
The variance-covariance method (contd.)

Advantages:

I analytical solution

I simple implementation

I no simulationen needed

Disadvantages:

I Linearisation is not always appropriate, only for a short time horizon
reasonable

I The normal distribution assumption could lead to underestimation
of risks and should be argued upon (e.g. in terms of historical data)
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(iii) Monte-Carlo approach

(1) historical observations of risk factor changes Xm−n+1, . . ., Xm.

(2) assumption on a parametric model for the cumulative distribution
function of Xk , m − n + 1 ≤ k ≤ m;
e.g. a common distribution function F and independence

(3) estimation of the parameters of F .

(4) generation of N samples x̃1, x̃2, . . . , x̃N from F (N � 1) and
computation of the losses lk = l[m](x̃k), 1 ≤ k ≤ N

(5) computation of the empirical distribution of the loss function Lm+1:

F̂ Lm+1

N (x) =
1

N

N∑
k=1

I[lk ,∞)(x).

(5) computation of estimates for the VaR and CVAR of the loss

function: V̂aR(Lm+1) = (F̂ Lm+1

N

)
= l[N(1−α)]+1,N ,

ĈVaR(Lm+1) =
∑[N(1−α)]+1

k=1 lk,N
[N(1−α)]+1 ,

where the losses are sorted l1,N ≥ l2,N ≥ . . . ≥ lN.N .



Monte-Carlo approach (contd.)

Advantages:

I very flexible; can use any distribution F from which simulation is
possible

I time dependencies of the risk factor changes can be considered by
using time series

Disadvantages:

I computationally expensive; a large number of simulations needed to
obtain good estimates
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Monte-Carlo approach (contd.)

Example
The portfolio consists of one unit of asset S with price be St at time t.
The risk factor changes

Xk+1 = ln(Stk+1
)− ln(Stk ),

are i.i.d. with distribution function Fθ for some unknown parameter θ.

θ can be estimated by means of historical data (e.g. maximum likelihood
approaches)
Let the price at time tk be S := Stk
The VaR of the portfolio over [tk , tk+1] is given as

VaRα(Ltk+1) = S

(
1− exp{F←θ (1− α)}

)
.

Depending on Fθ it can be complicated or impossible to compute CVaR
analytically.
Alternative: Monte-Carlo simulation.
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Monte-Carlo approach (contd.)

Example
Let the portfolio and the risk factor changes Xk+1 be as in the previous
example.
A popular model for the logarithmic returns of assets is GARCH(1,1)
(see e.g. Alexander 2002):

Xk+1 = σk+1Zk+1 (1)

σ2
k+1 = a0 + a1X

2
k + b1σ

2
k (2)

where Zk , k ∈ IN, are i.i.d. and standard normally distributed, and a0,a1

and b1 are parameters, which should be estimated.

It is simple to simulate from this model.

However analytical computation of VaR and CVaR over a certain time
interval consisting of many periods is cumbersome! Check it out!
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Chapter 3: Extreme value theory

Notation:

I We will often use the same notation for the distribution of a random
variable (r.v.) and its (cumulative) distribution function!

I f (x) ∼ g(x) for x →∞ means limx→∞ f (x)/g(x) = 1

I F̄ := 1− F is called the right tail of the univariate distribution
function F .

Teminology: We say a r.v. X has fat tails or is heavy tailed (h.t.) iff

limx→∞
F̄ (x)
e−λx

=∞, ∀λ > 0.

Also a r.v. X for which ∃k ∈ IN with E (X k) =∞ will be often called
heavy tailed.

These two “definitions” are not equivalent!
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Regular variation

Definition
A measurable function h : (0,+∞)→ (0,+∞) has a regular variation
with index ρ ∈ IR towards +∞ iff

lim
t→+∞

h(tx)

h(t)
= xρ , ∀x > 0 (3)

Notation: h ∈ RVρ.

If ρ = 0, we say h has a slow variation or is slowly varying towards ∞.
If h ∈ RVρ, then h(x)/xρ ∈ RV0, or equivalently,
if h ∈ RVρ, then ∃L ∈ RV0 such that h(x) = L(x)xρ (L(x) = h(x)/xρ).
If ρ < 0, then the convergence in (3) is uniform in every interval (b,+∞)
for b > 0.

Example
Show that L ∈ RV0 holds for the functions L as below:

(a) limx→+∞ L(x) = c ∈ (0,+∞)

(b) L(x) := ln(1 + x)

(c) L(x) := ln(1 + ln(1 + x))
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Example: Check whether f ∈ RV0 holds for f (x) = 3 + sin x ,
f (x) = ln(e + x) + sin x?

Notice: a function L ∈ RV0 can have an infinite variation on ∞, i.e.

lim inf
x→∞

L(x) = 0 and lim sup
x→∞

L(x) =∞ ,

as for example L(x) = exp{(ln(1 + x))2 cos((ln(1 + x))1/2)}.
Definition: Let X > 0 be a r.v. with distribution function F . X is said
to have a regular variation on +∞, iff F̄ ∈ RV−α for some α > 0.

Example:

1. Pareto distribution: Gα(x) := 1− x−α, for x > 1 and α > 0. Then
Ḡα(tx)/Ḡα(x) = x−α holds for t > 0, i.e. Ḡα ∈ RV−α.

2. Fréchet distribution: Φα(x) := exp{−x−α} for x > 0 and
Φα(0) = 0, for some parameter (fixed) α > 0. Then
limx→∞ Φ̄α(x)/x−α = 1 holds, i.e. Φ̄α ∈ RV−α.

Proposition (no proof)
Let X > 0 be a r.v. with distribution function F , such that F̄ ∈ RV−α for
some α > 0. Then E (Xβ) <∞ for β < α and E (Xβ) =∞ for β > α
hold.
The converse is not true!
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Ḡα(tx)/Ḡα(x) = x−α holds for t > 0, i.e. Ḡα ∈ RV−α.
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Application of regular variation

Example 1: Let X1 and X2 be two continuous nonnegative i.i.d. r.v. with
distribution function F , F̄ ∈ RV−α for some α > 0. Let X1 (X2)
represent the loss of a portfolio which consists of 1 unit of asset A1 (A2).

Assumption: The prices of A1 and A2 are identical and their logreturns
are i.i.d..

Consider a portfolio P1 containing 2 units of asset A1 and a portfolio P2

containing one unit of A1 and one unit of A2. Let Li represent the loss of
portfolio Pi , i = 1, 2.

Compare the probabilities of high losses in the two portfolios by
computing the limit

lim
l→∞

Prob(L2 > l)

Prob(L1 > l)
.

In which cases are the extreme losses of the diversified portfolio smaller
then those of the non-diversified portfolio?
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portfolio Pi , i = 1, 2.

Compare the probabilities of high losses in the two portfolios by
computing the limit

lim
l→∞

Prob(L2 > l)

Prob(L1 > l)
.

In which cases are the extreme losses of the diversified portfolio smaller
then those of the non-diversified portfolio?
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Application of regular variation (contd.)

Example 2: Let X ,Y ≥ 0 be two r.v. which represent the losses of two
business lines of an insurance company (e.g. fire and car accidents).

Assumptions

I F̄ ∈ RV−α, for some α > 0, where F is the distribution function of
X .

I E (Y k) <∞, ∀k > 0.

Compute limx→∞ P(X > x |X + Y > x).
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Classical extreme value theory
Let (Xk), k ∈ IN, be non-degenerate i.i.d. r.v. with distribution function
F . For n ≥ 1 define Sn :=

∑n
i=1 Xi and Mn := max{Xi : 1 ≤ i ≤ n}

Question: What are the possible (non-degenerate) limit distributions of
appropriately normalized and centralized Sn and Mn?

Consider first the limit distribution of Sn.

Question: What kind of non-degenerate r.v. Z are the limit distributions
of a−1

n (Sn−bn), for some sequences of reals an > 0 und bn ∈ IR, n ∈ IN?

Notation: limn→∞ a−1
n (Sn − bn)

d
= Z

Definition: A r.v. X is called stable, (α-stable, Lévy-stable), iff for all
c1, c2 ∈ IR+ and the i.i.d. copies X1 and X2 of X , there exist constantes
a(c1, c2) ∈ IR and b(c1, c2) ∈ IR, such that c1X1 + c2X2 und
a(c1, c2)X + b(c1, c2) are identically distributed.

Notation: c1X1 + c2X2
d
= a(c1, c2)X + b(c1, c2)

Theorem
The family of stable distributions coincides whith the limit distributions
of appropriately normalized and centralized sums of i.i.d. r.v..

Proof e.g. in Rényi, 1962.
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Classical extreme value theory
Let (Xk), k ∈ IN, be non-degenerate i.i.d. r.v. with distribution function
F . For n ≥ 1 define Sn :=

∑n
i=1 Xi and Mn := max{Xi : 1 ≤ i ≤ n}

Question: What are the possible (non-degenerate) limit distributions of
appropriately normalized and centralized Sn and Mn?

Consider first the limit distribution of Sn.

Question: What kind of non-degenerate r.v. Z are the limit distributions
of a−1

n (Sn−bn), for some sequences of reals an > 0 und bn ∈ IR, n ∈ IN?

Notation: limn→∞ a−1
n (Sn − bn)

d
= Z

Definition: A r.v. X is called stable, (α-stable, Lévy-stable), iff for all
c1, c2 ∈ IR+ and the i.i.d. copies X1 and X2 of X , there exist constantes
a(c1, c2) ∈ IR and b(c1, c2) ∈ IR, such that c1X1 + c2X2 und
a(c1, c2)X + b(c1, c2) are identically distributed.

Notation: c1X1 + c2X2
d
= a(c1, c2)X + b(c1, c2)

Theorem
The family of stable distributions coincides whith the limit distributions
of appropriately normalized and centralized sums of i.i.d. r.v..

Proof e.g. in Rényi, 1962.



Stable distributions (contd.)

Theorem: The characteristic function of a stable distribution X is given
as:

ϕX (t) = E [exp{iXt}] = exp{iγt − c |t|α(1 + iβsignum(t)z(t, α))} , (4)

where γ ∈ IR, c > 0, α ∈ (0, 2], β ∈ [−1, 1] and

z(t, α) =

{
tan(πα2 ) wenn α 6= 1
− 2
π ln |t| wenn α = 1

Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Definition: The parameter α in (4) is called the form parameter or
characteristical exponent, the corresponding distribution is called α-stable
and its distribution function is denoted by Gα.

Definition: Let X be a r.v. with distribution function F . Assume that
there exists two sequences of reals an > 0 and bn ∈ IR, n ∈ IN, such that
limn→∞ a−1

n (Sn − bn) = Gα, for some α-stable distribution Gα. Then we
say that “F belongs to the domain of attraction of Gα”.
Notation: F ∈ DA(Gα).



Stable distributions (contd.)

Theorem: The characteristic function of a stable distribution X is given
as:

ϕX (t) = E [exp{iXt}] = exp{iγt − c |t|α(1 + iβsignum(t)z(t, α))} , (4)

where γ ∈ IR, c > 0, α ∈ (0, 2], β ∈ [−1, 1] and

z(t, α) =

{
tan(πα2 ) wenn α 6= 1
− 2
π ln |t| wenn α = 1
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Proof: Lévy 1954, Gnedenko und Kolmogoroff 1960.

Definition: The parameter α in (4) is called the form parameter or
characteristical exponent, the corresponding distribution is called α-stable
and its distribution function is denoted by Gα.

Definition: Let X be a r.v. with distribution function F . Assume that
there exists two sequences of reals an > 0 and bn ∈ IR, n ∈ IN, such that
limn→∞ a−1

n (Sn − bn) = Gα, for some α-stable distribution Gα. Then we
say that “F belongs to the domain of attraction of Gα”.
Notation: F ∈ DA(Gα).



Stable distributions (contd.)

Remark: X ∼ G2 ⇐⇒ ϕX (t) = exp{iγt − 1
2 t

2(2c)} ⇐⇒ X ∼ N(γ, 2c)

Exercise: Show that F ∈ DA(G2)⇐⇒ F ∈ DA(φ), where φ is the
standard normal distribution N(0, 1).
Hint: The Convergence to Types Theorem could be used.

Definition: The r.v. Z and Z̃ are of the same type if there exist the

constants σ > 0 and µ ∈ IR, such that Z̃
d
= (Z − µ)/σ, i.e.

F̃ (x) = F (µ+ σx), ∀x ∈ IR, where F and F̃ are the distribution
functions of Z and Z̃ , respecitvely.
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The Convergence to Types Theorem
Let Z , Z̃ , Yn, n ≥ 1, be not almost surely constant r.v.
Let an, ãn, bn, b̃n ∈ IR, n ∈ IN, be sequences of reals with an, ãn > 0.

(i) If
lim

n→∞
a−1
n (Yn − bn) = Z and lim

n→∞
ã−1
n (Yn − b̃n) = Z̃ (5)

then there exist A > 0 und B ∈ IR, such that

lim
n→∞

ãn
an

= A and lim
n→∞

b̃n − bn
an

= B (6)

and
Z̃

d
= (Z − B)/A. (7)

(ii) Assume that (6) holds. Then each of the two relations in (5)
implies the other and also (7) holds.

Proof: See Resnick 1987, Prop. 0.2, Seite 7.
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