(see Glasserman and Li (2003))

Consider the loss function of a credit portfolio $L = \sum_{i=1}^{m} e_i Y_i$.

(see Glasserman and Li (2003))

Consider the loss function of a credit portfolio $L = \sum_{i=1}^{m} e_i Y_i$.

 Y_i are the loss indicators with default probability \bar{p}_i and $e_i = (1 - \lambda_i)L_i$ are the positive deterministic exposures in the case that a corresponding loss happens. λ_i are the recovery rates and L_i are the credit nominals, for i = 1, 2, ..., m.

(see Glasserman and Li (2003))

Consider the loss function of a credit portfolio $L = \sum_{i=1}^{m} e_i Y_i$.

 Y_i are the loss indicators with default probability \bar{p}_i and $e_i = (1 - \lambda_i)L_i$ are the positive deterministic exposures in the case that a corresponding loss happens. λ_i are the recovery rates and L_i are the credit nominals, for i = 1, 2, ..., m.

Let Z be a vector of economical impact factors, such that $Y_i|Z$ are independent and $Y_i|(Z = z) \sim Bernoulli(p_i(z))$, $\forall i = 1, 2, ..., m$.

(see Glasserman and Li (2003))

Consider the loss function of a credit portfolio $L = \sum_{i=1}^{m} e_i Y_i$.

 Y_i are the loss indicators with default probability \bar{p}_i and $e_i = (1 - \lambda_i)L_i$ are the positive deterministic exposures in the case that a corresponding loss happens. λ_i are the recovery rates and L_i are the credit nominals, for i = 1, 2, ..., m.

Let Z be a vector of economical impact factors, such that $Y_i|Z$ are independent and $Y_i|(Z = z) \sim Bernoulli(p_i(z)), \forall i = 1, 2, ..., m$.

Goal: Estimation of $\theta = \mathbb{P}(L \ge c)$ by means of IS, for some given c with c >> E(L).

(see Glasserman and Li (2003))

Consider the loss function of a credit portfolio $L = \sum_{i=1}^{m} e_i Y_i$.

 Y_i are the loss indicators with default probability \bar{p}_i and $e_i = (1 - \lambda_i)L_i$ are the positive deterministic exposures in the case that a corresponding loss happens. λ_i are the recovery rates and L_i are the credit nominals, for i = 1, 2, ..., m.

Let Z be a vector of economical impact factors, such that $Y_i|Z$ are independent and $Y_i|(Z = z) \sim Bernoulli(p_i(z))$, $\forall i = 1, 2, ..., m$.

Goal: Estimation of $\theta = \mathbb{P}(L \ge c)$ by means of IS, for some given c with c >> E(L).

Simplified case: Y_i are independent for i = 1, 2, ..., m. Let $\Omega = \{0, 1\}^m$ be the state space of the random vector Y. Consider the probability measure P in Ω :

$$P(\{y\}) = \prod_{i=1}^{m} ar{p}_{i}^{y_{i}} (1 - ar{p}_{i})^{1 - y_{i}}, \ y \in \{0, 1\}^{m}.$$

The moment generating function of L is $M_L(t) = \prod_{i=1}^m (e^{te_i}\bar{p}_i + 1 - \bar{p}_i)$.

$$Q_t(\{y\}) = \prod_{i=1}^n \left(\frac{\exp\{te_i y_i\}}{\exp\{te_i\}\bar{p}_i + 1 - \bar{p}_i} \bar{p}_i^{y_i} (1 - \bar{p}_i)^{1 - y_i} \right).$$

$$Q_t(\{y\}) = \prod_{i=1}^n \left(\frac{\exp\{te_i y_i\}}{\exp\{te_i\}\bar{p}_i + 1 - \bar{p}_i} \bar{p}_i^{y_i} (1 - \bar{p}_i)^{1-y_i} \right).$$

Let $\bar{q}_{t,i}$ be new default probabilities

$$\bar{q}_{t,i} := \exp\{te_i\}\bar{p}_i/(\exp\{te_i\}\bar{p}_i+1-\bar{p}_i).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$Q_t(\{y\}) = \prod_{i=1}^n \left(\frac{\exp\{te_i y_i\}}{\exp\{te_i\}\bar{p}_i + 1 - \bar{p}_i} \bar{p}_i^{y_i} (1 - \bar{p}_i)^{1 - y_i} \right).$$

Let $\bar{q}_{t,i}$ be new default probabilities

$$ar{q}_{t,i} := \exp\{te_i\}ar{p}_i/(\exp\{te_i\}ar{p}_i+1-ar{p}_i).$$

(日) (日) (日) (日) (日) (日) (日) (日)

We have $Q_t(\{y\}) = \prod_{i=1}^m \bar{q}_i^{y_i} (1 - \bar{q}_i)^{1-y_i}$, for $y \in \{0, 1\}^m$.

$$Q_t(\{y\}) = \prod_{i=1}^n \left(\frac{\exp\{te_i y_i\}}{\exp\{te_i\}\bar{p}_i + 1 - \bar{p}_i} \bar{p}_i^{y_i} (1 - \bar{p}_i)^{1 - y_i} \right).$$

Let $\bar{q}_{t,i}$ be new default probabilities

$$ar{q}_{t,i} := \exp\{te_i\}ar{p}_i/(\exp\{te_i\}ar{p}_i+1-ar{p}_i).$$

We have $Q_t(\{y\}) = \prod_{i=1}^m \bar{q}_i^{y_i} (1 - \bar{q}_i)^{1-y_i}$, for $y \in \{0, 1\}^m$.

Thus after applying the exponential tilting the default indicators are independent with new default probabilities $\bar{q}_{t,i}$.

$$Q_t(\{y\}) = \prod_{i=1}^n \left(\frac{\exp\{te_i y_i\}}{\exp\{te_i\}\bar{p}_i + 1 - \bar{p}_i} \bar{p}_i^{y_i} (1 - \bar{p}_i)^{1 - y_i} \right).$$

Let $\bar{q}_{t,i}$ be new default probabilities

$$ar{q}_{t,i} := \exp\{te_i\}ar{p}_i/(\exp\{te_i\}ar{p}_i+1-ar{p}_i).$$

We have $Q_t(\{y\}) = \prod_{i=1}^m \bar{q}_i^{y_i} (1 - \bar{q}_i)^{1-y_i}$, for $y \in \{0, 1\}^m$.

Thus after applying the exponential tilting the default indicators are independent with new default probabilities $\bar{q}_{t,i}$.

 $\lim_{t\to\infty} \bar{q}_{t,i} = 1$ and $\lim_{t\to-\infty} \bar{q}_{t,i} = 0$ imply that $E^{Q_t}(L)$ takes all values in $(0, \sum_{i=1}^m e_i)$ for $t \in \mathbb{R}$.

$$Q_t(\{y\}) = \prod_{i=1}^n \left(\frac{\exp\{te_i y_i\}}{\exp\{te_i\}\bar{p}_i + 1 - \bar{p}_i} \bar{p}_i^{y_i} (1 - \bar{p}_i)^{1 - y_i} \right).$$

Let $\bar{q}_{t,i}$ be new default probabilities

$$ar{q}_{t,i} := \exp\{te_i\}ar{p}_i/(\exp\{te_i\}ar{p}_i+1-ar{p}_i).$$

We have $Q_t(\{y\}) = \prod_{i=1}^m \bar{q}_i^{y_i} (1 - \bar{q}_i)^{1-y_i}$, for $y \in \{0, 1\}^m$.

Thus after applying the exponential tilting the default indicators are independent with new default probabilities $\bar{q}_{t,i}$.

 $\lim_{t\to\infty} \bar{q}_{t,i} = 1 \text{ and } \lim_{t\to-\infty} \bar{q}_{t,i} = 0 \text{ imply that } E^{Q_t}(L) \text{ takes all values in } (0, \sum_{i=1}^m e_i) \text{ for } t \in \mathbb{R}.$ Choose *t*, such that $\sum_{i=1}^m e_i \bar{q}_{t,i} = c$.

The general case: Y_i are independent conditional on Z

The general case: Y_i are independent conditional on Z

First step: Estimation of the conditional excess probabilites $\overline{\theta(z)} := \mathbb{P}(L \ge c | Z = z)$ for a given realisation z of the economic factor Z, by means of the IS approach for the simplified case.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The general case: Y_i are independent conditional on Z

First step: Estimation of the conditional excess probabilites $\overline{\theta(z)} := \mathbb{P}(L \ge c | Z = z)$ for a given realisation z of the economic factor Z, by means of the IS approach for the simplified case.

Algorithm: IS for the conditional loss distribution

(1) For a given z compute the conditional default probabilities $p_i(z)$ (as in the simplified case) and solve the equation

$$\sum_{i=1}^m e_i rac{\exp\{te_i\}
ho_i(z)}{\exp\{te_i\}
ho_i(z) + 1 -
ho_i(z)} = c \, .$$

The solution t_z (which clearly depends also on the given c) specifies the correct *degree of tilting*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The general case: Y_i are independent conditional on Z

First step: Estimation of the conditional excess probabilites $\overline{\theta(z)} := \mathbb{P}(L \ge c | Z = z)$ for a given realisation z of the economic factor Z, by means of the IS approach for the simplified case.

Algorithm: IS for the conditional loss distribution

(1) For a given z compute the conditional default probabilities $p_i(z)$ (as in the simplified case) and solve the equation

$$\sum_{i=1}^{m} e_i \frac{\exp\{te_i\}p_i(z)}{\exp\{te_i\}p_i(z)+1-p_i(z)} = c \,.$$

The solution t_z (which clearly depends also on the given c) specifies the correct *degree of tilting*.

(2) Generate n₁ conditional realisations of the vector of default indicators (Y₁,..., Y_m), Y_i are simulated from Bernoulli(q_i), i = 1, 2, ..., m, with

$$q_i = \frac{\exp\{t_z e_i\}p_i(z)}{\exp\{t_z e_i\}p_i(z) + 1 - p_i(z)}$$

(3) Let M_L^(z)(t) := ∏[exp{t_ze_i}p_i(z) + 1 − p_i(z)] be the conditional moment generating function of L. Let L⁽¹⁾, L⁽²⁾,...,L^(n₁) be the n₁ conditional realisations of L for the n₁ simulated realisations of Y₁, Y₂,..., Y_m. Compute the *IS*-estimator for the tail probability of the conditional loss distribution:

$$\hat{\theta}_{n_1}^{(IS)}(z) = M_L^{(z)}(t) \frac{1}{n_1} \sum_{j=1}^{n_1} I_{L^{(j)} \ge c} \exp\{-t_z L^{(j)}\} L^{(j)}.$$

(3) Let M_L^(z)(t) := ∏[exp{t_ze_i}p_i(z) + 1 − p_i(z)] be the conditional moment generating function of L. Let L⁽¹⁾, L⁽²⁾,...,L^(n₁) be the n₁ conditional realisations of L for the n₁ simulated realisations of Y₁, Y₂,..., Y_m. Compute the *IS*-estimator for the tail probability of the conditional loss distribution:

$$\hat{\theta}_{n_1}^{(IS)}(z) = M_L^{(z)}(t) \frac{1}{n_1} \sum_{j=1}^{n_1} I_{L^{(j)} \ge c} \exp\{-t_z L^{(j)}\} L^{(j)}.$$

Second step: Estimation of the unconditional excess probability $\overline{\theta} = \mathbb{P}(L \ge c)$.

(3) Let M^(z)_L(t) := ∏[exp{t_ze_i}p_i(z) + 1 − p_i(z)] be the conditional moment generating function of L. Let L⁽¹⁾, L⁽²⁾,...,L^(n₁) be the n₁ conditional realisations of L for the n₁ simulated realisations of Y₁, Y₂,..., Y_m. Compute the *IS*-estimator for the tail probability of the conditional loss distribution:

$$\hat{\theta}_{n_1}^{(IS)}(z) = M_L^{(z)}(t) \frac{1}{n_1} \sum_{j=1}^{n_1} I_{L^{(j)} \ge c} \exp\{-t_z L^{(j)}\} L^{(j)}.$$

Second step: Estimation of the unconditional excess probability $\overline{\theta} = \mathbb{P}(L \ge c)$.

Naive approach: Generate many realisations z of the impact factors Z and compute $\hat{\theta}_{n_1}^{(IS)}(z)$ for every one of them. The required estimator is the average of $\hat{\theta}_{n_1}^{(IS)}(z)$ over all realisations z.

This is not the most efficient approach, see Glasserman and Li (2003).

(3) Let M^(z)_L(t) := ∏[exp{t_ze_i}p_i(z) + 1 − p_i(z)] be the conditional moment generating function of L. Let L⁽¹⁾, L⁽²⁾,...,L^(n₁) be the n₁ conditional realisations of L for the n₁ simulated realisations of Y₁, Y₂,..., Y_m. Compute the *IS*-estimator for the tail probability of the conditional loss distribution:

$$\hat{\theta}_{n_1}^{(IS)}(z) = M_L^{(z)}(t) \frac{1}{n_1} \sum_{j=1}^{n_1} I_{L^{(j)} \ge c} \exp\{-t_z L^{(j)}\} L^{(j)}.$$

Second step: Estimation of the unconditional excess probability $\overline{\theta} = \mathbb{P}(L \ge c)$.

Naive approach: Generate many realisations z of the impact factors Z and compute $\hat{\theta}_{n_1}^{(IS)}(z)$ for every one of them. The required estimator is the average of $\hat{\theta}_{n_1}^{(IS)}(z)$ over all realisations z. This is not the most efficient approach, see Glasserman and Li (2003). A better alternative: IS for the impact factors.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Assumption: $Z \sim N_k(0, \Sigma)$ (e.g. like in the probit-normal or logit BMD), where $k \in \mathbb{N}$ is the number of factors.

Assumption: $Z \sim N_k(0, \Sigma)$ (e.g. like in the probit-normal or logit BMD), where $k \in \mathbb{N}$ is the number of factors.

Let the IS density g be the density of $N_k(\mu, \Sigma)$ for a new expected vector $\mu \in \mathbb{R}^k$. A good choice of μ should lead to frequent realisations of z which imply high conditional default probabilities $p_i(z)$.

Assumption: $Z \sim N_k(0, \Sigma)$ (e.g. like in the probit-normal or logit BMD), where $k \in \mathbb{N}$ is the number of factors.

Let the IS density g be the density of $N_k(\mu, \Sigma)$ for a new expected vector $\mu \in \mathbb{R}^k$. A good choice of μ should lead to frequent realisations of z which imply high conditional default probabilities $p_i(z)$.

The likelihood ratio:

$$r_{\mu}(Z) = \frac{\exp\{-\frac{1}{2}Z^{t}\Sigma^{-1}Z\}}{\exp\{-\frac{1}{2}(Z-\mu)^{t}\Sigma^{-1}(Z-\mu)\}} = \exp\{-\mu^{t}\Sigma^{-1}Z + \frac{1}{2}\mu^{t}\Sigma^{-1}\mu\}$$

Assumption: $Z \sim N_k(0, \Sigma)$ (e.g. like in the probit-normal or logit BMD), where $k \in \mathbb{N}$ is the number of factors.

Let the IS density g be the density of $N_k(\mu, \Sigma)$ for a new expected vector $\mu \in \mathbb{R}^k$. A good choice of μ should lead to frequent realisations of z which imply high conditional default probabilities $p_i(z)$.

The likelihood ratio:

$$r_{\mu}(Z) = \frac{\exp\{-\frac{1}{2}Z^{t}\Sigma^{-1}Z\}}{\exp\{-\frac{1}{2}(Z-\mu)^{t}\Sigma^{-1}(Z-\mu)\}} = \exp\{-\mu^{t}\Sigma^{-1}Z + \frac{1}{2}\mu^{t}\Sigma^{-1}\mu\}$$

Algorithm: complete IS for Bernoulli mixture models with Gaussian factors

(1) Generate $z_1, z_2, \ldots, z_n \sim N_k(\mu, \Sigma)$ (*n* is the number of the simulation rounds)

Assumption: $Z \sim N_k(0, \Sigma)$ (e.g. like in the probit-normal or logit BMD), where $k \in \mathbb{N}$ is the number of factors.

Let the IS density g be the density of $N_k(\mu, \Sigma)$ for a new expected vector $\mu \in \mathbb{R}^k$. A good choice of μ should lead to frequent realisations of z which imply high conditional default probabilities $p_i(z)$.

The likelihood ratio:

$$r_{\mu}(Z) = \frac{\exp\{-\frac{1}{2}Z^{t}\Sigma^{-1}Z\}}{\exp\{-\frac{1}{2}(Z-\mu)^{t}\Sigma^{-1}(Z-\mu)\}} = \exp\{-\mu^{t}\Sigma^{-1}Z + \frac{1}{2}\mu^{t}\Sigma^{-1}\mu\}$$

Algorithm: complete IS for Bernoulli mixture models with Gaussian factors

- (1) Generate $z_1, z_2, ..., z_n \sim N_k(\mu, \Sigma)$ (*n* is the number of the simulation rounds)
- (2) For each z_i compute $\hat{\theta}_{n_1}^{(IS)}(z_i)$ by applying the IS algorithm for the conditional loss.

Assumption: $Z \sim N_k(0, \Sigma)$ (e.g. like in the probit-normal or logit BMD), where $k \in \mathbb{N}$ is the number of factors.

Let the IS density g be the density of $N_k(\mu, \Sigma)$ for a new expected vector $\mu \in \mathbb{R}^k$. A good choice of μ should lead to frequent realisations of z which imply high conditional default probabilities $p_i(z)$.

The likelihood ratio:

$$r_{\mu}(Z) = \frac{\exp\{-\frac{1}{2}Z^{t}\Sigma^{-1}Z\}}{\exp\{-\frac{1}{2}(Z-\mu)^{t}\Sigma^{-1}(Z-\mu)\}} = \exp\{-\mu^{t}\Sigma^{-1}Z + \frac{1}{2}\mu^{t}\Sigma^{-1}\mu\}$$

Algorithm: complete IS for Bernoulli mixture models with Gaussian factors

- (1) Generate $z_1, z_2, \ldots, z_n \sim N_k(\mu, \Sigma)$ (*n* is the number of the simulation rounds)
- (2) For each z_i compute $\hat{\theta}_{n_1}^{(IS)}(z_i)$ by applying the IS algorithm for the conditional loss.
- (3) compute the IS estimator for the independent excess probability:

$$\hat{\theta}_n^{(IS)} = \frac{1}{n} \sum_{i=1}^n r_\mu(z_i) \hat{\theta}_{n_1}^{(IS)}(z_i)$$

The choice of $\boldsymbol{\mu}$

<□ > < @ > < E > < E > E のQ @

The choice of $\boldsymbol{\mu}$

 μ should be chosen such that the variance of the estimator is small.

The choice of $\boldsymbol{\mu}$

 μ should be chosen such that the variance of the estimator is small. A sketch of the idea of Glasserman and Li (2003):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 μ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since $\hat{\theta}_{n_1}^{(IS)}(z) \approx \mathbb{P}(L \ge c | Z = z)$, search for an appropriate IS density for the function $z \mapsto \mathbb{P}(L \ge c | Z = z)$.

 μ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since $\hat{\theta}_{n_1}^{(IS)}(z) \approx \mathbb{P}(L \ge c | Z = z)$, search for an appropriate IS density for the function $z \mapsto \mathbb{P}(L \ge c | Z = z)$.

Approach:

a) the IS densiity g^* should be proportional to $\mathbb{P}(L \ge c | Z = z) \exp\{-\frac{1}{2}z^t \Sigma^{-1}z\}.$

 μ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since $\hat{\theta}_{n_1}^{(IS)}(z) \approx \mathbb{P}(L \ge c | Z = z)$, search for an appropriate IS density for the function $z \mapsto \mathbb{P}(L \ge c | Z = z)$.

Approach:

a) the IS density g^* should be proportional to $\mathbb{P}(I > a|Z = r) \exp\left(-\frac{1}{2}a^{T}\Sigma^{-1}r\right)$

 $\mathbb{P}(L \geq c | Z = z) \exp\{-\frac{1}{2}z^t \Sigma^{-1}z\}.$

b) the IS density should be a multivariate normal distribution $N_k(\mu, \Sigma)$ where the expected vector μ is chosen as follows:

$$\mu = \operatorname{argmax}_{z} \left\{ \mathbb{P}(L \ge c | Z = z) \exp\{-\frac{1}{2}z^{t}\Sigma^{-1}z\} \right\}.$$

 μ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since $\hat{\theta}_{n_1}^{(IS)}(z) \approx \mathbb{P}(L \ge c | Z = z)$, search for an appropriate IS density for the function $z \mapsto \mathbb{P}(L \ge c | Z = z)$.

Approach:

a) the IS density g^* should be proportional to

 $\mathbb{P}(L \geq c | Z = z) \exp\{-\frac{1}{2}z^t \Sigma^{-1}z\}.$

b) the IS density should be a multivariate normal distribution $N_k(\mu, \Sigma)$ where the expected vector μ is chosen as follows:

$$\mu = \operatorname{argmax}_{z} \left\{ \mathbb{P}(L \ge c | Z = z) \exp\{-\frac{1}{2}z^{t}\Sigma^{-1}z\} \right\}.$$

This problem is hard to solve exactly; in general $\mathbb{P}(L \ge c | Z = z)$ is not available in analytical form.

(日) (同) (三) (三) (三) (○) (○)

 μ should be chosen such that the variance of the estimator is small.

A sketch of the idea of Glasserman and Li (2003):

Since $\hat{\theta}_{n_1}^{(IS)}(z) \approx \mathbb{P}(L \ge c | Z = z)$, search for an appropriate IS density for the function $z \mapsto \mathbb{P}(L \ge c | Z = z)$.

Approach:

a) the IS density g^* should be proportional to $\mathbb{P}(t > t < \tau) = (-1, t < \tau)$

 $\mathbb{P}(L \geq c | Z = z) \exp\{-\frac{1}{2}z^t \Sigma^{-1}z\}.$

b) the IS density should be a multivariate normal distribution $N_k(\mu, \Sigma)$ where the expected vector μ is chosen as follows:

$$\mu = \operatorname{argmax}_{z} \left\{ \mathbb{P}(L \ge c | Z = z) \exp\{-\frac{1}{2}z^{t}\Sigma^{-1}z\} \right\}.$$

This problem is hard to solve exactly; in general $\mathbb{P}(L \ge c | Z = z)$ is not available in analytical form.

Glasserman und Li (2003) propose some numerical solution approaches.

(日) (同) (三) (三) (三) (○) (○)