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Advantages:
» analytical solution
> simple implementation

> no simulationen needed

Disadvantages:

» Linearisation is not always appropriate, only for a short time horizon
reasonable

» The normal distribution assumption could lead to underestimation
of risks and should be argued upon (e.g. in terms of historical data)



(iii) Monte-Carlo approach

historical observations of risk factor changes X,,_ 11, - - -, Xn.

assumption on a parametric model for the cumulative distribution
function of X, m—n+1< k< m;
e.g. a common distribution function F and independence

estimation of the parameters of F.

generation of N samples X, %2, ...,%y from F (N > 1) and
computation of the losses /x = /iy (%), 1< k<N

computation of the empirical distribution of the loss function L, y:

Nm+1 N Z I[/k,

computation of estimates for the VaR and CVAR of the loss
function: \737_\)(Lm+1) = (’/'_\,\L,m“) = /[N(lfa)]+1,Nr

— _ Z[N(l a)]+1l

CVaR(Lm+1) = [(1700]4»1,\/’

where the losses are sorted h vy > by > ... > Iyn.
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Advantages:

» very flexible; can use any distribution F from which simulation is
possible

» time dependencies of the risk factor changes can be considered by
using time series

Disadvantages:

> computationally expensive; a large number of simulations needed to
obtain good estimates



Monte-Carlo approach (contd.)
Example

The portfolio consists of one unit of asset S with price be S; at time t.
The risk factor changes

Xk+1 - ln(Stk+1) - ln(stk)’

are i.i.d. with distribution function Fy for some unknown parameter 6.
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Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S; at time t.
The risk factor changes

Xk+1 - ln(Stk+1) - ln(stk)’

are i.i.d. with distribution function Fy for some unknown parameter 6.

0 can be estimated by means of historical data (e.g. maximum likelihood
approaches)

Let the price at time ty be S 1= S,

The VaR of the portfolio over [ty, ty1] is given as

VaRa(Lyi1) = S (1 —exp{F (1 a)}) .



Monte-Carlo approach (contd.)

Example

The portfolio consists of one unit of asset S with price be S; at time t.
The risk factor changes

Xk+1 - ln(Stk+1) - ln(stk)’

are i.i.d. with distribution function Fy for some unknown parameter 6.

0 can be estimated by means of historical data (e.g. maximum likelihood
approaches)

Let the price at time ty be S 1= S,

The VaR of the portfolio over [ty, ty1] is given as

VaRa(Lyi1) = S (1 —exp{F (1 a)}) .

Depending on Fy it can be complicated or impossible to compute CVaR
analytically.
Alternative: Monte-Carlo simulation.



Monte-Carlo approach (contd.)

Example

Let the portfolio and the risk factor changes Xy1 be as in the previous
example.

A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xisr = Oky1Zk41 (1)
Tisr = a0+ aXg + biog (2)

where Zi, k € IN, are i.i.d. and standard normally distributed, and ag,a;
and by are parameters, which should be estimated.
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Monte-Carlo approach (contd.)

Example

Let the portfolio and the risk factor changes Xy1 be as in the previous
example.

A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xey1 = oxp1Zk41 (1)
Tisr = a0+ aXg + biog (2)
where Zi, k € IN, are i.i.d. and standard normally distributed, and ag,a;
and by are parameters, which should be estimated.
It is simple to simulate from this model.

However analytical computation of VaR and CVaR over a certain time
interval consisting of many periods is cumbersome! Check it out!



Chapter 3: Extreme value theory

Notation:

» We will often use the same notation for the distribution of a random
variable (r.v.) and its (cumulative) distribution function!

> f(x) ~ g(x) for x = co means lim,_,o f(x)/g(x) =1

» F:=1— F is called the right tail of the univariate distribution
function F.
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Chapter 3: Extreme value theory

Notation:

» We will often use the same notation for the distribution of a random
variable (r.v.) and its (cumulative) distribution function!

> f(x) ~ g(x) for x = co means lim,_,o f(x)/g(x) =1

» F:=1— F is called the right tail of the univariate distribution
function F.

Teminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff

limy—so0 252 = 00, YA > 0.

Also a r.v. X for which 3k € IN with E(X*) = oo will be often called
heavy tailed.

These two “definitions” are not equivalent!



Regular variation

Definition
A measurable function h: (0,+00) — (0, +00) has a regular variation
with index p € IR towards 400 iff

i h(tx)
=T h(t)

=x", Vx>0 (3)

Notation: h € RV,,.
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Regular variation

Definition
A measurable function h: (0,+00) — (0, +00) has a regular variation
with index p € IR towards 400 iff

i h(tx)
=T h(t)

=x", Vx>0 (3)

Notation: h € RV,,.

If p =20, we say h has a slow variation or is slowly varying towards co.
If h € RV, then h(x)/x? € RVy, or equivalently,

if h € RV,, then 3L € RV; such that h(x) = L(x)x” (L(x) = h(x)/x").
If p < 0, then the convergence in (3) is uniform in every interval (b, +c0)
for b > 0.

Example
Show that L € RVy holds for the functions L as below:

(a) limy_ 100 L(x) = c € (0, 400)
(b) L(x):=In(14x)
(c) L(x):=In(1+In(1+x))



Example: Check whether f € RV} holds for f(x) = 3 + sin x,
f(x) = In(e + x) + sin x?
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Let X > 0 be a r.v. with distribution function F, such that F € RV_,, for
some a > 0. Then E(X?) < oo for 8 < a and E(X?) = o for 8 > «
hold.



Example: Check whether f € RV} holds for f(x) = 3 + sin x,
f(x) = In(e + x) + sin x?

Notice: a function L € RV, can have an infinite variation on oo, i.e.

lim |nf L(x) =0 and lim sup L(x) =

as for example L(x) = exp{(In(1 + x))? cos((In(1 + x))"/)}.

Definition: Let X > 0 be a r.v. with di_stribution function F. X is said
to have a regular variation on +o0, iff F € RV_, for some o > 0.

Example:

1. Pareto distribution: G,(x) :=1—x", for x > 1 and o > 0. Then
Go(tx)/ Go(x) = x~ holds for t > 0, i.e. G, € RV_,,.

2. Fréchet distribution: ®,(x) := exp{—x"“} for x > 0 and
®,(0) = 0, for some parameter (fixed) o > 0. Then
limy o0 Po(x)/x~* =1 holds, i.e. &, € RV_,

Proposition (no proof)

Let X > 0 be a r.v. with distribution function F, such that F € RV_, for
some a > 0. Then E(X?) < oo for 8 < a and E(X?) = o for 8 > «
hold.

The converse is not true!
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represent the loss of a portfolio which consists of 1 unit of asset A; (A).
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Application of regular variation

Example 1: Let X; and _)(2 be two continuous nonnegative i.i.d. r.v. with
distribution function F, F € RV_,, for some a > 0. Let Xj (X2)
represent the loss of a portfolio which consists of 1 unit of asset A; (A).
Assumption: The prices of A; and A, are identical and their logreturns
are i.i.d..
Consider a portfolio P; containing 2 units of asset A; and a portfolio P,
containing one unit of A; and one unit of Ay. Let L; represent the loss of
portfolio P;, i =1,2.
Compare the probabilities of high losses in the two portfolios by
computing the limit
Prob(Ly > 1)
im ———= .

|—00 Prob(L1 > /)
In which cases are the extreme losses of the diversified portfolio smaller
then those of the non-diversified portfolio?
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» Fc RV_,, for some o > 0, where F is the distribution function of
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> E(YK) < oo, Vk > 0.



Application of regular variation (contd.)

Example 2: Let X, Y > 0 be two r.v. which represent the losses of two
business lines of an insurance company (e.g. fire and car accidents).

Assumptions

» Fc RV_,, for some o > 0, where F is the distribution function of
X.

> E(YK) < oo, Vk > 0.

Compute limy_0o P(X > x| X + Y > x).
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Let (Xk), kK € IN, be non-degenerate i.i.d. r.v. with distribution function
F. For n>1 define S, := 3", X; and M, := max{X;: 1 <i < n}
Question: What are the possible (non-degenerate) limit distributions of
appropriately normalized and centralized S,, and M,?

Consider first the limit distribution of S,,.

Question: What kind of non-degenerate r.v. Z are the limit distributions
of a7 (S, — by), for some sequences of reals a, > 0 und b, € IR, n € IN?
Notation: lim, .~ a, (S, — b,) 4

Definition: A r.v. X is called stable, (a-stable, Lévy-stable), iff for all
c1, ¢ € IRy and the i.i.d. copies X7 and X; of X, there exist constantes
a(cr, ) € R and b(c1, &) € R, such that ¢ X; + X5 und

a(cr, @)X + b(c1, o) are identically distributed.

Notation: ¢; X; + & X> 4 a(cr, @)X + b(er, &)

Theorem
The family of stable distributions coincides whith the limit distributions
of appropriately normalized and centralized sums of i.i.d. r.v..

Proof e.g. in Rényi, 1962.



Stable distributions (contd.)

Theorem: The characteristic function of a stable distribution X is given
as:

ox(t) = E[exp{iXt}] = exp{ivt — c|t|“(1 + iBsignum(t)z(t, )}, (4)
where y € R, ¢ >0, a € (0,2], 5 € [-1,1] and

tan(%5*)  wenn a #1
—2In|t|] wenna=1

z(t,a) = {

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.
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Stable distributions (contd.)

Theorem: The characteristic function of a stable distribution X is given
as:

ox(t) = E[exp{iXt}] = exp{ivt — c|t|“(1 + iBsignum(t)z(t, )}, (4)
where y € R, ¢ >0, a € (0,2], 5 € [-1,1] and

tan(%5*)  wenn a #1
—2In|t|] wenna=1

z(t,a) = {

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Definition: The parameter « in (4) is called the form parameter or
characteristical exponent, the corresponding distribution is called a-stable
and its distribution function is denoted by G,.

Definition: Let X be a r.v. with distribution function F. Assume that
there exists two sequences of reals a, > 0 and b, € IR, n € IN, such that
lim,_s o0 @, 1(Sn — by) = G, for some a-stable distribution G,. Then we
say that “F belongs to the domain of attraction of G,".

Notation: F € DA(G,).
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Stable distributions (contd.)
Remark: X ~ G, <= ¢x(t) = exp{ivt — 2t2(2¢)} <= X ~ N(v,2c)

Exercise: Show that F € DA(G;) <= F € DA(¢), where ¢ is the
standard normal distribution N(0, 1).
Hint: The Convergence to Types Theorem could be used.

Definition: The r.v. Z and Z are of the same type if there exist the

constants o > 0 and € IR, such that V4 gN(Z —p)/o, ie.
F(x) = F(p + ox), ¥x € IR, where F and F are the distribution
functions of Z and Z, respecitvely.



The Convergence to Types Theorem
Let Z, Z, Y,, n> 1, be not almost surely constant r.v.

Let a,, 3,, by, b, € IR, n € IN, be sequences of reals with a,, 3, > 0.

(i) If ) )
lim a,*(Y, —b,) =Z and lim 5 4(Y,—b,)=2Z (5)
n—oo

n— oo

then there exist A > 0 und B € IR, such that

fim 2" — Aand fim 2P _p (6)
n—o00 a, n—o00 an
and .
74z -B)/A (7)

(ii) Assume that (6) holds. Then each of the two relations in (5)
implies the other and also (7) holds.



The Convergence to Types Theorem
Let Z, Z, Y,, n> 1, be not almost surely constant r.v.

Let a,, 3,, by, b, € IR, n € IN, be sequences of reals with a,, 3, > 0.

(i) If ) )
lim a,*(Y, —b,) =Z and lim 5 4(Y,—b,)=2Z (5)
n—oo

n— oo

then there exist A > 0 und B € IR, such that

fim 2" — Aand fim 2P _p (6)
n—o00 a, n—o00 an
and .
74z -B)/A (7)

(ii) Assume that (6) holds. Then each of the two relations in (5)
implies the other and also (7) holds.

Proof: See Resnick 1987, Prop. 0.2, Seite 7.



