Risk measures based on the loss distribution

Let $F_L := F_{L_{n+1}}$ be the loss distribution of L_{n+1} .

The parameters of F_L will be estimated in terms of historical data, either directly or in terms of risk factors.

Risk measures based on the loss distribution

Let $F_L := F_{L_{n+1}}$ be the loss distribution of L_{n+1} .

The parameters of F_L will be estimated in terms of historical data, either directly or in terms of risk factors.

- 1. The standard deviation $std(L) := \sqrt{\sigma^2(F_L)}$ It is used frequently in portfolio theory. Disadvantages:
 - STD exists only for distributions with E(F²_L) < ∞, not applicable to leptocurtic ("fat tailed") loss distributions;</p>

gains and losses equally influence the STD.

Risk measures based on the loss distribution

Let $F_L := F_{L_{n+1}}$ be the loss distribution of L_{n+1} .

The parameters of F_L will be estimated in terms of historical data, either directly or in terms of risk factors.

- 1. The standard deviation $std(L) := \sqrt{\sigma^2(F_L)}$ It is used frequently in portfolio theory. Disadvantages:
 - STD exists only for distributions with E(F²_L) < ∞, not applicable to leptocurtic ("fat tailed") loss distributions;</p>
 - gains and losses equally influence the STD.

Example

 $L_1 \sim N(0,2)$, $L_2 \sim t_4$ (Student's t-distribution with m = 4 degrees of freedom) $\sigma^2(L_1) = 2$ and $\sigma^2(L_2) = \frac{m}{m-2} = 2$ hold However the probability of losses is much larger for L_2 than for L_1 .

Plot the logarithm of the quotient $\ln[P(L_2 > x)/P(L_1 > x)]!$

Definition: Let *L* be the loss distribution with distribution function F_L . Let $\alpha \in (0, 1)$ be a given confindence level.

 $VaR_{\alpha}(L)$ is the smallest number *I*, such that $P(L > I) \leq 1 - \alpha$ holds.

Definition: Let *L* be the loss distribution with distribution function F_L . Let $\alpha \in (0, 1)$ be a given confindence level.

 $VaR_{\alpha}(L)$ is the smallest number *I*, such that $P(L > I) \leq 1 - \alpha$ holds.

$$VaR_{\alpha}(L) = \inf\{I \in \mathbb{R} : P(L > I) \le 1 - \alpha\} = \inf\{I \in \mathbb{R} : 1 - F_{L}(I) \le 1 - \alpha\} = \inf\{I \in \mathbb{R} : F_{L}(I) \ge \alpha\}$$

BIS (Bank of International Settlements) suggests $VaR_{0.99}(L)$ over a horizon of 10 days as a measure for the market risk of a portfolio.

Definition: Let *L* be the loss distribution with distribution function F_L . Let $\alpha \in (0, 1)$ be a given confindence level.

 $VaR_{\alpha}(L)$ is the smallest number *I*, such that $P(L > I) \leq 1 - \alpha$ holds.

$$VaR_{\alpha}(L) = \inf\{I \in \mathbb{R} \colon P(L > I) \le 1 - \alpha\} = \\ \inf\{I \in \mathbb{R} \colon 1 - F_{L}(I) \le 1 - \alpha\} = \inf\{I \in \mathbb{R} \colon F_{L}(I) \ge \alpha\}$$

BIS (Bank of International Settlements) suggests $VaR_{0.99}(L)$ over a horizon of 10 days as a measure for the market risk of a portfolio.

Definition: Let $F: A \to B$ be an increasing function. The function $F^{\leftarrow}: B \to A \cup \{-\infty, +\infty\}, y \mapsto \inf\{x \in \mathbb{R}: F(x) \ge y\}$ is called *generalized inverse function* of F.

Notice that $\inf \emptyset = \infty$.

Definition: Let *L* be the loss distribution with distribution function F_L . Let $\alpha \in (0, 1)$ be a given confindence level.

 $VaR_{\alpha}(L)$ is the smallest number *I*, such that $P(L > I) \leq 1 - \alpha$ holds.

$$VaR_{\alpha}(L) = \inf\{I \in \mathbb{R} \colon P(L > I) \le 1 - \alpha\} = \\ \inf\{I \in \mathbb{R} \colon 1 - F_{L}(I) \le 1 - \alpha\} = \inf\{I \in \mathbb{R} \colon F_{L}(I) \ge \alpha\}$$

BIS (Bank of International Settlements) suggests $VaR_{0.99}(L)$ over a horizon of 10 days as a measure for the market risk of a portfolio.

Definition: Let $F: A \to B$ be an increasing function. The function $F^{\leftarrow}: B \to A \cup \{-\infty, +\infty\}, y \mapsto \inf\{x \in \mathbb{R}: F(x) \ge y\}$ is called *generalized inverse function* of F.

Notice that $\inf \emptyset = \infty$.

If *F* is strictly monotone increasing, then $F^{-1} = F^{\leftarrow}$ holds. **Exercise:** Compute F^{\leftarrow} for $F: [0, +\infty) \to [0, 1]$ with

$$F(x) = \begin{cases} 1/2 & 0 \le x < 1 \\ 1 & 1 \le x \end{cases}$$

Definition: Let $F : \mathbb{R} \to \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$ be α -quantile of F.

Definition: Let $F : \mathbb{R} \to \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$ be α -quantile of F.

For the loss function L and its distribution function F the following holds:

 $VaR_{\alpha}(L) = q_{\alpha}(F) = F^{\leftarrow}(\alpha).$

Definition: Let $F : \mathbb{R} \to \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$ be α -quantile of F.

For the loss function L and its distribution function F the following holds:

$$VaR_{\alpha}(L) = q_{\alpha}(F) = F^{\leftarrow}(\alpha).$$

Example: Let $L \sim N(\mu, \sigma^2)$. Then $VaR_{\alpha}(L) = \mu + \sigma q_{\alpha}(\Phi) = \mu + \sigma \Phi^{-1}(\alpha)$ holds, where Φ is the distribution function of a random variable $X \sim N(0, 1)$.

Definition: Let $F : \mathbb{R} \to \mathbb{R}$ be a (monotone increasing) distribution function and $q_{\alpha}(F) := \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}$ be α -quantile of F.

For the loss function L and its distribution function F the following holds:

$$VaR_{\alpha}(L) = q_{\alpha}(F) = F^{\leftarrow}(\alpha).$$

Example: Let $L \sim N(\mu, \sigma^2)$. Then $VaR_{\alpha}(L) = \mu + \sigma q_{\alpha}(\Phi) = \mu + \sigma \Phi^{-1}(\alpha)$ holds, where Φ is the distribution function of a random variable $X \sim N(0, 1)$.

Exercise: Consider a portfolio consisting of 5 pieces of an asset *A*. The today's price of *A* is $S_0 = 100$. The daily logarithmic returns are i.i.d.: $X_1 = \ln \frac{S_1}{S_0}, X_2 = \ln \frac{S_2}{S_1}, \ldots \sim N(0, 0.01)$. Let L_1 be the 1-day portfolio loss in the time interval (today, tomorrow).

- (a) Compute $VaR_{0.99}(L_1)$.
- (b) Compute $VaR_{0.99}(L_{100})$ and $VaR_{0.99}(L_{100}^{\Delta})$, where L_{100} is the 100-day portfolio loss over a horizon of 100 days starting with today. L_{100}^{Δ} is the linearization of the above mentioned 100-day PF-portfolio loss.

Hint: For $Z \sim N(0,1)$ use the equality $F_Z^{-1}(0.99) \approx 2.3$

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \ge VaR_{\alpha}(L)$ happens.

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \ge VaR_{\alpha}(L)$ happens.

Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_L . $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \ge VaR_{\alpha}(L)$ happens.

Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_L . $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$

If F_L is continuous:

$$CVaR_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)) = \frac{E(Ll_{[q_{\alpha}(L),\infty)}(L))}{P(L \ge q_{\alpha}(L))} = \frac{1}{1-\alpha} E(Ll_{[q_{\alpha}(L),\infty)}) = \frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} IdF_{L}(I)$$

 I_A is the indicator function of the set A: $I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \ge VaR_{\alpha}(L)$ happens.

Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_L . $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$

If *F_L* is continuous:

$$CVaR_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)) = \frac{E(LI_{[q_{\alpha}(L),\infty)}(L))}{P(L \ge q_{\alpha}(L))} = \frac{1}{1-\alpha} E(LI_{[q_{\alpha}(L),\infty)}) = \frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} IdF_{L}(I)$$

 I_A is the indicator function of the set A: $I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$

If F_L is discrete the generalized CVaR is defined as follows:

$$GCVaR_{\alpha}(L) := \frac{1}{1-\alpha} \left[E(LI_{[q_{\alpha}(L),\infty)}) + q_{\alpha} \left(1 - \alpha - P(L > q_{\alpha}(L)) \right) \right]$$

A disadvantage of VaR: It tells nothing about the amount of loss in the case that a large loss $L \ge VaR_{\alpha}(L)$ happens.

Definition: Let α be a given confidence level and L a continuous loss distribution with distribution function F_L . $CVaR_{\alpha}(L) := ES_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)).$

If F_L is continuous:

$$CVaR_{\alpha}(L) = E(L|L \ge VaR_{\alpha}(L)) = \frac{E(LI_{[q_{\alpha}(L),\infty)}(L))}{P(L \ge q_{\alpha}(L))} = \frac{1}{1-\alpha} E(LI_{[q_{\alpha}(L),\infty)}) = \frac{1}{1-\alpha} \int_{q_{\alpha}(L)}^{+\infty} IdF_{L}(I)$$

 I_A is the indicator function of the set A: $I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$

If F_L is discrete the generalized CVaR is defined as follows:

$$GCVaR_{\alpha}(L) := \frac{1}{1-\alpha} \left[E(LI_{[q_{\alpha}(L),\infty)}) + q_{\alpha} \left(1 - \alpha - P(L > q_{\alpha}(L)) \right) \right]$$

Lemma Let α be a given confidence level and L a continuous loss function with distribution F_L . Then $CVaR_{\alpha}(L) = \frac{1}{1-\alpha} \int_{\alpha}^{1} VaR_p(L)dp$ holds.

Conditional Value at Risk (contd.) Example 1:

- (a) Let $L \sim Exp(\lambda)$. Compute $CVaR_{\alpha}(L)$.
- (b) Let the distribution function F_L of the loss function L be given as follows : $F_L(x) = 1 (1 + \gamma x)^{-1/\gamma}$ for $x \ge 0$ and $\gamma \in (0, 1)$. Compute $CVaR_{\alpha}(L)$.

Conditional Value at Risk (contd.) Example 1:

(a) Let
$$L \sim Exp(\lambda)$$
. Compute $CVaR_{\alpha}(L)$.

(b) Let the distribution function F_L of the loss function L be given as follows : F_L(x) = 1 − (1 + γx)^{-1/γ} for x ≥ 0 and γ ∈ (0, 1). Compute CVaR_α(L).

Example 2:

Let $L \sim N(0, 1)$. Let ϕ und Φ be the density and the distribution function of L, respectively. Show that $CVaR_{\alpha}(L) = \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds. Let $L' \sim N(\mu, \sigma^2)$. Show that $CVaR_{\alpha}(L') = \mu + \sigma \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds.

Conditional Value at Risk (contd.) Example 1:

(a) Let
$$L \sim Exp(\lambda)$$
. Compute $CVaR_{\alpha}(L)$.

(b) Let the distribution function F_L of the loss function L be given as follows : $F_L(x) = 1 - (1 + \gamma x)^{-1/\gamma}$ for $x \ge 0$ and $\gamma \in (0, 1)$. Compute $CVaR_{\alpha}(L)$.

Example 2:

Let $L \sim N(0, 1)$. Let ϕ und Φ be the density and the distribution function of L, respectively. Show that $CVaR_{\alpha}(L) = \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds. Let $L' \sim N(\mu, \sigma^2)$. Show that $CVaR_{\alpha}(L') = \mu + \sigma \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds. **Exercise:**

Let the loss L be distributed according to the Student's t-distribution with $\nu>1$ degrees of freedom. The density of L is

$$g_
u(x) = rac{\Gamma((
u+1)/2)}{\sqrt{
u\pi}\Gamma(
u/2)} \left(1+rac{x^2}{
u}
ight)^{-(
u+1)/2}$$

Show that $CVaR_{\alpha}(L) = \frac{g_{\nu}(t_{\nu}^{-1}(\alpha))}{1-\alpha} \left(\frac{\nu + (t_{\nu}^{-1}(a))^2}{\nu-1}\right)$, where t_{ν} is the distribution function of L.

Methods for the computation of VaR und CVaR

Consider the portfolio value $V_m = f(t_m, Z_m)$, where Z_m is the vector of risk factors.

Let the loss function over the interval $[t_m, t_{m+1}]$ be given as $L_{m+1} = I_{[m]}(X_{m+1})$, where X_{m+1} is the vector of the risk factor changes, i.e.

$$X_{m+1}=Z_{m+1}-Z_m.$$

Consider observations (historical data) of risk factor values Z_{m-n+1}, \ldots, Z_m . How to use these data to compute/estimate $VaR(L_{m+1})$, $CVaR(L_{m+1})$?

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F. The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F. The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} \colon F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F. The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} \colon F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

Assumption: $x_1 > x_2 > \ldots > x_n$. Then $q_{\alpha}(F_n) = x_{[n(1-\alpha)]+1}$ holds, where $[y] := \sup\{n \in \mathbb{N} : n \leq y\}$ for every $y \in \mathbb{R}$.

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F. The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} \colon F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

Assumption: $x_1 > x_2 > \ldots > x_n$. Then $q_{\alpha}(F_n) = x_{[n(1-\alpha)]+1}$ holds, where $[y] := \sup\{n \in \mathbb{N} : n \leq y\}$ for every $y \in \mathbb{R}$.

Lemma

Let $\hat{q}_{\alpha}(F) := q_{\alpha}(F_n)$ and let F be a strictly increasing function. Then $\lim_{n\to\infty} \hat{q}_{\alpha}(F) = q_{\alpha}(F)$ holds $\forall \alpha \in (0,1)$, i.e. the estimator $\hat{q}_{\alpha}(F)$ is consistent.

Let x_1, x_2, \ldots, x_n be a sample of i.i.d. random variables X_1, X_2, \ldots, X_n with distribution function F. The empirical distribution function

$$F_n(x) = \frac{1}{n} \sum_{k=1}^n I_{[x_k, +\infty)}(x)$$

The empirical quantile

$$q_{\alpha}(F_n) = \inf\{x \in \mathbb{R} \colon F_n(x) \ge \alpha\} = F_n^{\leftarrow}(\alpha)$$

Assumption: $x_1 > x_2 > \ldots > x_n$. Then $q_{\alpha}(F_n) = x_{[n(1-\alpha)]+1}$ holds, where $[y] := \sup\{n \in \mathbb{N} : n \leq y\}$ for every $y \in \mathbb{R}$.

Lemma

Let $\hat{q}_{\alpha}(F) := q_{\alpha}(F_n)$ and let F be a strictly increasing function. Then $\lim_{n\to\infty} \hat{q}_{\alpha}(F) = q_{\alpha}(F)$ holds $\forall \alpha \in (0,1)$, i.e. the estimator $\hat{q}_{\alpha}(F)$ is consistent.

The empirical estimator of CVaR is $\widehat{\text{CVaR}}_{\alpha}(F) = \frac{\sum_{k=1}^{\lfloor n(1-\alpha) \rfloor+1} x_k}{\lfloor n(1-\alpha) \rfloor+1}$

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F.

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F.

Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta = q_{\alpha}(F)$, and the corresponding confidence interval.

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F. Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta = q_{\alpha}(F)$, and the corresponding confidence interval. Let $\hat{\theta}(x_1, ..., x_n)$ be an estimator of θ , e.g. $\hat{\theta}(x_1, ..., x_n) = x_{[(n(1-\alpha)]+1}$ $\theta = q_{\alpha}(F)$. The required confidence interval is an (a, b) with $a = a(x_1, ..., x_n)$ u. $b = b(x_1, ..., x_n)$, such that $P(a < \theta < b) = p$, for a given confidence level p.

Let $X_1, X_2, ..., X_n$ be i.i.d. with distribution function F and let $x_1 > x_2 > ... > x_n$ be an ordered sample of F. Goal: computation of an estimator of a certain parameter θ depending on F, e.g. $\theta = q_\alpha(F)$, and the corresponding confidence interval. Let $\hat{\theta}(x_1, ..., x_n)$ be an estimator of θ , e.g. $\hat{\theta}(x_1, ..., x_n) = x_{[(n(1-\alpha)]+1}$ $\theta = q_\alpha(F)$. The required confidence interval is an (a, b) with $a = a(x_1, ..., x_n)$ u. $b = b(x_1, ..., x_n)$, such that $P(a < \theta < b) = p$, for a given confidence

level p.

Case I: F is known.

Generate N samples $\tilde{x}_1^{(i)}, \tilde{x}_2^{(i)}, \ldots, \tilde{x}_n^{(i)}, 1 \le i \le N$, by simulation from F (N should be large)

Let
$$\tilde{\theta}_i = \hat{\theta}\left(\tilde{x}_1^{(i)}, \tilde{x}_2^{(i)}, \dots, \tilde{x}_n^{(i)}\right), \ 1 \le i \le N.$$

Case I (cont.)

The empirical distribution function of $\hat{\theta}(x_1, x_2, \dots, x_n)$ is given as

$$\mathcal{F}_{\mathcal{N}}^{\hat{ heta}} := rac{1}{\mathcal{N}} \sum_{i=1}^{\mathcal{N}} \mathit{I}_{[ilde{ heta}_i,\infty)}$$

and it tends to $F^{\hat{\theta}}$ for $N \to \infty$.

The required conficence interval is given as

$$\left(q_{\frac{1-p}{2}}(F_N^{\hat{\theta}}), q_{\frac{1+p}{2}}(F_N^{\hat{\theta}})\right)$$

(assuming that the sample sizes N und n are large enough).

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x)=\frac{1}{n}\sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing n elementes in $\{x_1, x_2, \ldots, x_n\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}, 1 \le i \le N$.

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x)=\frac{1}{n}\sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing *n* elementes in $\{x_1, x_2, ..., x_n\}$ and putting every element back to the set immediately after its choice Assume *N* such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, ..., x_n^{*(i)}, 1 \le i \le N$. Compute $\theta_i^* = \hat{\theta}\left(x_1^{*(i)}, x_2^{*(i)}, ..., x_n^{*(i)}\right)$.

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x)=\frac{1}{n}\sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing n elementes in $\{x_1, x_2, \ldots, x_n\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}, 1 \le i \le N$. Compute $\theta_i^* = \hat{\theta}\left(x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}\right)$. The empirical distribution of θ_i^* is given as $F_N^{\theta^*}(x) = \frac{1}{N} \sum_{i=1}^N I_{[\theta_i^*,\infty)}(x)$; it approximates the distribution function $F^{\hat{\theta}}$ of $\hat{\theta}(X_1, X_2, \ldots, X_n)$ for $N \to \infty$.

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x)=\frac{1}{n}\sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing n elementes in $\{x_1, x_2, \ldots, x_n\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}, 1 \le i \le N$. Compute $\theta_i^* = \hat{\theta}\left(x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}\right)$. The empirical distribution of θ_i^* is given as $F_N^{\theta^*}(x) = \frac{1}{N} \sum_{i=1}^N l_{[\theta_i^*,\infty)}(x)$; it approximates the distribution function $F^{\hat{\theta}}$ of $\hat{\theta}(X_1, X_2, \ldots, X_n)$ for $N \to \infty$.

A confidence interval (a, b) with confidence level p is given by

$$a = q_{(1-p)/2}(F_N^{\theta^*}), \ b = q_{(1+p)/2}(F_N^{\theta^*}).$$

The empirical distribution function of X_i , $1 \le i \le n$, is given as

$$F_n(x)=\frac{1}{n}\sum_{i=1}^n I_{[x_i,\infty)}(x).$$

For n large $F_n \approx F$ holds.

Generate samples from F_n be choosing n elementes in $\{x_1, x_2, \ldots, x_n\}$ and putting every element back to the set immediately after its choice Assume N such samples are generated: $x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}, 1 \le i \le N$. Compute $\theta_i^* = \hat{\theta}\left(x_1^{*(i)}, x_2^{*(i)}, \ldots, x_n^{*(i)}\right)$. The empirical distribution of θ_i^* is given as $F_N^{\theta^*}(x) = \frac{1}{N} \sum_{i=1}^N I_{[\theta_i^*,\infty)}(x)$; it approximates the distribution function $F^{\hat{\theta}}$ of $\hat{\theta}(X_1, X_2, \ldots, X_n)$ for $N \to \infty$.

A confidence interval (a, b) with confidence level p is given by

$$a = q_{(1-p)/2}(F_N^{\theta^*}), \ b = q_{(1+p)/2}(F_N^{\theta^*}).$$

Thus $a = \theta_{[N(1+p)/2]+1}^*, \ b = \theta_{[N(1-p)/2]+1}^*, \$ where $\theta_1^* \ge \ldots \ge \theta_N^*$ is the sorted θ^* sample.

Summary of the non-parametric bootstrapping approach to compute confidence intervals

Input: Sample $x_1, x_2, ..., x_n$ of the i.i.d. random variables $X_1, X_2, ..., X_n$ with distribution function F and an estimator $\hat{\theta}(x_1, x_2, ..., x_n)$ of an unknown parameter $\theta(F)$, A confidence level $p \in (0, 1)$.

Output: A confidence interval I_p for θ with confidence level p.

▶ Generate N new Samples x₁^{*(i)}, x₂^{*(i)}, ..., x_n^{*(i)}, 1 ≤ i ≤ N, by chosing elements in {x₁, x₂,..., x_n} and putting them back right after the choice.

• Compute
$$\theta_i^* = \hat{\theta}\left(x_1^{*(i)}, x_2^{*(i)}, \dots, x_n^{*(i)}\right).$$

► Setz
$$I_p := \left(\theta^*_{[N(1+p)/2]+1,N}, \theta^*_{[N(1-p)/2]+1,N} \right)$$
, where
 $\theta^*_{1,N} \ge \theta^*_{2,N} \ge \dots \theta^*_{N,N}$ is obtained by sorting $\theta^*_1, \theta^*_2, \dots, \theta^*_N$.

Input: A sample $x_1, x_2, ..., x_n$ of the random variables X_i , $1 \le i \le n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in (0, 1)$.

Input: A sample $x_1, x_2, ..., x_n$ of the random variables X_i , $1 \le i \le n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in (0, 1)$.

Output: A $p' \in (0, 1)$, with $p \le p' \le p + \epsilon$, for some small ϵ , and a confidence interval (a, b) for $q_{\alpha}(F)$, i.e. $a = a(x_1, x_2, \ldots, x_n)$, $b = b(x_1, x_2, \ldots, x_n)$, such that

 $P(a < q_{\alpha}(F) < b) = p' \text{ and } P(a \geq q_{\alpha}(F)) = P(b \leq q_{\alpha}(F) \leq (1-p)/2 \text{ holds.}$

Input: A sample $x_1, x_2, ..., x_n$ of the random variables X_i , $1 \le i \le n$, i.i.d. with unknown continuous distribution function F, a confidence level $p \in (0, 1)$.

Output: A $p' \in (0,1)$, with $p \le p' \le p + \epsilon$, for some small ϵ , and a confidence interval (a, b) for $q_{\alpha}(F)$, i.e. $a = a(x_1, x_2, \ldots, x_n)$, $b = b(x_1, x_2, \ldots, x_n)$, such that

$$P(a < q_lpha(F) < b) = p'$$
 and $P(a \geq q_lpha(F)) = P(b \leq q_lpha(F) \leq (1\!-\!p)/2$ holds.

Assume w.l.o.g. that the sample is sorted $x_1 \ge x_2 \ge \ldots \ge x_n$. Determine i > j, $i, j \in \{1, 2, \ldots, n\}$, and the smallest p' > p, such that

$$P\left(x_i < q_{\alpha}(F) < x_j\right) = p'$$
 (*) and

$$P\left(x_i \ge q_{\alpha}(F)\right) \le (1-p)/2 \text{ and } P\left(x_j \le q_{\alpha}(F)\right) \le (1-p)/2(**).$$

Let
$$Y_{\alpha} := \#\{x_k \colon x_k > q_{\alpha}(F)\}$$

Let
$$Y_{\alpha} := \#\{x_k \colon x_k > q_{\alpha}(F)\}$$

We get
$$P(x_j \le q_\alpha(F)) \approx P(x_j < q_\alpha(F)) = P(Y_\alpha \le j-1)$$

 $P(x_i \ge q_\alpha(F)) \approx P(x_i > q_\alpha(F)) = 1 - P(Y_\alpha \le i-1)$

Let
$$Y_{\alpha} := \#\{x_k \colon x_k > q_{\alpha}(F)\}$$

We get
$$P(x_j \le q_\alpha(F)) \approx P(x_j < q_\alpha(F)) = P(Y_\alpha \le j-1)$$

 $P(x_i \ge q_\alpha(F)) \approx P(x_i > q_\alpha(F)) = 1 - P(Y_\alpha \le i-1)$

 $Y_{\alpha} \sim Bin(n, 1 - \alpha)$ since $Prob(x_k \ge q_{\alpha}(F)) \approx 1 - \alpha$ for a sample point x_k .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let
$$Y_{\alpha} := \#\{x_k \colon x_k > q_{\alpha}(F)\}$$

We get
$$P(x_j \le q_\alpha(F)) \approx P(x_j < q_\alpha(F)) = P(Y_\alpha \le j-1)$$

 $P(x_i \ge q_\alpha(F)) \approx P(x_i > q_\alpha(F)) = 1 - P(Y_\alpha \le i-1)$

 $Y_{\alpha} \sim Bin(n, 1 - \alpha)$ since $Prob(x_k \ge q_{\alpha}(F)) \approx 1 - \alpha$ for a sample point x_k .

Compute $P(x_j \le q_\alpha(F))$ and $P(x_i \ge q_\alpha(F))$ for different *i* and *j* until indices $i, j \in \{1, 2, ..., n\}$, i > j, which fulfill (**) are found.

うせん 聞い ふぼう ふぼう ふしゃ

Let
$$Y_{\alpha} := \#\{x_k \colon x_k > q_{\alpha}(F)\}$$

We get
$$P(x_j \leq q_{\alpha}(F)) \approx P(x_j < q_{\alpha}(F)) = P(Y_{\alpha} \leq j-1)$$

 $P(x_i \geq q_{\alpha}(F)) \approx P(x_i > q_{\alpha}(F)) = 1 - P(Y_{\alpha} \leq i-1)$

 $Y_{\alpha} \sim Bin(n, 1 - \alpha)$ since $Prob(x_k \ge q_{\alpha}(F)) \approx 1 - \alpha$ for a sample point x_k .

Compute $P(x_j \le q_\alpha(F))$ and $P(x_i \ge q_\alpha(F))$ for different *i* and *j* until indices $i, j \in \{1, 2, ..., n\}$, i > j, which fulfill (**) are found.

Set $b := x_j$ and $a := x_i$.

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_m be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_m ; the historically realized losses are given as $l_k = l_{[m]}(x_{m-k+1}), \ k = 1, 2, \ldots, n$,

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_m be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_m ; the historically realized losses are given as $l_k = l_{[m]}(x_{m-k+1}), \ k = 1, 2, \ldots, n$,

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses l_i , $1 \le i \le n$, to obtain $l_{1,n} \ge l_{2,n} \ge \ldots \ge l_{n,n}$.

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_m be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_m ; the historically realized losses are given as $l_k = l_{[m]}(x_{m-k+1}), \ k = 1, 2, \ldots, n$,

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses l_i , $1 \le i \le n$, to obtain $l_{1,n} \ge l_{2,n} \ge \ldots \ge l_{n,n}$.

Empirical VaR: $\widehat{VaR} = q_{\alpha}(\widehat{F}_{n}^{L}) = I_{[n(1-\alpha)]+1,n}$

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_m be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_m ; the historically realized losses are given as $l_k = l_{[m]}(x_{m-k+1}), \ k = 1, 2, \ldots, n$,

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses l_i , $1 \le i \le n$, to obtain $l_{1,n} \ge l_{2,n} \ge \ldots \ge l_{n,n}$.

Empirical VaR: $\widehat{VaR} = q_{\alpha}(\widehat{F}_{n}^{L}) = I_{[n(1-\alpha)]+1,n}$

Empirical CVaR: $\widehat{CVaR} = \frac{\sum_{i=1}^{[n(1-\alpha)]+1} l_{i,n}}{[n(1-\alpha)]+1}$.

(i) Historical simulation

Let x_{m-n+1}, \ldots, x_m be historical observations of the risk factor changes X_{m-n+1}, \ldots, X_m ; the historically realized losses are given as $l_k = l_{[m]}(x_{m-k+1}), \ k = 1, 2, \ldots, n$,

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss distribution. Sort the historical losses l_i , $1 \le i \le n$, to obtain $l_{1,n} \ge l_{2,n} \ge \ldots \ge l_{n,n}$.

Empirical VaR:
$$\widehat{VaR} = q_{\alpha}(\hat{F}_{n}^{L}) = l_{[n(1-\alpha)]+1,n}$$

Empirical CVaR:
$$\widehat{CVaR} = \frac{\sum_{i=1}^{[n(1-\alpha)]+1} l_{i,n}}{[n(1-\alpha)]+1}$$
.

Analogously, we can consider the loss aggregated over a given time interval (number of days or general time units).

VaR and CVaR of the loss aggregated over a number of days, e.g. 10 days, over the days m - n + 10(k - 1) + 1, m - n + 10(k - 1) + 2, ..., m - n + 10(k - 1) + 10, denoted by $I_k^{(10)}$ is given as $I_k^{(10)} = I_{[m]} \left(\sum_{j=1}^{10} x_{m-n+10(k-1)+j} \right) \qquad k = 1, ..., [n/10]$ Historical simulation (contd.)

Advantages:

- simple implementation
- ► considers intrinsically the dependencies between the elements of the vector of the risk factors changes X_{m-k} = (X_{m-k,1},..., X_{m-k,d}).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Historical simulation (contd.)

Advantages:

- simple implementation
- ► considers intrinsically the dependencies between the elements of the vector of the risk factors changes X_{m-k} = (X_{m-k,1},..., X_{m-k,d}).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Disadvantages:

- Iots of historical data needed to get good estimators
- the estimated loss cannot be larger than the maximal loss experienced in the past

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$L_{m+1}^{\Delta} = l_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^{d} w_i X_{m+1,i} = -V w^T X_{m+1},$$

where $V := V_m$, $w_i := w_{m,i}$, $w = (w_1, \dots, w_d)^T$,
 $X_{m+1} = (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T$.

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\begin{split} L_{m+1}^{\Delta} &= I_{m}^{\Delta}(X_{m+1}) = -V \sum_{i=1}^{d} w_{i}X_{m+1,i} = -Vw^{T}X_{m+1} \\ \text{where } V &:= V_{m}, \ w_{i} := w_{m,i}, \ w = (w_{1}, \dots, w_{d})^{T}, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^{T}. \\ \text{Assumption 1: } X_{m+1} \sim N_{d}(\mu, \Sigma), \\ \text{and thus } -Vw^{T}X_{m+1} \sim N(-Vw^{T}\mu, V^{2}w^{T}\Sigma w) \end{split}$$

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= I_{m}^{\Delta}(X_{m+1}) = -V \sum_{i=1}^{d} w_{i} X_{m+1,i} = -V w^{T} X_{m+1}, \\ \text{where } V &:= V_{m}, w_{i} := w_{m,i}, w = (w_{1}, \dots, w_{d})^{T}, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^{T}. \\ \text{Assumption 1: } X_{m+1} &\sim N_{d}(\mu, \Sigma), \\ \text{and thus } -V w^{T} X_{m+1} &\sim N(-V w^{T} \mu, V^{2} w^{T} \Sigma w) \\ \text{hole and the set of the latter is the set of the set of$$

Let x_{m-n+1}, \ldots, x_m be the historically observed risk factor changes

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\begin{split} L_{m+1}^{\Delta} &= I_{m}^{\Delta}(X_{m+1}) = -V \sum_{i=1}^{d} w_{i}X_{m+1,i} = -Vw^{T}X_{m+1}, \\ \text{where } V &:= V_{m}, w_{i} := w_{m,i}, w = (w_{1}, \dots, w_{d})^{T}, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^{T}. \\ \text{Assumption 1: } X_{m+1} &\sim N_{d}(\mu, \Sigma), \\ \text{and thus } -Vw^{T}X_{m+1} &\sim N(-Vw^{T}\mu, V^{2}w^{T}\Sigmaw) \\ \text{Let } x_{m-n+1}, \dots, x_{m} \text{ be the historically observed risk factor changes} \\ \text{Assumption 2: } x_{m-n+1}, \dots, x_{m} \text{ are i.i.d.} \end{split}$$

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= l_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^d w_i X_{m+1,i} = -V w^T X_{m+1}, \\ \text{where } V &:= V_m, \ w_i := w_{m,i}, \ w = (w_1, \dots, w_d)^T, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T. \\ \text{Assumption 1: } X_{m+1} &\sim N_d(\mu, \Sigma), \\ \text{and thus } -V w^T X_{m+1} &\sim N(-V w^T \mu, V^2 w^T \Sigma w) \\ \text{Let } x_{m-n+1}, \dots, x_m \text{ be the historically observed risk factor changes} \\ \text{Assumption 2: } x_{m-n+1}, \dots, x_m \text{ are i.i.d.} \\ \text{Estimator for } \mu_i : \ \hat{\mu}_i &= \frac{1}{n} \sum_{k=1}^n x_{m-k+1,i}, \ i = 1, 2, \dots, d \\ \text{Estimator for } \Sigma &= \left(\sigma_{ij}\right): \ \hat{\Sigma} &= \left(\hat{\sigma}_{ij}\right) \text{ where} \\ \hat{\sigma}_{ij} &= \frac{1}{n-1} \sum_{k=1}^n (x_{m-k+1,i} - \mu_i) (x_{m-k+1,j} - \mu_j) \\ \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Idea: use the linearised loss function under the assumption that the vector of the risk factor changes is normally distributed.

$$\begin{split} L_{m+1}^{\Delta} &= l_m^{\Delta}(X_{m+1}) = -V \sum_{i=1}^{d} w_i X_{m+1,i} = -V w^T X_{m+1}, \\ \text{where } V &:= V_m, w_i := w_{m,i}, w = (w_1, \dots, w_d)^T, \\ X_{m+1} &= (X_{m+1,1}, X_{m+1,2}, \dots, X_{m+1,d})^T. \\ \text{Assumption 1: } X_{m+1} &\sim N_d(\mu, \Sigma), \\ \text{and thus } -V w^T X_{m+1} &\sim N(-V w^T \mu, V^2 w^T \Sigma w) \\ \text{Let } x_{m-n+1}, \dots, x_m \text{ be the historically observed risk factor changes} \\ \text{Assumption 2: } x_{m-n+1}, \dots, x_m \text{ are i.i.d.} \\ \text{Estimator for } \mu_i : \hat{\mu}_i = \frac{1}{n} \sum_{k=1}^n x_{m-k+1,i}, i = 1, 2, \dots, d \\ \text{Estimator for } \Sigma = \begin{pmatrix} \sigma_{ij} \end{pmatrix}: \hat{\Sigma} = \begin{pmatrix} \hat{\sigma}_{ij} \end{pmatrix} \text{ where} \\ \hat{\sigma}_{ij} = \frac{1}{n-1} \sum_{k=1}^n (x_{m-k+1,i} - \mu_i)(x_{m-k+1,j} - \mu_j) \\ \text{Estimator for VaR: } \widehat{VaR}(L_{m+1}) = -V w^T \hat{\mu} + V \sqrt{w^T \hat{\Sigma} w} \phi^{-1}(\alpha) \\ \end{split}$$