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Y; are the loss indicators with default probability 5; and ; = (1 — A\;)L;
are the positive deterministic exposures in the case that a corresponding
loss happens. \; are the recovery rates and L; are the credit nominals, for
i=1,2,....m

Let Z be a vector of economical impact factors, such that Y;|Z are
independent and Y;|(Z = z) ~ Bernoulli(pi(z)), ¥i=1,2,...,m

Goal: Estimation of § = P(L > ¢) by means of IS, for some given ¢ with
c >> E(L).

Simplified case: Y; are independent for i =1,2,..., m.

Let Q = {0,1}™ be the state space of the random vector Y.

Consider the probability measure P in :

P({y}) = Hp,’l— ),y €{0,13.

The moment generating function of L is M (t) =[] (e*pi + 1 — p;).
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Consider a probability measure Q;:

Qi =11 (oo 22lior) —pra—pyr).

P exp{te;}p; +1— p;

Let G¢; be new default probabilities

qr,i = exp{te; }p;/(exp{te;} pi + 1 — p;).

We have Q:({y}) =1, 3" (1 — g;)*, for y € {0,1}™.
Thus after applying the exponential tilting the default indicators are
independent with new default probabilities g ;.

lime oo Gj = 1 and lim;—, o §r.; = 0 imply that E9(L) takes all values
in (0,37, &) for t € R.
Choose t, such that >/ | &G = c.
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First step: Estimation of the conditional excess probabilites
0(z) :=P(L > ¢|Z = z) for a given realisation z of the economic factor
Z, by means of the IS approach for the simplified case.

Algorithm: IS for the conditional loss distribution

(1)

For a given z compute the conditional default probabilities p;(z) (as
in the simplified case) and solve the equation

m

‘ exp{te;} pi(2)
; & exp{te;} pi(z) + 1 — pi(2)

=cC.

The solution t, (which clearly depends also on the given ¢) specifies
the correct degree of tilting.

Generate n; conditional realisations of the vector of default
indicators (Y1,..., Ym), Y; are simulated from Bernoulli(gq;),
i=1,2,...,m, with

exp{t.ei}pi(z)
exp{t.e;}pi(z) +1— pi(z)

qi =
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moment generating function of L. Let L), [ . [(M) be the ny
conditional realisations of L for the n; simulated realisations of
Y1, Ya,..., Ym. Compute the /S-estimator for the tail probability of
the conditional loss distribution:

0US)(2) = t)— Z loysc exp{—t,LU}LY).

n
_]1



The general case (contd.)

(3) Let /VI( (t) :=TI[exp{t.e}pi(z) + 1 — pi(z)] be the conditional
moment generating function of L. Let L), [ . [(M) be the ny
conditional realisations of L for the n; simulated realisations of
Y1, Ya,..., Ym. Compute the /S-estimator for the tail probability of
the conditional loss distribution:

0US)(2) = t)— Z loysc exp{—t,LU}LY).

n
_]1

Second step: Estimation of the unconditional excess probability
0 =P(L>c).



The general case (contd.)

(3) Let /VI )(t) := [[[exp{t.e;}pi(z) + 1 — pi(2)] be the conditional
moment generating function of L. Let L), [ . [(M) be the ny
conditional realisations of L for the n; simulated realisations of
Y1, Ya,..., Ym. Compute the /S-estimator for the tail probability of
the conditional loss distribution:

05°)(2) = f)* Z lo)s e exp{—t; LU }L0),
_] 1

Second step: Estimation of the unconditional excess probability
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Naive approach: Generate many realisations z of the impact factors Z
and compute 9( )( ) for every one of them. The required estimator is

5

the average of 6, )(z) over all realisations z.
This is not the most efficient approach, see Glasserman and Li (2003).
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Second step: Estimation of the unconditional excess probability

0 =P(L>c).

Naive approach: Generate many realisations z of the impact factors Z
and compute 9( )( ) for every one of them. The required estimator is

the average of 05,1 )(z) over all realisations z.
This is not the most efficient approach, see Glasserman and Li (2003).

A better alternative: IS for the impact factors.
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IS for the impact factors

Assumption: Z ~ Ny (0,X) (e.g. like in the probit-normal or logit BMD),

where k € N is the number of factors.

Let the IS density g be the density of N (u,X) for a new expected vector

u € R¥. A good choice of 1 should lead to frequent realisations of z

which imply high conditional default probabilities p;(z).

The likelihood ratio:
exp{—3Z'x71Z}

1
r,(Z) = —exp{—p'SZ+ Zputs My
)= otz - iz 2t H

Algorithm: complete IS for Bernoulli mixture models with Gaussian
factors
(1) Generate z1,2,...,2, ~ Ng(u,X) (nis the number of the
simulation rounds)
(2) For each z; compute é‘n’f’(z,) by applying the IS algorithm for the
conditional loss.
(3) compute the IS estimator for the independent excess probability:

n

. 1 .
6°) = - > ru(2)002)(z)

i=1
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The choice of u

1 should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since @f,’ls)(z) ~P(L > c|Z = z), search for an appropriate IS density for
the function z — P(L > ¢|Z = z).

Approach:

a) the IS denstity g* should be proportional to

P(L > c|Z = z)exp{—1z'E71z}.

b) the IS density should be a multivariate normal distribution Ny (u, X)
where the expected vector p is chosen as follows:

= argmax, {P(L > c|Z = z)exp{—32' L1z} }.

This problem is hard to solve exactly; in general P(L > ¢|Z = z) is not
available in analytical form.

Glasserman und Li (2003) propose some numerical solution approaches.



