The variance-covariance method (contd.)

(ロ)、(型)、(E)、(E)、 E) の(の)

Advantages:

- analytical solution
- simple implementation
- no simulationen needed

The variance-covariance method (contd.)

Advantages:

- analytical solution
- simple implementation
- no simulationen needed

Disadvantages:

- Linearisation is not always appropriate, only for a short time horizon reasonable
- The normal distribution assumption could lead to underestimation of risks and should be argued upon (e.g. in terms of historical data)

(iii) Monte-Carlo approach

- (1) historical observations of risk factor changes X_{m-n+1}, \ldots, X_m .
- (2) assumption on a parametric model for the cumulative distribution function of X_k, m − n + 1 ≤ k ≤ m;
 e.g. a common distribution function F and independence
- (3) estimation of the parameters of F.
- (4) generation of N samples $\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_N$ from F (N \gg 1) and computation of the losses $l_k = l_{[m]}(\tilde{x}_k), \ 1 \le k \le N$
- (5) computation of the empirical distribution of the loss function L_{m+1} :

$$\hat{F}_{N}^{L_{m+1}}(x) = \frac{1}{N} \sum_{k=1}^{N} I_{[l_{k},\infty)}(x).$$

(5) computation of estimates for the VaR and CVAR of the loss function: $\widehat{VaR}(L_{m+1}) = (\widehat{F}_{N}^{L_{m+1}}) = l_{[N(1-\alpha)]+1,N},$ $\widehat{CVaR}(L_{m+1}) = \frac{\sum_{k=1}^{[N(1-\alpha)]+1} l_{k,N}}{[N(1-\alpha)]+1},$ where the losses are sorted $l_{1,N} \ge l_{2,N} \ge \dots \ge l_{N,N}$.

Advantages:

- very flexible; can use any distribution F from which simulation is possible
- time dependencies of the risk factor changes can be considered by using time series

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Advantages:

- very flexible; can use any distribution F from which simulation is possible
- time dependencies of the risk factor changes can be considered by using time series

Disadvantages:

 computationally expensive; a large number of simulations needed to obtain good estimates

Example

The portfolio consists of one unit of asset S with price be S_t at time t. The risk factor changes

$$X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k}),$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ .

Example

The portfolio consists of one unit of asset S with price be S_t at time t. The risk factor changes

$$X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k}),$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ . θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Example

The portfolio consists of one unit of asset S with price be S_t at time t. The risk factor changes

$$X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k}),$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ . θ can be estimated by means of historical data (e.g. maximum likelihood approaches) Let the price at time t_k be $S := S_{t_k}$.

Example

The portfolio consists of one unit of asset S with price be S_t at time t. The risk factor changes

$$X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k}),$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ . θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Let the price at time t_k be $S := S_{t_k}$ The VaR of the portfolio over $[t_k, t_{k+1}]$ is given as

$$VaR_{\alpha}(L_{t_k+1}) = S\left(1 - \exp\{F_{\theta}^{\leftarrow}(1-\alpha)\}\right).$$

Example

The portfolio consists of one unit of asset S with price be S_t at time t. The risk factor changes

$$X_{k+1} = \ln(S_{t_{k+1}}) - \ln(S_{t_k}),$$

are i.i.d. with distribution function F_{θ} for some unknown parameter θ . θ can be estimated by means of historical data (e.g. maximum likelihood approaches)

Let the price at time t_k be $S := S_{t_k}$ The VaR of the portfolio over $[t_k, t_{k+1}]$ is given as

$$VaR_{\alpha}(L_{t_k+1}) = S\left(1 - \exp\{F_{\theta}^{\leftarrow}(1-\alpha)\}\right).$$

Depending on F_{θ} it can be complicated or impossible to compute CVaR analytically. Alternative: Monte-Carlo simulation.

Example

Let the portfolio and the risk factor changes X_{k+1} be as in the previous example.

A popular model for the logarithmic returns of assets is GARCH(1,1) (see e.g. Alexander 2002):

$$X_{k+1} = \sigma_{k+1} Z_{k+1} \tag{1}$$

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2$$
(2)

where Z_k , $k \in \mathbb{N}$, are *i.i.d.* and standard normally distributed, and a_0,a_1 and b_1 are parameters, which should be estimated.

Example

Let the portfolio and the risk factor changes X_{k+1} be as in the previous example.

A popular model for the logarithmic returns of assets is GARCH(1,1) (see e.g. Alexander 2002):

$$X_{k+1} = \sigma_{k+1} Z_{k+1} \tag{1}$$

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2$$
(2)

where Z_k , $k \in \mathbb{N}$, are *i.i.d.* and standard normally distributed, and a_0,a_1 and b_1 are parameters, which should be estimated.

It is simple to simulate from this model.

Example

Let the portfolio and the risk factor changes X_{k+1} be as in the previous example.

A popular model for the logarithmic returns of assets is GARCH(1,1) (see e.g. Alexander 2002):

$$X_{k+1} = \sigma_{k+1} Z_{k+1} \tag{1}$$

$$\sigma_{k+1}^2 = a_0 + a_1 X_k^2 + b_1 \sigma_k^2$$
(2)

where Z_k , $k \in \mathbb{N}$, are *i.i.d.* and standard normally distributed, and a_0,a_1 and b_1 are parameters, which should be estimated.

It is simple to simulate from this model.

However analytical computation of VaR and CVaR over a certain time interval consisting of many periods is cumbersome! Check it out!

Notation:

We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!

- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x \to \infty} f(x)/g(x) = 1$
- $\overline{F} := 1 F$ is called the *right tail* of the univariate distribution function F.

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x \to \infty} f(x)/g(x) = 1$
- $\overline{F} := 1 F$ is called the *right tail* of the univariate distribution function F.

Teminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim_{x\to\infty} \frac{\bar{F}(x)}{e^{-\lambda x}} = \infty$, $\forall \lambda > 0$.

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x \to \infty} f(x)/g(x) = 1$
- ► F̄ := 1 F is called the *right tail* of the univariate distribution function F.

Teminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim_{x\to\infty} \frac{\bar{F}(x)}{e^{-\lambda x}} = \infty$, $\forall \lambda > 0$.

Also a r.v. X for which $\exists k \in \mathbb{N}$ with $E(X^k) = \infty$ will be often called *heavy tailed*.

Notation:

- We will often use the same notation for the distribution of a random variable (r.v.) and its (cumulative) distribution function!
- $f(x) \sim g(x)$ for $x \to \infty$ means $\lim_{x \to \infty} f(x)/g(x) = 1$
- $\overline{F} := 1 F$ is called the *right tail* of the univariate distribution function F.

Teminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff $\lim_{x\to\infty} \frac{\bar{F}(x)}{e^{-\lambda x}} = \infty$, $\forall \lambda > 0$.

Also a r.v. X for which $\exists k \in \mathbb{N}$ with $E(X^k) = \infty$ will be often called *heavy tailed*.

These two "definitions" are not equivalent!

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

Notation: $h \in RV_{\rho}$.

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ .

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ . If $h \in RV_{\rho}$, then $h(x)/x^{\rho} \in RV_0$, or equivalently,

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ . If $h \in RV_{\rho}$, then $h(x)/x^{\rho} \in RV_0$, or equivalently, if $h \in RV_{\rho}$, then $\exists L \in RV_0$ such that $h(x) = L(x)x^{\rho}$ ($L(x) = h(x)/x^{\rho}$).

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ . If $h \in RV_{\rho}$, then $h(x)/x^{\rho} \in RV_{0}$, or equivalently, if $h \in RV_{\rho}$, then $\exists L \in RV_{0}$ such that $h(x) = L(x)x^{\rho}$ ($L(x) = h(x)/x^{\rho}$). If $\rho < 0$, then the convergence in (3) is uniform in every interval $(b, +\infty)$ for b > 0.

Definition

A measurable function $h: (0, +\infty) \to (0, +\infty)$ has a regular variation with index $\rho \in \mathbb{R}$ towards $+\infty$ iff

$$\lim_{t \to +\infty} \frac{h(tx)}{h(t)} = x^{\rho}, \ \forall x > 0$$
(3)

Notation: $h \in RV_{\rho}$.

If $\rho = 0$, we say h has a slow variation or is slowly varying towards ∞ . If $h \in RV_{\rho}$, then $h(x)/x^{\rho} \in RV_0$, or equivalently, if $h \in RV_{\rho}$, then $\exists L \in RV_0$ such that $h(x) = L(x)x^{\rho}$ ($L(x) = h(x)/x^{\rho}$). If $\rho < 0$, then the convergence in (3) is uniform in every interval $(b, +\infty)$ for b > 0.

Example

Show that $L \in RV_0$ holds for the functions L as below:

(a)
$$\lim_{x \to +\infty} L(x) = c \in (0, +\infty)$$

(b) $L(x) := \ln(1+x)$
(c) $L(x) := \ln(1 + \ln(1 + x))$

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty,$$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: Let X > 0 be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty \,,$$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: Let X > 0 be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

Example:

1. Pareto distribution: $G_{\alpha}(x) := 1 - x^{-\alpha}$, for x > 1 and $\alpha > 0$. Then $\overline{G}_{\alpha}(tx)/\overline{G}_{\alpha}(x) = x^{-\alpha}$ holds for t > 0, i.e. $\overline{G}_{\alpha} \in RV_{-\alpha}$.

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty,$$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: Let X > 0 be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

Example:

1. Pareto distribution: $G_{\alpha}(x) := 1 - x^{-\alpha}$, for x > 1 and $\alpha > 0$. Then $\overline{G}_{\alpha}(tx)/\overline{G}_{\alpha}(x) = x^{-\alpha}$ holds for t > 0, i.e. $\overline{G}_{\alpha} \in RV_{-\alpha}$.

2. Fréchet distribution: $\Phi_{\alpha}(x) := \exp\{-x^{-\alpha}\}$ for x > 0 and $\Phi_{\alpha}(0) = 0$, for some parameter (fixed) $\alpha > 0$. Then $\lim_{x\to\infty} \overline{\Phi}_{\alpha}(x)/x^{-\alpha} = 1$ holds, i.e. $\overline{\Phi}_{\alpha} \in RV_{-\alpha}$.

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty,$$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: Let X > 0 be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

Example:

- 1. Pareto distribution: $G_{\alpha}(x) := 1 x^{-\alpha}$, for x > 1 and $\alpha > 0$. Then $\overline{G}_{\alpha}(tx)/\overline{G}_{\alpha}(x) = x^{-\alpha}$ holds for t > 0, i.e. $\overline{G}_{\alpha} \in RV_{-\alpha}$.
- 2. Fréchet distribution: $\Phi_{\alpha}(x) := \exp\{-x^{-\alpha}\}$ for x > 0 and $\Phi_{\alpha}(0) = 0$, for some parameter (fixed) $\alpha > 0$. Then $\lim_{x\to\infty} \overline{\Phi}_{\alpha}(x)/x^{-\alpha} = 1$ holds, i.e. $\overline{\Phi}_{\alpha} \in RV_{-\alpha}$.

Proposition (no proof) Let X > 0 be a r.v. with distribution function F, such that $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Then $E(X^{\beta}) < \infty$ for $\beta < \alpha$ and $E(X^{\beta}) = \infty$ for $\beta > \alpha$ hold.

Notice: a function $L \in RV_0$ can have an infinite variation on ∞ , i.e.

$$\lim \inf_{x \to \infty} L(x) = 0 \text{ and } \lim \sup_{x \to \infty} L(x) = \infty \,,$$

as for example $L(x) = \exp\{(\ln(1+x))^2 \cos((\ln(1+x))^{1/2})\}.$

Definition: Let X > 0 be a r.v. with distribution function F. X is said to have a regular variation on $+\infty$, iff $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$.

Example:

- 1. Pareto distribution: $G_{\alpha}(x) := 1 x^{-\alpha}$, for x > 1 and $\alpha > 0$. Then $\overline{G}_{\alpha}(tx)/\overline{G}_{\alpha}(x) = x^{-\alpha}$ holds for t > 0, i.e. $\overline{G}_{\alpha} \in RV_{-\alpha}$.
- 2. Fréchet distribution: $\Phi_{\alpha}(x) := \exp\{-x^{-\alpha}\}$ for x > 0 and $\Phi_{\alpha}(0) = 0$, for some parameter (fixed) $\alpha > 0$. Then $\lim_{x\to\infty} \overline{\Phi}_{\alpha}(x)/x^{-\alpha} = 1$ holds, i.e. $\overline{\Phi}_{\alpha} \in RV_{-\alpha}$.

Proposition (no proof)

Let X > 0 be a r.v. with distribution function F, such that $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Then $E(X^{\beta}) < \infty$ for $\beta < \alpha$ and $E(X^{\beta}) = \infty$ for $\beta > \alpha$ hold.

The converse is not true!

Example 1: Let X_1 and X_2 be two continuous nonnegative i.i.d. r.v. with distribution function F, $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Let X_1 (X_2) represent the loss of a portfolio which consists of 1 unit of asset A_1 (A_2).

Example 1: Let X_1 and X_2 be two continuous nonnegative i.i.d. r.v. with distribution function F, $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Let X_1 (X_2) represent the loss of a portfolio which consists of 1 unit of asset A_1 (A_2). *Assumption:* The prices of A_1 and A_2 are identical and their logreturns are i.i.d..

Example 1: Let X_1 and X_2 be two continuous nonnegative i.i.d. r.v. with distribution function F, $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Let X_1 (X_2) represent the loss of a portfolio which consists of 1 unit of asset A_1 (A_2). *Assumption:* The prices of A_1 and A_2 are identical and their logreturns are i.i.d..

Consider a portfolio P_1 containing 2 units of asset A_1 and a portfolio P_2 containing one unit of A_1 and one unit of A_2 . Let L_i represent the loss of portfolio P_i , i = 1, 2.

Example 1: Let X_1 and X_2 be two continuous nonnegative i.i.d. r.v. with distribution function F, $\overline{F} \in RV_{-\alpha}$ for some $\alpha > 0$. Let X_1 (X_2) represent the loss of a portfolio which consists of 1 unit of asset A_1 (A_2). *Assumption:* The prices of A_1 and A_2 are identical and their logreturns

are i.i.d..

Consider a portfolio P_1 containing 2 units of asset A_1 and a portfolio P_2 containing one unit of A_1 and one unit of A_2 . Let L_i represent the loss of portfolio P_i , i = 1, 2.

Compare the probabilities of high losses in the two portfolios by computing the limit

1

$$\lim_{l\to\infty}\frac{\operatorname{Prob}(L_2>l)}{\operatorname{Prob}(L_1>l)}\,.$$

In which cases are the extreme losses of the diversified portfolio smaller then those of the non-diversified portfolio?

Application of regular variation (contd.)

Example 2: Let $X, Y \ge 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents).

Application of regular variation (contd.)

Example 2: Let $X, Y \ge 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents). *Assumptions*

► $\overline{F} \in RV_{-\alpha}$, for some $\alpha > 0$, where F is the distribution function of X.

•
$$E(Y^k) < \infty, \forall k > 0.$$

Application of regular variation (contd.)

Example 2: Let $X, Y \ge 0$ be two r.v. which represent the losses of two business lines of an insurance company (e.g. fire and car accidents). *Assumptions*

► $\overline{F} \in RV_{-\alpha}$, for some $\alpha > 0$, where F is the distribution function of X.

•
$$E(Y^k) < \infty, \forall k > 0.$$

Compute $\lim_{x\to\infty} P(X > x | X + Y > x)$.

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \ge 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i : 1 \le i \le n\}$

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \ge 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i : 1 \le i \le n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \ge 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i : 1 \le i \le n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of S_n .

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n - b_n)$, for some sequences of reals $a_n > 0$ und $b_n \in \mathbb{R}$, $n \in \mathbb{N}$?

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \ge 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i : 1 \le i \le n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of S_n .

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n - b_n)$, for some sequences of reals $a_n > 0$ und $b_n \in \mathbb{R}$, $n \in \mathbb{N}$? Notation: $\lim_{n\to\infty} a_n^{-1}(S_n - b_n) \stackrel{d}{=} Z$

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \ge 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i : 1 \le i \le n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of S_n .

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n - b_n)$, for some sequences of reals $a_n > 0$ und $b_n \in \mathbb{R}$, $n \in \mathbb{N}$? Notation: $\lim_{n\to\infty} a_n^{-1}(S_n - b_n) \stackrel{d}{=} Z$ **Definition:** A r.v. X is called *stable*, (α -*stable*, *Lévy-stable*), iff for all

 $c_1, c_2 \in \mathbb{R}_+$ and the i.i.d. copies X_1 and X_2 of X, there exist constantes $a(c_1, c_2) \in \mathbb{R}$ and $b(c_1, c_2) \in \mathbb{R}$, such that $c_1X_1 + c_2X_2$ und $a(c_1, c_2)X + b(c_1, c_2)$ are identically distributed. Notation: $c_1X_1 + c_2X_2 \stackrel{d}{=} a(c_1, c_2)X + b(c_1, c_2)$

(日) (同) (三) (三) (三) (○) (○)

Let (X_k) , $k \in \mathbb{N}$, be non-degenerate i.i.d. r.v. with distribution function F. For $n \ge 1$ define $S_n := \sum_{i=1}^n X_i$ and $M_n := \max\{X_i : 1 \le i \le n\}$ Question: What are the possible (non-degenerate) limit distributions of appropriately normalized and centralized S_n and M_n ?

Consider first the limit distribution of S_n .

Question: What kind of non-degenerate r.v. Z are the limit distributions of $a_n^{-1}(S_n - b_n)$, for some sequences of reals $a_n > 0$ und $b_n \in \mathbb{R}$, $n \in \mathbb{N}$? Notation: $\lim_{n \to \infty} a_n^{-1}(S_n - b_n) \stackrel{d}{=} Z$

Definition: A r.v. X is called *stable*, (α -*stable*, *Lévy-stable*), iff for all $c_1, c_2 \in \mathbb{R}_+$ and the i.i.d. copies X_1 and X_2 of X, there exist constantes $a(c_1, c_2) \in \mathbb{R}$ and $b(c_1, c_2) \in \mathbb{R}$, such that $c_1X_1 + c_2X_2$ und $a(c_1, c_2)X + b(c_1, c_2)$ are identically distributed. Notation: $c_1X_1 + c_2X_2 \stackrel{d}{=} a(c_1, c_2)X + b(c_1, c_2)$

Theorem

The family of stable distributions coincides whith the limit distributions of appropriately normalized and centralized sums of i.i.d. r.v.. Proof e.g. in Rényi, 1962.

Theorem: The characteristic function of a stable distribution X is given as:

$$\varphi_X(t) = E[\exp\{iXt\}] = \exp\{i\gamma t - c|t|^{\alpha}(1 + i\beta \operatorname{signum}(t)z(t,\alpha))\}, \quad (4)$$

where $\gamma \in {\rm I\!R}$, c > 0, $lpha \in$ (0,2], $eta \in$ [-1,1] and

.

$$\mathsf{z}(t, lpha) = \left\{ egin{array}{ll} \mathsf{tan}ig(rac{\pilpha}{2}ig) & \mathsf{wenn} \ lpha
eq 1 \ -rac{2}{\pi}\,\mathsf{ln}\,|t| & \mathsf{wenn} \ lpha = 1 \end{array}
ight.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Theorem: The characteristic function of a stable distribution X is given as:

$$\varphi_X(t) = E[\exp\{iXt\}] = \exp\{i\gamma t - c|t|^{\alpha}(1 + i\beta \operatorname{signum}(t)z(t,\alpha))\}, \quad (4)$$

where $\gamma \in {\rm I\!R}$, c > 0, $lpha \in$ (0,2], $eta \in$ [-1,1] and

$$z(t,\alpha) = \begin{cases} \tan(\frac{\pi\alpha}{2}) & \text{wenn } \alpha \neq 1 \\ -\frac{2}{\pi}\ln|t| & \text{wenn } \alpha = 1 \end{cases}$$

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Definition: The parameter α in (4) is called *the form parameter or characteristical exponent*, the corresponding distribution is called α -stable and its distribution function is denoted by G_{α} .

Theorem: The characteristic function of a stable distribution X is given as:

$$\varphi_X(t) = E[\exp\{iXt\}] = \exp\{i\gamma t - c|t|^{\alpha}(1 + i\beta \operatorname{signum}(t)z(t,\alpha))\}, \quad (4)$$

where $\gamma \in {\rm I\!R}$, c > 0, $lpha \in$ (0,2], $eta \in$ [-1,1] and

$$z(t,\alpha) = \begin{cases} \tan(\frac{\pi\alpha}{2}) & \text{wenn } \alpha \neq 1 \\ -\frac{2}{\pi}\ln|t| & \text{wenn } \alpha = 1 \end{cases}$$

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Definition: The parameter α in (4) is called *the form parameter or characteristical exponent*, the corresponding distribution is called α -stable and its distribution function is denoted by G_{α} .

Definition: Let X be a r.v. with distribution function F. Assume that there exists two sequences of reals $a_n > 0$ and $b_n \in \mathbb{R}$, $n \in \mathbb{N}$, such that $\lim_{n\to\infty} a_n^{-1}(S_n - b_n) = G_\alpha$, for some α -stable distribution G_α . Then we say that "F belongs to the domain of attraction of G_α ". Notation: $F \in DA(G_\alpha)$. Stable distributions (contd.) Remark: $X \sim G_2 \iff \varphi_X(t) = \exp\{i\gamma t - \frac{1}{2}t^2(2c)\} \iff X \sim N(\gamma, 2c)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Remark: $X \sim G_2 \iff \varphi_X(t) = \exp\{i\gamma t - \frac{1}{2}t^2(2c)\} \iff X \sim N(\gamma, 2c)$

Exercise: Show that $F \in DA(G_2) \iff F \in DA(\phi)$, where ϕ is the standard normal distribution N(0, 1). Hint: The Convergence to Types Theorem could be used.

Remark: $X \sim G_2 \iff \varphi_X(t) = \exp\{i\gamma t - \frac{1}{2}t^2(2c)\} \iff X \sim N(\gamma, 2c)$

Exercise: Show that $F \in DA(G_2) \iff F \in DA(\phi)$, where ϕ is the standard normal distribution N(0, 1). Hint: The Convergence to Types Theorem could be used.

Definition: The r.v. Z and \tilde{Z} are of the same type if there exist the constants $\sigma > 0$ and $\mu \in \mathbb{R}$, such that $\tilde{Z} \stackrel{d}{=} (Z - \mu)/\sigma$, i.e. $\tilde{F}(x) = F(\mu + \sigma x)$, $\forall x \in \mathbb{R}$, where F and \tilde{F} are the distribution functions of Z and \tilde{Z} , respectively.

(日) (同) (三) (三) (三) (○) (○)

The Convergence to Types Theorem

Let Z, \tilde{Z} , Y_n , $n \ge 1$, be not almost surely constant r.v. Let $a_n, \tilde{a}_n, b_n, \tilde{b}_n \in \mathbb{R}$, $n \in \mathbb{N}$, be sequences of reals with $a_n, \tilde{a}_n > 0$. (i) If

$$\lim_{n\to\infty} a_n^{-1}(Y_n - b_n) = Z \text{ and } \lim_{n\to\infty} \tilde{a}_n^{-1}(Y_n - \tilde{b}_n) = \tilde{Z} \qquad (5)$$

then there exist A > 0 und $B \in {\rm I\!R}$, such that

$$\lim_{n \to \infty} \frac{\tilde{a}_n}{a_n} = A \text{ and } \lim_{n \to \infty} \frac{\tilde{b}_n - b_n}{a_n} = B$$
 (6)

and

$$\tilde{Z} \stackrel{\mathrm{d}}{=} (Z - B) / A. \tag{7}$$

(ii) Assume that (6) holds. Then each of the two relations in (5) implies the other and also (7) holds.

The Convergence to Types Theorem

Let Z, \tilde{Z} , Y_n , $n \ge 1$, be not almost surely constant r.v. Let $a_n, \tilde{a}_n, b_n, \tilde{b}_n \in \mathbb{R}$, $n \in \mathbb{N}$, be sequences of reals with $a_n, \tilde{a}_n > 0$. (i) If

$$\lim_{n \to \infty} a_n^{-1} (Y_n - b_n) = Z \text{ and } \lim_{n \to \infty} \tilde{a}_n^{-1} (Y_n - \tilde{b}_n) = \tilde{Z}$$
 (5)

then there exist A > 0 und $B \in {\rm I\!R}$, such that

$$\lim_{n \to \infty} \frac{\tilde{a}_n}{a_n} = A \text{ and } \lim_{n \to \infty} \frac{\tilde{b}_n - b_n}{a_n} = B$$
 (6)

and

$$\tilde{Z} \stackrel{\mathrm{d}}{=} (Z - B) / A. \tag{7}$$

(ii) Assume that (6) holds. Then each of the two relations in (5) implies the other and also (7) holds.

Proof: See Resnick 1987, Prop. 0.2, Seite 7.