
I Risk measures based on the loss distribution

Let FL := FLn+1 be the loss distribution of Ln+1.

The parameters of FL will be estimated in terms of historical data,
either directly or in terms of risk factors.

1. The standard deviation std(L) :=
√
σ2(FL)

It is used frequently in portfolio theory.

Disadvantages:

I STD exists only for distributions with E(F 2
L ) < ∞, not

applicable to leptocurtic (“fat tailed”) loss distributions;
I gains and losses equally influence the STD.

Example
L1 ∼ N(0, 2), L2 ∼ t4 (Student’s t-distribution with m = 4 degrees of freedom)

σ2(L1) = 2 and σ2(L2) = m
m−2 = 2 hold

However the probability of losses is much larger for L2 than for
L1.
Plot the logarithm of the quotient ln[P(L2 > x)/P(L1 > x)]!
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2. Value at Risk (VaRα(L))

Definition: Let L be the loss distribution with distribution function
FL. Let α ∈ (0, 1) be a given confindence level.

VaRα(L) is the smallest number l , such that P(L > l) ≤ 1− α
holds.

VaRα(L) = inf{l ∈ IR : P(L > l) ≤ 1− α} =

inf{l ∈ IR : 1− FL(l) ≤ 1− α} = inf{l ∈ IR : FL(l) ≥ α}

BIS (Bank of International Settlements) suggests VaR0.99(L) over a
horizon of 10 days as a measure for the market risk of a portfolio.

Definition: Let F : A→ B be an increasing function. The function
F← : B → A ∪ {−∞,+∞}, y 7→ inf{x ∈ IR : F (x) ≥ y} is called
generalized inverse function of F .

Notice that inf ∅ =∞.

If F is strictly monotone increasing, then F−1 = F← holds.

Exercise: Compute F← for F : [0,+∞)→ [0, 1] with

F (x) =

{
1/2 0 ≤ x < 1
1 1 ≤ x
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Value at Risk (contd.)

Definition: Let F : IR→ IR be a (monotone increasing) distribution
function and qα(F ) := inf{x ∈ IR : F (x) ≥ α} be α-quantile of F .

For the loss function L and its distribution function F the following holds:

VaRα(L) = qα(F ) = F←(α).

Example: Let L ∼ N(µ, σ2).
Then VaRα(L) = µ+ σqα(Φ) = µ+ σΦ−1(α) holds, where Φ is the
distribution function of a random variable X ∼ N(0, 1).

Exercise: Consider a portfolio consisting of 5 pieces of an asset A. The
today’s price of A is S0 = 100. The daily logarithmic returns are i.i.d.:
X1 = ln S1

S0
, X2 = ln S2

S1
,. . . ∼ N(0, 0.01). Let L1 be the 1-day portfolio

loss in the time interval (today, tomorrow).

(a) Compute VaR0.99(L1).

(b) Compute VaR0.99(L100) and VaR0.99(L∆
100), where L100 is the

100-day portfolio loss over a horizon of 100 days starting with
today. L∆

100 is the linearization of the above mentioned 100-day
PF-portfolio loss.

Hint: For Z ∼ N(0, 1) use the equality F−1
Z (0.99) ≈ 2.3.
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3. Conditional Value at Risk CVaRα(L) (or Expected Shortfall (ES))

A disadvantage of VaR: It tells nothing about the amount of loss in
the case that a large loss L ≥ VaRα(L) happens.

Definition: Let α be a given confidence level and L a continuous
loss distribution with distribution function FL.
CVaRα(L) := ESα(L) = E (L|L ≥ VaRα(L)).

If FL is continuous:

CVaRα(L) = E (L|L ≥ VaRα(L)) =
E(LI[qα(L),∞)(L))

P(L≥qα(L)) =
1

1−αE (LI[qα(L),∞)) = 1
1−α

∫ +∞
qα(L)

ldFL(l)

IA is the indicator function of the set A: IA(x) =

{
1 x ∈ A
0 x 6∈ A

If FL is discrete the generalized CVaR is defined as follows:

GCVaRα(L) :=
1

1− α

[
E (LI[qα(L),∞)) + qα

(
1− α− P(L > qα(L))

)]

Lemma Let α be a given confidence level and L a continuous loss
function with distribution FL.
Then CVaRα(L) = 1

1−α
∫ 1

α
VaRp(L)dp holds.
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Conditional Value at Risk (contd.)
Example 1:

(a) Let L ∼ Exp(λ). Compute CVaRα(L).

(b) Let the distribution function FL of the loss function L be given as
follows : FL(x) = 1− (1 + γx)−1/γ for x ≥ 0 and γ ∈ (0, 1).
Compute CVaRα(L).

Example 2:
Let L ∼ N(0, 1). Let φ und Φ be the density and the distribution

function of L, respectively. Show that CVaRα(L) = φ(Φ−1(α))
1−α holds.

Let L′ ∼ N(µ, σ2). Show that CVaRα(L′) = µ+ σ φ(Φ−1(α))
1−α holds.

Exercise:
Let the loss L be distributed according to the Student’s t-distribution
with ν > 1 degrees of freedom. The density of L is

gν(x) =
Γ((ν + 1)/2)√
νπΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

Show that CVaRα(L) =
gν(t−1

ν (α))
1−α

(
ν+(t−1

ν (a))2

ν−1

)
, where tν is the

distribution function of L.
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Methods for the computation of VaR und CVaR

Consider the portfolio value Vm = f (tm,Zm), where Zm is the vector of
risk factors.

Let the loss function over the interval [tm, tm+1] be given as
Lm+1 = l[m](Xm+1), where Xm+1 is the vector of the risk factor changes,
i.e.

Xm+1 = Zm+1 − Zm.

Consider observations (historical data) of risk factor values
Zm−n+1, . . . ,Zm.
How to use these data to compute/estimate VaR(Lm+1), CVaR(Lm+1)?



The empirical VaR and the empirical CVaR
Let x1, x2, . . . , xn be a sample of i.i.d. random variables X1,X2, . . . ,Xn

with distribution function F .

The empirical distribution function

Fn(x) =
1

n

n∑
k=1

I[xk ,+∞)(x)

The empirical quantile

qα(Fn) = inf{x ∈ IR : Fn(x) ≥ α} = F←n (α)

Assumption: x1 > x2 > . . . > xn. Then qα(Fn) = x[n(1−α)]+1 holds, where
[y ] := sup{n ∈ IN : n ≤ y} for every y ∈ IR.

Lemma
Let q̂α(F ) := qα(Fn) and let F be a strictly increasing function. Then
limn→∞ q̂α(F ) = qα(F ) holds ∀α ∈ (0, 1), i.e. the estimator q̂α(F ) is
consistent.

The empirical estimator of CVaR is ĈVaRα(F ) =
∑[n(1−α)]+1

k=1 xk
[(n(1−α)]+1
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A non-parametric bootstrapping approach to compute the

confidence interval of the estimator

Let X1,X2, . . . ,Xn be i.i.d. with distribution function F and let
x1 > x2 > . . . > xn be an ordered sample of F .

Goal: computation of an estimator of a certain parameter θ depending on
F , e.g. θ = qα(F ), and the corresponding confidence interval.

Let θ̂(x1, . . . , xn) be an estimator of θ, e.g. θ̂(x1, . . . , xn) = x[(n(1−α)]+1

θ = qα(F ).
The required confidence interval is an (a, b) with a = a(x1, . . . , xn) u.
b = b(x1, . . . , xn), such that P(a < θ < b) = p, for a given confidence
level p.

Case I: F is known.

Generate N samples x̃
(i)
1 , x̃

(i)
2 , . . . , x̃

(i)
n , 1 ≤ i ≤ N, by simulation from F

(N should be large)

Let θ̃i = θ̂

(
x̃

(i)
1 , x̃

(i)
2 , . . . , x̃

(i)
n

)
, 1 ≤ i ≤ N.
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Case I (cont.)

The empirical distribution function of θ̂(x1, x2, . . . , xn) is given as

F θ̂N :=
1

N

N∑
i=1

I[θ̃i ,∞)

and it tends to F θ̂ for N →∞.
The required conficence interval is given as(

q 1−p
2

(F θ̂N), q 1+p
2

(F θ̂N)

)

(assuming that the sample sizes N und n are large enough).



Case II: F is not known ⇒ Bootstrapping!
The empirical distribution function of Xi , 1 ≤ i ≤ n, is given as

Fn(x) =
1

n

n∑
i=1

I[xi ,∞)(x).

For n large Fn ≈ F holds.

Generate samples from Fn be choosing n elementes in {x1, x2, . . . , xn}
and putting every element back to the set immediately after its choice

Assume N such samples are generated: x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n , 1 ≤ i ≤ N.

Compute θ∗i = θ̂

(
x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n

)
.

The empirical distribution of θ∗i is given as F θ
∗

N (x) = 1
N

∑N
i=1 I[θ∗i ,∞)(x);

it approximates the distribution function F θ̂ of θ̂(X1,X2, . . . ,Xn) for
N →∞.

A confidence interval (a, b) with confidence level p is given by

a = q(1−p)/2(F θ
∗

N ), b = q(1+p)/2(F θ
∗

N ).

Thus a = θ∗[N(1+p)/2]+1, b = θ∗[N(1−p)/2]+1, where θ∗1 ≥ . . . ≥ θ∗N is the
sorted θ∗ sample.
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Summary of the non-parametric bootstrapping approach to

compute confidence intervals

Input: Sample x1, x2, . . . , xn of the i.i.d. random variables X1,X2, . . . ,Xn

with distribution function F and an estimator θ̂(x1, x2, . . . , xn) of an
unknown parameter θ(F ), A confidence level p ∈ (0, 1).

Output: A confidence interval Ip for θ with confidence level p.

I Generate N new Samples x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n , 1 ≤ i ≤ N, by

chosing elements in {x1, x2, . . . , xn} and putting them back right
after the choice.

I Compute θ∗i = θ̂

(
x
∗(i)
1 , x

∗(i)
2 , . . . , x

∗(i)
n

)
.

I Setz Ip :=

(
θ∗[N(1+p)/2]+1,N , θ

∗
[N(1−p)/2]+1,N

)
, where

θ∗1,N ≥ θ∗2,N ≥ . . . θ∗N,N is obtained by sorting θ∗1 , θ
∗
2 , . . . , θ

∗
N .



An approximative solution without bootstrapping

Input: A sample x1, x2, . . . , xn of the random variables Xi , 1 ≤ i ≤ n,
i.i.d. with unknown continuous distribution function F , a confidence level
p ∈ (0, 1).

Output: A p′ ∈ (0, 1), with p ≤ p′ ≤ p + ε, for some small ε, and a
confidence interval (a, b) for qα(F ), i.e. a = a(x1, x2, . . . , xn),
b = b(x1, x2, . . . , xn), such that

P(a < qα(F ) < b) = p′ and P(a ≥ qα(F )) = P(b ≤ qα(F ) ≤ (1−p)/2 holds.

Assume w.l.o.g. that the sample is sorted x1 ≥ x2 ≥ . . . ≥ xn.

Determine i > j , i , j ∈ {1, 2, . . . , n}, and the smallest p′ > p, such that

P

(
xi < qα(F ) < xj

)
= p′ (∗) and

P

(
xi ≥ qα(F )

)
≤ (1− p)/2 and P

(
xj ≤ qα(F )

)
≤ (1− p)/2(∗∗).
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An approximative solution without bootstrapping (contd.)

Let Yα := #{xk : xk > qα(F )}

We get P(xj ≤ qα(F )) ≈ P(xj < qα(F )) = P(Yα ≤ j − 1)
P(xi ≥ qα(F )) ≈ P(xi > qα(F )) = 1− P(Yα ≤ i − 1)

Yα ∼ Bin(n, 1− α) since Prob(xk ≥ qα(F )) ≈ 1− α for a sample point
xk .

Compute P(xj ≤ qα(F )) and P(xi ≥ qα(F )) for different i and j until
indices i , j ∈ {1, 2, . . . , n}, i > j , which fulfill (∗∗) are found.

Set b := xj and a := xi .
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Possibilities to generate a sample of losses x1,. . .,xn

(i) Historical simulation
Let xm−n+1, . . . , xm be historical observations of the risk factor changes
Xm−n+1, . . . ,Xm; the historically realized losses are given as
lk = l[m](xm−k+1), k = 1, 2, . . . , n,

Assumption: the historically realized losses are i.i.d.
The historically realized losses can be seen as a sample of the loss
distribution. Sort the historical losses li , 1 ≤ i ≤ n, to obtain
l1,n ≥ l2,n ≥ . . . ≥ ln,n.

Empirical VaR: V̂aR = qα(F̂ L
n ) = l[n(1−α)]+1,n

Empirical CVaR: ĈVaR =
∑[n(1−α)]+1

i=1 li,n
[n(1−α)]+1 .

Analogously, we can consider the loss aggregated over a given time
interval (number of days or general time units).
VaR and CVaR of the loss aggregated over a number of days, e.g. 10
days, over the days m − n + 10(k − 1) + 1,m − n + 10(k − 1) + 2, . . . ,

m − n + 10(k − 1) + 10, denoted by l
(10)
k is given as

l
(10)
k = l[m]

(∑10
j=1 xm−n+10(k−1)+j

)
k = 1, . . . , [n/10]
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∑[n(1−α)]+1

i=1 li,n
[n(1−α)]+1 .

Analogously, we can consider the loss aggregated over a given time
interval (number of days or general time units).
VaR and CVaR of the loss aggregated over a number of days, e.g. 10
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)
k = 1, . . . , [n/10]
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∑[n(1−α)]+1

i=1 li,n
[n(1−α)]+1 .

Analogously, we can consider the loss aggregated over a given time
interval (number of days or general time units).
VaR and CVaR of the loss aggregated over a number of days, e.g. 10
days, over the days m − n + 10(k − 1) + 1,m − n + 10(k − 1) + 2, . . . ,

m − n + 10(k − 1) + 10, denoted by l
(10)
k is given as

l
(10)
k = l[m]

(∑10
j=1 xm−n+10(k−1)+j

)
k = 1, . . . , [n/10]



Possibilities to generate a sample of losses x1,. . .,xn

(i) Historical simulation
Let xm−n+1, . . . , xm be historical observations of the risk factor changes
Xm−n+1, . . . ,Xm; the historically realized losses are given as
lk = l[m](xm−k+1), k = 1, 2, . . . , n,

Assumption: the historically realized losses are i.i.d.
The historically realized losses can be seen as a sample of the loss
distribution. Sort the historical losses li , 1 ≤ i ≤ n, to obtain
l1,n ≥ l2,n ≥ . . . ≥ ln,n.

Empirical VaR: V̂aR = qα(F̂ L
n ) = l[n(1−α)]+1,n

Empirical CVaR: ĈVaR =
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Historical simulation (contd.)

Advantages:

I simple implementation

I considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xm−k = (Xm−k,1, . . . ,Xm−k,d).

Disadvantages:

I lots of historical data needed to get good estimators

I the estimated loss cannot be larger than the maximal loss
experienced in the past
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(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the
vector of the risk factor changes is normally distributed.

L∆
m+1 = l∆m (Xm+1) = −V

∑d
i=1 wiXm+1,i = −VwTXm+1,

where V := Vm, wi := wm,i , w = (w1, . . . ,wd)T ,
Xm+1 = (Xm+1,1,Xm+1,2, . . . ,Xm+1,d)T .

Assumption 1: Xm+1 ∼ Nd(µ,Σ),
and thus −VwTXm+1 ∼ N(−VwTµ,V 2wTΣw)

Let xm−n+1, . . . , xm be the historically observed risk factor changes

Assumption 2: xm−n+1, . . . , xm are i.i.d.

Estimator for µi : µ̂i = 1
n

∑n
k=1 xm−k+1,i , i = 1, 2, . . . , d

Estimator for Σ =

(
σij

)
: Σ̂ =

(
σ̂ij

)
where

σ̂ij = 1
n−1

∑n
k=1(xm−k+1,i − µi )(xm−k+1,j − µj) i , j = 1, 2, . . . , d

Estimator for VaR: V̂aR(Lm+1) = −VwT µ̂+ V
√

wT Σ̂wφ−1(α)
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