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. be the loss distribution of L, ;.

1. The standard deviation std(L) := \/o?(F.)
It is used frequently in portfolio theory.

Disadvantages:

» STD exists only for distributions with E(F?) < oo, not
applicable to leptocurtic (“fat tailed”) loss distributions;
> gains and losses equally influence the STD.

Example
L]_ ~ N(O, 2), L2 ~ T4 (Student’s t-distribution with m = 4 degrees of freedom)

0?(L1) =2 and ?(Ly) = 5 = 2 hold
However the probability of losses is much larger for L, than for
L.

Plot the logarithm of the quotient In[P(Ly > x)/P(L; > x)]!
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Definition: Let L be the loss distribution with distribution function
Fi. Let a € (0,1) be a given confindence level.
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2. Value at Risk (VaR,(L))

Definition: Let L be the loss distribution with distribution function
Fi. Let a € (0,1) be a given confindence level.

VaR, (L) is the smallest number /, such that P(L > /) <1 -«
holds.

VaR, (L) =inf{lleR: P(L>1)<1—a} =

inf{lleR:1-F(/)<1l—a}=inf{leR: F () > a}
BIS (Bank of International Settlements) suggests VaRy.go(L) over a
horizon of 10 days as a measure for the market risk of a portfolio.
Definition: Let F: A — B be an increasing function. The function
F<:B— AU{—00,+o0},y — inf{x € R: F(x) > y} is called
generalized inverse function of F.
Notice that inf ) = oo.
If F is strictly monotone increasing, then F~! = F< holds.
Exercise: Compute F* for F: [0, +00) — [0,1] with

1/72 0<x<1
F(X)_{l/ 12X
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Value at Risk (contd.)

Definition: Let F: IR — IR be a (monotone increasing) distribution
function and g, (F) :=inf{x € R: F(x) > a} be a-quantile of F.

For the loss function L and its distribution function F the following holds:

VaRa(L) = gu(F) = F=(a).

Example: Let L ~ N(u,o?).

Then VaR,(L) = p+ 0qua(®) = p+ c® () holds, where & is the
distribution function of a random variable X ~ N(0,1).

Exercise: Consider a portfolio consisting of 5 pieces of an asset A. The
today's price of Ais Sp = 100. The daily logarithmic returns are i.i.d.:
X1 =In % Xo = In % ..~ N(0,0.01). Let L; be the 1-day portfolio
loss in the time interval (today, tomorrow).

(a) Compute VaRpg9(L1).

(b) Compute VaRy.g9(L100) and VaRy.g9(Ly,), where Ligo is the
100-day portfolio loss over a horizon of 100 days starting with
today. L, is the linearization of the above mentioned 100-day
PF-portfolio loss.

Hint: For Z ~ N(0,1) use the equality F;*(0.99) ~ 2.3.
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A disadvantage of VaR: It tells nothing about the amount of loss in
the case that a large loss L > VaR, (L) happens.

Definition: Let a be a given confidence level and L a continuous
loss distribution with distribution function F;.

CVaR, (L) := ES,(L) = E(L|L > VaR,(L)).

If F, is continuous:

L L
CVaR, (L) = E(L|L > VaR,(L)) = w

+oo
ﬁE(LI[qa(L)m)) 1 1a J Ga(L )/dFL(/)

I is the indicator function of the set A: [4(x) = { L x€eA

0 x¢A

If F, is discrete the generalized CVaR is defined as follows:
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3. Conditional Value at Risk CVaRa(L) (or Expected Shortfall (ES))

A disadvantage of VaR: It tells nothing about the amount of loss in
the case that a large loss L > VaR, (L) happens.

Definition: Let a be a given confidence level and L a continuous
loss distribution with distribution function F;.

CVaR, (L) := ES,(L) = E(L|L > VaR,(L)).

If F, is continuous:

CVaRy(L) = E(L|L > VaR,(L)) = Ellsaw.c0(b)

A P(L>ga(L))

1 B Y

o E(Lhgu(n.00) = 125 fa( )/dFL(/)

I is the indicator function of the set A: [4(x) = { (1) j: ;2

If F, is discrete the generalized CVaR is defined as follows:
1
GCVaRa(L) = 1—a [E(L/[qa(L)m)) + ga <1 - — P(L > qa(L))>]

Lemma Let o be a given confidence level and L a continuous loss
function with dlstrlbutlon F,_
Then CVaR,(L) = f VaR,(L)dp holds.
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Conditional Value at Risk (contd.)
Example 1:

(a) Let L ~ Exp()). Compute CVaR,(L).

(b) Let the distribution function F; of the loss function L be given as
follows : Fi(x) =1 — (14 yx)~Y/7 for x > 0 and v € (0,1).
Compute CVaR,(L).

Example 2:

Let L ~ N(0,1). Let ¢ und ® be the density and the distribution

71
function of L, respectively. Show that CVaR, (L) = M holds.
Let L’ ~ N(u,02). Show that CVaR,(L') = u + aM holds.
Exercise:

Let the loss L be distributed according to the Student’s t-distribution
with v > 1 degrees of freedom. The density of L is

(v +1)/2) <1 s > S

8(x) = ST (v)2)

Show that CVaR, (L) = &4 () () where ¢, is the
distribution function of L.



Methods for the computation of VaR und CVaR

Consider the portfolio value Vi, = f(tm, Zm), where Z,, is the vector of
risk factors.

Let the loss function over the interval [ty, tmy1] be given as
Limy1 = fm)(Xms1), where Xy 1 is the vector of the risk factor changes,

l.e.
Xm+1 = Zm+1 —Zn.

Consider observations (historical data) of risk factor values
Zm—n+17 e Zm-
How to use these data to compute/estimate VaR(Lnt1), CVaR(Lmy1)?



The empirical VaR and the empirical CVaR

Let x1,x2,...,X, be a sample of i.i.d. random variables X1, X5, ..., X,
with distribution function F.
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The empirical distribution function

1 n
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The empirical VaR and the empirical CVaR
Let x1,x2,...,X, be a sample of i.i.d. random variables X1, X5, ..., X,
with distribution function F.
The empirical distribution function

1 n
Fa(x) = - D lgetoe) (X)
k=1

The empirical quantile

ga(Fn) = inf{x € R: Fy(x) > a} = Fi (a)

Assumption: x; > x2 > ... > x,. Then go(Fn) = X[p1—a))+1 holds, where
[y] :=sup{n € IN: n < y} for every y € R.

Lemma
Let §o(F) := qa(F,) and let F be a strictly increasing function. Then
limp— o0 Ga(F) = qa(F) holds Vo € (0,1), i.e. the estimator §o(F) is

consistent.
n(1—a)]+1
= Xk

_— [
The empirical estimator of CVaR is CVaR,(F) = S CE=)EsE
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A non-parametric bootstrapping approach to compute the

confidence interval of the estimator

Let X1, Xo,..., X, bei.i.d. with distribution function F and let
X1 > Xp > ... > X, be an ordered sample of F.

Goal: computation of an estimator of a certain parameter 6 depending on
F, e.g. 0 = g,(F), and the corresponding confidence interval.

Let é(xl7 ..., Xp) be an estimator of 4, e.g. 9A(X1, ooy Xn) = X[(n(1—a)]+1
0= qa(F)'

The required confidence interval is an (a, b) with a = a(xq, ..., x,) u.
b= b(x1,...,%n), such that P(a < 6 < b) = p, for a given confidence
level p.

Case |I: F is known.
(1)

Generate N samples >”<1i
(N should be large)

Let §; = 9<;1<">,;§">,...,;5">), 1<i<N.

7>~<2(i), . 7>"<r(;i), 1 < i < N, by simulation from F



Case | (cont.)

The empirical distribution function of é(xl,xz, ..., Xp) is given as

~ 1 N
0 .__ .
v =3 D .o0)
i=1

and it tends to F? for N — oc.

The required conficence interval is given as

<q12p(F£), qwzpwﬁ))

(assuming that the sample sizes N und n are large enough).



Case Il: F is not known =- Bootstrapping!
The empirical distribution function of X;, 1 < i < n, is given as

1 n
F,,(X) = ; Z I[X,',OO)(X)'
i=1

For n large F, =~ F holds.
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Case Il: F is not known =- Bootstrapping!
The empirical distribution function of X;, 1 < i < n, is given as

1 n
F,,(X) = ; Z I[X,',OO)(X)'
i=1

For n large F, =~ F holds.

Generate samples from F,, be choosing n elementes in {xi,x2,...,Xn}
and putting every element back to the set immediately after its choice
Assume N such samples are generated: xf('),xg('), . ,x,f('), 1<i<N.

Compute 0 = é(xl*(i),xg(/), .. ,X:(i)

The empirical distribution of 7 is given as Ffj (x) = % Z”V:l liox o0y (%);

it approximates the distribution function FO of HA(Xl,Xg, ooy Xn) for

N — o0.

A confidence interval (a, b) with confidence level p is given by
a=qa_p)2(FN ), b= daip)2(FN)-

Thus a = QFN(1+p)/2]+1’ b= 0?N(1—p)/2]+1’ where 67 > ... > 0 is the

sorted 0* sample.



Summary of the non-parametric bootstrapping approach to

compute confidence intervals

Input: Sample xi, x, ..., x, of the i.i.d. rand0£n variables X1, X5,..., X,
with distribution function F and an estimator 6(xq, x2, ..., x,) of an
unknown parameter 6(F), A confidence level p € (0,1).

Output: A confidence interval I, for 6 with confidence level p.
> Generate N new Samples xf(i),x;(i), oD 1<i<n, by

chosing elements in {x1, x2, ..., x,} and putting them back right
after the choice.

» Compute 0F = é<x1*(i)>xz*(i)7 o ’X:(i)> .

> Setz |, = 9?N(1+p)/2]+1,N"9[*N(1—p)/2]+1,N , Where

01y =03 = ... 0y y is obtained by sorting 67,03, ...,0} .



An approximative solution without bootstrapping

Input: A sample x1, xo, ..., x, of the random variables X;, 1 </ < n,
i.i.d. with unknown continuous distribution function F, a confidence level

p€(0,1).
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i.i.d. with unknown continuous distribution function F, a confidence level
p€(0,1).

Output: A p’ € (0,1), with p < p’ < p + ¢, for some small ¢, and a
confidence interval (a, b) for g (F), i.e. a = a(x1, %2, ..., Xn),

b = b(x1, X2, ...,X,), such that

P(a < go(F) < b) =p' and P(a > qo(F)) = P(b < ga(F) < (1—p)/2 holds.



An approximative solution without bootstrapping

Input: A sample x1, xo, ..., x, of the random variables X;, 1 </ < n,
i.i.d. with unknown continuous distribution function F, a confidence level
p€(0,1).

Output: A p’ € (0,1), with p < p’ < p + ¢, for some small ¢, and a
confidence interval (a, b) for g (F), i.e. a = a(x1, %2, ..., Xn),

b = b(x1, X2, ...,X,), such that

P(a < go(F) < b) =p' and P(a > qo(F)) = P(b < ga(F) < (1—p)/2 holds.

Assume w.l.0.g. that the sample is sorted x; > xo > ... > Xx,.
Determine i > j, i,j € {1,2,...,n}, and the smallest p’ > p, such that

P(x,- < qo(F) < xj> =p (%) and

P(x,- > qa(F)> <(1-p)/2and P(x,- < qa(F)> < (1 - p)/2(x+).
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Let Yo == #{xx: xk > qu(F)}



An approximative solution without bootstrapping (contd.)

Let Yo == #{xx: xk > qu(F)}

| /\

We get P(x; < qa(F)) = P(x; < ga(F)) = P(Ya 1)
=1 <i

J-
P(X,' > Qa(F)) ~ P(Xi > qa(F)) - P( - 1)



An approximative solution without bootstrapping (contd.)

Let Yo == #{xx: xk > qu(F)}

II/\

We get P(x; < gu(F)) = P(x; < qu(F)) = P(Yo <j - 1)
=1- <i

PO = qulF) ~ PG = Gu(F)) =1 — P(Ya < 1— 1)

Yo ~ Bin(n,1 — ) since Prob(xx > qo(F)) = 1 — « for a sample point
Xk -



An approximative solution without bootstrapping (contd.)

Let Yo == #{xx: xk > qu(F)}

We get P(x; < ga(F)) = P(x < qa(F)) = P(Ya <Jj = 1)
P(xi = qa(F)) = P(xi > qa(F)) = 1= P(Ya <i—1)
Yo ~ Bin(n,1 — ) since Prob(xx > qo(F)) = 1 — « for a sample point

Xk -

Compute P(x; < qo(F)) and P(xi > q.(F)) for different i and j until
indices i,j € {1,2,...,n}, i > j, which fulfill (xx) are found.



An approximative solution without bootstrapping (contd.)

Let Yo == #{xx: xk > qu(F)}

We get P(x; < ga(F)) = P(x < qa(F)) = P(Ya <Jj = 1)
P(xi = qa(F)) = P(xi > qa(F)) = 1= P(Ya <i—1)
Yo ~ Bin(n,1 — ) since Prob(xx > qo(F)) = 1 — « for a sample point

Xk -

Compute P(x; < qo(F)) and P(xi > q.(F)) for different i and j until
indices i,j € {1,2,...,n}, i > j, which fulfill (xx) are found.

Set b := xj and a := Xx;.
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(i) Historical simulation

Let Xp—pt1,--.,Xm be historical observations of the risk factor changes
Xm—n+1, - - - » Xm; the historically realized losses are given as

/k = /[m](Xm—k+1)v k = 17 2, Loy n,
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/k = /[m](Xm—k—i-l)v k = 17 2, .

Assumption: the historically realized losses are i.i.d.

The historically realized losses can be seen as a sample of the loss
distribution. Sort the historical losses /;, 1 < i < n, to obtain

/1 n Z /2 n — > In n-

Empirical VaR: VaR = qo(FL) = hn—a) 1.0

[n(1 a]+1
Empirical CVaR: CVaR = W

Analogously, we can consider the loss aggregated over a given time
interval (number of days or general time units).

VaR and CVaR of the loss aggregated over a number of days, e.g. 10
days, over the days m—n+10(k —1)+1m—n+10(k—1)+2, ...,
m — n+ 10(k — 1) 4 10, denoted by /1510) is given as

10 10
//E )= ) (Zj—l Xm—n+10(k—1)+j k=1,....[n/10]
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> simple implementation

» considers intrinsically the dependencies between the elements of the
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Advantages:
> simple implementation

» considers intrinsically the dependencies between the elements of the
vector of the risk factors changes Xp—k = (Xm—k,15- - » Xm—k,d)-

Disadvantages:
» lots of historical data needed to get good estimators

> the estimated loss cannot be larger than the maximal loss
experienced in the past



(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the
vector of the risk factor changes is normally distributed.



(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the
vector of the risk factor changes is normally distributed.

LAy = IA(Xm1) = =V X0 i1y = — VW X1,
where V = Vi, W i= Wi, w = (wq,...,wq) T,

2
Xmt1 = (Xm+1,1, Xmt1,2, - -+, Xm41,d)



(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the
vector of the risk factor changes is normally distributed.

A _ A _ d _ T
Lo = In(Ximg1) = =V iy wiXmpai = —Vw ' X,
where V = Vi, W i= Wi, w = (wq,...,wq) T,
T
Xm1 = (Xmi1,1, Xmt1,2, - -+, Xmt1,d) -

Assumption 1: Xp41 ~ Ng(p, X),
and thus —Vw ™ X1 ~ N(=Vw T, V2w T Zw)



(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the
vector of the risk factor changes is normally distributed.

A _ A _ d _ T
Lm+1 = /m (Xm+1) = 7\/2/:1 W,'Xm+17,' = 7VW Xm+1,
where V = Vi, W i= Wi, w = (wq,...,wq) T,
T
Xmt1 = (Xm+1,1, Xmt1,2, - -+, Xm41,d)

Assumption 1: Xp41 ~ Ng(p, X),
and thus —Vw ™ X1 ~ N(=Vw T, V2w T Zw)

Let Xm—n+1,---,Xm be the historically observed risk factor changes



(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the
vector of the risk factor changes is normally distributed.

A _ A _ d _ T
Lm+1 = /m (Xm+1) = 7\/2/:1 W,'Xm+17,' = 7VW Xm+1,
where V = Vi, W i= Wi, w = (wq,...,wq) T,
T
Xmt1 = (Xm+1,1, Xmt1,2, - -+, Xm41,d)

Assumption 1: Xp41 ~ Ng(p, X),
and thus —Vw ™ X1 ~ N(=Vw T, V2w T Zw)
Let Xm—n+1,---,Xm be the historically observed risk factor changes

Assumption 2: Xp_pi1,-..,Xm are i.i.d.



(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the
vector of the risk factor changes is normally distributed.

A _ A _ d _ T
Lm+1 = /m (Xm+1) = 7\/2/:1 W,'Xm+17,' = 7VW Xm+1,
where V = Vi, W i= Wi, w = (wq,...,wq) T,
T
Xmt1 = (Xm+1,1, Xmt1,2, - -+, Xm41,d)

Assumption 1: Xp41 ~ Ng(p, X),
and thus —Vw ™ X1 ~ N(=Vw T, V2w T Zw)

Let Xm—n+1,---,Xm be the historically observed risk factor changes
Assumption 2: Xp_pi1,-..,Xm are i.i.d.
Estimator for pi;: fii = 2 30 Xm—ks1,i i =1,2,...,d

Estimator for ¥ = (a,j): s = (6,;) where

6 = 25 > by (Xm—ket1, — 147) (Xe—k+1 — 147) Lhj=12,...,d



(ii) The variance-covariance method

Idea: use the linearised loss function under the assumption that the
vector of the risk factor changes is normally distributed.

A _ A _ d _ T
Lo = In(Ximg1) = =V iy wiXmpai = —Vw ' X,
where V = Vi, W i= Wi, w = (wq,...,wq) T,
T
Xm1 = (Xmi1,1, Xmt1,2, - -+, Xmt1,d) -

Assumption 1: Xp41 ~ Ng(p, X),
and thus —Vw ™ X1 ~ N(=Vw T, V2w T Zw)

Let Xm—n+1,---,Xm be the historically observed risk factor changes
Assumption 2: Xp_pi1,-..,Xm are i.i.d.

Estimator for pi;: fii = 2 30 Xm—ks1,i i =1,2,...,d

Estimator for ¥ = (a,j): s = (6,;) where

~ 1 ..

Gij = 25 > pq (Xm—kr1,i — 1) (Xm—kt1.5 — 1) hj=12....d

Estimator for VaR: VaR(Lmy1) = —VwT i+ VVwTSwo ()



