
IS in the case of Bernoulli mixture models
(see Glasserman and Li (2003))
Consider the loss function of a credit portfolio L =

∑m
i=1 eiYi .

Yi are the loss indicators with default probability p̄i and ei = (1− λi )Li
are the positive deterministic exposures in the case that a corresponding
loss happens. λi are the recovery rates and Li are the credit nominals, for
i = 1, 2, . . . ,m.

Let Z be a vector of economical impact factors, such that Yi |Z are
independent and Yi |(Z = z) ∼ Bernoulli(pi (z)), ∀i = 1, 2, . . . ,m.

Goal: Estimation of θ = P(L ≥ c) by means of IS, for some given c with
c >> E (L).

Simplified case: Yi are independent for i = 1, 2, . . . ,m.
Let Ω = {0, 1}m be the state space of the random vector Y .
Consider the probability measure P in Ω:

P({y}) =
m∏
i=1

p̄yii (1− p̄i )
1−yi , y ∈ {0, 1}m.

The moment generating function of L is ML(t) =
∏m

i=1(etei p̄i + 1− p̄i ).
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IS in the case of Bernoulli mixture models (contd.)
Consider a probability measure Qt :

Qt({y}) =
n∏

i=1

(
exp{teiyi}

exp{tei}p̄i + 1− p̄i
p̄yii (1− p̄i )

1−yi
)
.

Let q̄t,i be new default probabilities

q̄t,i := exp{tei}p̄i/(exp{tei}p̄i + 1− p̄i ).

We have Qt({y}) =
∏m

i=1 q̄
yi
i (1− q̄i )

1−yi , for y ∈ {0, 1}m.

Thus after applying the exponential tilting the default indicators are
independent with new default probabilities q̄t,i .

limt→∞ q̄t,i = 1 and limt→−∞ q̄t,i = 0 imply that EQt (L) takes all values
in (0,

∑m
i=1 ei ) for t ∈ R.

Choose t, such that
∑m

i=1 ei q̄t,i = c .



IS in the case of Bernoulli mixture models (contd.)
Consider a probability measure Qt :

Qt({y}) =
n∏

i=1

(
exp{teiyi}

exp{tei}p̄i + 1− p̄i
p̄yii (1− p̄i )

1−yi
)
.

Let q̄t,i be new default probabilities

q̄t,i := exp{tei}p̄i/(exp{tei}p̄i + 1− p̄i ).

We have Qt({y}) =
∏m

i=1 q̄
yi
i (1− q̄i )

1−yi , for y ∈ {0, 1}m.

Thus after applying the exponential tilting the default indicators are
independent with new default probabilities q̄t,i .

limt→∞ q̄t,i = 1 and limt→−∞ q̄t,i = 0 imply that EQt (L) takes all values
in (0,

∑m
i=1 ei ) for t ∈ R.

Choose t, such that
∑m

i=1 ei q̄t,i = c .



IS in the case of Bernoulli mixture models (contd.)
Consider a probability measure Qt :

Qt({y}) =
n∏

i=1

(
exp{teiyi}

exp{tei}p̄i + 1− p̄i
p̄yii (1− p̄i )

1−yi
)
.

Let q̄t,i be new default probabilities

q̄t,i := exp{tei}p̄i/(exp{tei}p̄i + 1− p̄i ).

We have Qt({y}) =
∏m

i=1 q̄
yi
i (1− q̄i )

1−yi , for y ∈ {0, 1}m.

Thus after applying the exponential tilting the default indicators are
independent with new default probabilities q̄t,i .

limt→∞ q̄t,i = 1 and limt→−∞ q̄t,i = 0 imply that EQt (L) takes all values
in (0,

∑m
i=1 ei ) for t ∈ R.

Choose t, such that
∑m

i=1 ei q̄t,i = c .



IS in the case of Bernoulli mixture models (contd.)
Consider a probability measure Qt :

Qt({y}) =
n∏

i=1

(
exp{teiyi}

exp{tei}p̄i + 1− p̄i
p̄yii (1− p̄i )

1−yi
)
.

Let q̄t,i be new default probabilities

q̄t,i := exp{tei}p̄i/(exp{tei}p̄i + 1− p̄i ).

We have Qt({y}) =
∏m

i=1 q̄
yi
i (1− q̄i )

1−yi , for y ∈ {0, 1}m.

Thus after applying the exponential tilting the default indicators are
independent with new default probabilities q̄t,i .

limt→∞ q̄t,i = 1 and limt→−∞ q̄t,i = 0 imply that EQt (L) takes all values
in (0,

∑m
i=1 ei ) for t ∈ R.

Choose t, such that
∑m

i=1 ei q̄t,i = c .



IS in the case of Bernoulli mixture models (contd.)
Consider a probability measure Qt :

Qt({y}) =
n∏

i=1

(
exp{teiyi}

exp{tei}p̄i + 1− p̄i
p̄yii (1− p̄i )

1−yi
)
.

Let q̄t,i be new default probabilities

q̄t,i := exp{tei}p̄i/(exp{tei}p̄i + 1− p̄i ).

We have Qt({y}) =
∏m

i=1 q̄
yi
i (1− q̄i )

1−yi , for y ∈ {0, 1}m.

Thus after applying the exponential tilting the default indicators are
independent with new default probabilities q̄t,i .

limt→∞ q̄t,i = 1 and limt→−∞ q̄t,i = 0 imply that EQt (L) takes all values
in (0,

∑m
i=1 ei ) for t ∈ R.

Choose t, such that
∑m

i=1 ei q̄t,i = c .



IS in the case of Bernoulli mixture models (contd.)
Consider a probability measure Qt :

Qt({y}) =
n∏

i=1

(
exp{teiyi}

exp{tei}p̄i + 1− p̄i
p̄yii (1− p̄i )

1−yi
)
.

Let q̄t,i be new default probabilities

q̄t,i := exp{tei}p̄i/(exp{tei}p̄i + 1− p̄i ).

We have Qt({y}) =
∏m

i=1 q̄
yi
i (1− q̄i )

1−yi , for y ∈ {0, 1}m.

Thus after applying the exponential tilting the default indicators are
independent with new default probabilities q̄t,i .

limt→∞ q̄t,i = 1 and limt→−∞ q̄t,i = 0 imply that EQt (L) takes all values
in (0,

∑m
i=1 ei ) for t ∈ R.

Choose t, such that
∑m

i=1 ei q̄t,i = c .



IS in the case of Bernoulli mixture models (contd.)
The general case: Yi are independent conditional on Z

First step: Estimation of the conditional excess probabilites
θ(z) := P(L ≥ c |Z = z) for a given realisation z of the economic factor
Z , by means of the IS approach for the simplified case.

Algorithm: IS for the conditional loss distribution

(1) For a given z compute the conditional default probabilities pi (z) (as
in the simplified case) and solve the equation

m∑
i=1

ei
exp{tei}pi (z)

exp{tei}pi (z) + 1− pi (z)
= c .

The solution tz (which clearly depends also on the given c) specifies
the correct degree of tilting.

(2) Generate n1 conditional realisations of the vector of default
indicators (Y1, . . . ,Ym), Yi are simulated from Bernoulli(qi ),
i = 1, 2, . . . ,m, with

qi =
exp{tzei}pi (z)

exp{tzei}pi (z) + 1− pi (z)
.
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The general case (contd.)

(3) Let M
(z)
L (t) :=

∏
[exp{tzei}pi (z) + 1− pi (z)] be the conditional

moment generating function of L. Let L(1), L(2),. . .,L(n1) be the n1
conditional realisations of L for the n1 simulated realisations of
Y1,Y2, . . . ,Ym. Compute the IS-estimator for the tail probability of
the conditional loss distribution:

θ̂(IS)n1 (z) = M
(z)
L (t)

1

n1

n1∑
j=1

IL(j)≥c exp{−tzL(j)}L(j).

Second step: Estimation of the unconditional excess probability
θ = P(L ≥ c).

Naive approach: Generate many realisations z of the impact factors Z

and compute θ̂
(IS)
n1 (z) for every one of them. The required estimator is

the average of θ̂
(IS)
n1 (z) over all realisations z .

This is not the most efficient approach, see Glasserman and Li (2003).

A better alternative: IS for the impact factors.



The general case (contd.)

(3) Let M
(z)
L (t) :=

∏
[exp{tzei}pi (z) + 1− pi (z)] be the conditional

moment generating function of L. Let L(1), L(2),. . .,L(n1) be the n1
conditional realisations of L for the n1 simulated realisations of
Y1,Y2, . . . ,Ym. Compute the IS-estimator for the tail probability of
the conditional loss distribution:

θ̂(IS)n1 (z) = M
(z)
L (t)

1

n1

n1∑
j=1

IL(j)≥c exp{−tzL(j)}L(j).

Second step: Estimation of the unconditional excess probability
θ = P(L ≥ c).

Naive approach: Generate many realisations z of the impact factors Z

and compute θ̂
(IS)
n1 (z) for every one of them. The required estimator is

the average of θ̂
(IS)
n1 (z) over all realisations z .

This is not the most efficient approach, see Glasserman and Li (2003).

A better alternative: IS for the impact factors.



The general case (contd.)

(3) Let M
(z)
L (t) :=

∏
[exp{tzei}pi (z) + 1− pi (z)] be the conditional

moment generating function of L. Let L(1), L(2),. . .,L(n1) be the n1
conditional realisations of L for the n1 simulated realisations of
Y1,Y2, . . . ,Ym. Compute the IS-estimator for the tail probability of
the conditional loss distribution:

θ̂(IS)n1 (z) = M
(z)
L (t)

1

n1

n1∑
j=1

IL(j)≥c exp{−tzL(j)}L(j).

Second step: Estimation of the unconditional excess probability
θ = P(L ≥ c).

Naive approach: Generate many realisations z of the impact factors Z

and compute θ̂
(IS)
n1 (z) for every one of them. The required estimator is

the average of θ̂
(IS)
n1 (z) over all realisations z .

This is not the most efficient approach, see Glasserman and Li (2003).

A better alternative: IS for the impact factors.



The general case (contd.)

(3) Let M
(z)
L (t) :=

∏
[exp{tzei}pi (z) + 1− pi (z)] be the conditional

moment generating function of L. Let L(1), L(2),. . .,L(n1) be the n1
conditional realisations of L for the n1 simulated realisations of
Y1,Y2, . . . ,Ym. Compute the IS-estimator for the tail probability of
the conditional loss distribution:

θ̂(IS)n1 (z) = M
(z)
L (t)

1

n1

n1∑
j=1

IL(j)≥c exp{−tzL(j)}L(j).

Second step: Estimation of the unconditional excess probability
θ = P(L ≥ c).

Naive approach: Generate many realisations z of the impact factors Z

and compute θ̂
(IS)
n1 (z) for every one of them. The required estimator is

the average of θ̂
(IS)
n1 (z) over all realisations z .

This is not the most efficient approach, see Glasserman and Li (2003).

A better alternative: IS for the impact factors.



The general case (contd.)

(3) Let M
(z)
L (t) :=

∏
[exp{tzei}pi (z) + 1− pi (z)] be the conditional

moment generating function of L. Let L(1), L(2),. . .,L(n1) be the n1
conditional realisations of L for the n1 simulated realisations of
Y1,Y2, . . . ,Ym. Compute the IS-estimator for the tail probability of
the conditional loss distribution:

θ̂(IS)n1 (z) = M
(z)
L (t)

1

n1

n1∑
j=1

IL(j)≥c exp{−tzL(j)}L(j).

Second step: Estimation of the unconditional excess probability
θ = P(L ≥ c).

Naive approach: Generate many realisations z of the impact factors Z

and compute θ̂
(IS)
n1 (z) for every one of them. The required estimator is

the average of θ̂
(IS)
n1 (z) over all realisations z .

This is not the most efficient approach, see Glasserman and Li (2003).

A better alternative: IS for the impact factors.



IS for the impact factors

Assumption: Z ∼ Nk(0,Σ) (e.g. like in the probit-normal or logit BMD),
where k ∈ N is the number of factors.

Let the IS density g be the density of Nk(µ,Σ) for a new expected vector
µ ∈ Rk . A good choice of µ should lead to frequent realisations of z
which imply high conditional default probabilities pi (z).

The likelihood ratio:

rµ(Z ) =
exp{− 1

2Z
tΣ−1Z}

exp{− 1
2 (Z − µ)tΣ−1(Z − µ)}

= exp{−µtΣ−1Z +
1

2
µtΣ−1µ}

Algorithm: complete IS for Bernoulli mixture models with Gaussian
factors

(1) Generate z1, z2, . . . , zn ∼ Nk(µ,Σ) (n is the number of the
simulation rounds)

(2) For each zi compute θ̂
(IS)
n1 (zi ) by applying the IS algorithm for the

conditional loss.

(3) compute the IS estimator for the independent excess probability:

θ̂(IS)n =
1

n

n∑
i=1

rµ(zi )θ̂
(IS)
n1 (zi )
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n1 (zi ) by applying the IS algorithm for the

conditional loss.

(3) compute the IS estimator for the independent excess probability:
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IS for the impact factors
Assumption: Z ∼ Nk(0,Σ) (e.g. like in the probit-normal or logit BMD),
where k ∈ N is the number of factors.
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The choice of µ

µ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since θ̂
(IS)
n1 (z) ≈ P(L ≥ c |Z = z), search for an appropriate IS density for

the function z 7→ P(L ≥ c |Z = z).

Approach:
a) the IS denstity g∗ should be proportional to
P(L ≥ c |Z = z) exp{− 1

2z
tΣ−1z}.

b) the IS density should be a multivariate normal distribution Nk(µ,Σ)
where the expected vector µ is chosen as follows:
µ = argmaxz

{
P(L ≥ c |Z = z) exp{− 1

2z
tΣ−1z}

}
.

This problem is hard to solve exactly; in general P(L ≥ c |Z = z) is not
available in analytical form.

Glasserman und Li (2003) propose some numerical solution approaches.
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