evd

Definition: (The generalized extreme value distribution (gevd))
Let the distribution function H, be given as follows:

_ [ ep{-(1+yx)7}  wenny #0
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x<—y"1 wennvy<0
xeR wenn 7 =0

H, is called generalized extreme value distribution (gevd).



The generalized evd

Definition: (The generalized extreme value distribution (gevd))
Let the distribution function H, be given as follows:

_ [ ep{-(1+yx)7}  wenny #0
Hh(x) = { exp{—exp{—x}} wenn v =0

where 1+ vx > 0, i.e. the definition area of H, is given as

x> -1 wenny>0
x<—y"1 wennvy<0
xeR wenn 7 =0
H, is called generalized extreme value distribution (gevd).
Theorem: (Characterisation of MDA(H,))

> F € MDA(H,) with v >0 < F € MDA(®,) with a = 1/ > 0.
> F € MDA(Ho) <= F € MDA(N).

> F € MDA(H,) with v < 0 <= F € MDA(V,,) with o = —1/v > 0.
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MDAs: Examples and Characterisations

Clearly every standard evd belongs to its own MDA!
Which distributions belong to MDA(®,,), MDA(W,) and MDA(A) other
than ¢., ¥, and A, respectively (for a > 0)?

Observation: lim,_,_ ®a() — 1, Va > 0. Thus for ¢, € MDA(®,,) we

X~

(0]
have ®, € RV_,. Does this generally hold for members of MDA(®,,)?

Theorem: (MDA(®,), Gnedenko 1943)
F e MDA(®,) (0> 0) <= F € RV_.. (a > 0).
If F € MDA(®,,), then lim, . a; M, = &, with a, = F~ (1 — n71).

Examples: The following distributions belong to MDA(®,,):

v

Pareto: F(x)=1—-x"% x>1, a>0.

» Cauchy: f(x) = (7(1+x?))7! x € R.
> Student: f(x) = (a/(;)(gilé%) 77, @« € N, x € R.
> Loggamma: f(x) = vf)(lnx)ﬂ Ix=e7l x>1,a,8>0.
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Characterisations of MDAs (contd.)

Observation: V,(—x"1) = ®,(x) holds for x > 0 and for every a > 0.
Are MDA(®,,) and MDA(V,,) “similar” somehow?

Theorem: (MDA(V,,), Gnedenko 1943)

FEMDA(\U ) (> 0) < xr:=sup{x € R: F(x) <1} < o0 and
F(xe —x71) € RV_4 (> 0).

If F e MDA(V,), then limp_so0 @y H(Mn — xg) = W, with

a, =xf — F(1—-n1).

Example: Let X ~ U(0,1). it holds X € MDA(V,) with a, = 1/n,
ncIN.



